Impact of Land Use Change on the Water Environment of a Key Marsh Area in Vientiane Capital, Laos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preparation
2.3. Classification of Land Use and Land Cover (LULC) Classes
2.4. Characterization of LULC Change
2.5. Analysis of Water Availability
3. Results and Discussion
3.1. Characteristics of Land Use Change
3.2. Water Quantity Estimation
3.3. Nutrient Distribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oelsner, G.P.; Stets, E.G. Recent trends in nutrient and sediment loading to coastal areas of the conterminous U.S.: Insights and global context. Sci. Total Environ. 2019, 654, 1225–1240. [Google Scholar] [CrossRef]
- Ross, E.R.; Randhir, T.O. Effects of climate and land use changes on water quantity and quality of coastal watersheds of Narragansett Bay. Sci. Total Environ. 2022, 807, 151082. [Google Scholar] [CrossRef]
- Alikhani, S.; Nummi, P.; Ojala, A. Urban wetlands: A review on ecological and cultural values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Sáez-Zamacona, I.; Silva, D.M.; Rodrigues, S.M.; Pereira, R.; Ramos, S. The role of estuarine wetlands (saltmarshes) in sediment microplastics retention. Water 2023, 15, 1382. [Google Scholar] [CrossRef]
- EPA. Wetland Functions and Values. 2016. Available online: http://www.epa.gov/watertrain (accessed on 15 May 2023).
- Ferreira, C.S.S.; Kašanin-Grubin, M.; Solomun, M.K.; Sushkova, S.; Minkina, T.; Zhao, W.; Kalantari, Z. Wetlands as nature-based solutions for water management in different environments. Curr. Opin. Environ. Sci. Health 2023, 33, 100476. [Google Scholar] [CrossRef]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Rotich, B.; Kindu, M.; Kipkulei, H.; Kibet, S.; Ojwang, D. Impact of land use/land cover changes on ecosystem service values in the cherangany hills water tower, Kenya. Environ. Chall. 2022, 8, 100576. [Google Scholar] [CrossRef]
- Lei, C.; Wagner, P.D.; Fohrer, N. Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the Stör. Hydrol. Earth Syst. Sci. 2021, 26, 2561–2582. [Google Scholar] [CrossRef]
- Mockler, E.M.; Shahumyan, H.; Williams, B.; Bruen, M. Loose one-way coupling of land use and nutrient emission models to assess effects of regional development scenarios on catchment water quality. Environ. Model. Assess. 2020, 25, 591–607. [Google Scholar] [CrossRef]
- Xie, H.; Ringler, C. Agricultural nutrient loadings to the freshwater environment: The role of climate change and socioeconomic change. Environ. Res. Lett. 2017, 12, 104008. [Google Scholar] [CrossRef]
- Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.J.; Jenkins, A.; Ferrier, R.C.; Li, H.; Luo, W.; et al. Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 2015, 77, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Singh, D.; Singh, S.K.; Shukla, D.N. Assessment of river water quality and ecological diversity through multivariate statistical techniques, and earth observation dataset of rivers Ghaghara and Gandak, India. Int. J. River Basin Manag. 2017, 15, 347–360. [Google Scholar] [CrossRef]
- Shrestha, S.; Bhatta, B.; Shrestha, M.; Shrestha, P.K. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Sci. Total Environ. 2018, 643, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Näschen, K.; Diekkrüger, B.; Evers, M.; Höllermann, B.; Steinbach, S.; Thonfeld, F. The impact of land use/Land cover change (LULCC) on water resources in a tropical catchment in Tanzania under different climate change scenarios. Sustainability 2019, 11, 7083. [Google Scholar] [CrossRef]
- Gumindoga, W.; Rwasoka, D.; Ncube, N.; Kaseke, E.; Dube, T. Effect of landcover/land-use changes on water availability in and around Ruti dam in Nyazvidzi catchment, Zimbabwe. Water SA 2018, 44, 136–145. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H.; Li, T.; Tu, S. Land use transitions and their effects on water environment in Huang-huai-Hai plain, China. Land Use Policy 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Chaudhuri, A.S.; Singh, P.; Rai, S.C. Modelling LULC change dynamics and its impact on environment and water security: Geospatial technology based assessment. Ecol. Environ. Conserv. 2018, 24, S292–S298. [Google Scholar]
- Elhag, M.; Psilovikos, A.; Sakellariou-Makrantonaki, M. Land use changes and its impacts on water resources in Nile delta region using remote sensing techniques. Environ. Dev. Sustain. 2013, 15, 1189–1204. [Google Scholar] [CrossRef]
- Permatasari, P.A.; Setiawan, Y.; Khairiah, R.N.; Effendi, H. The effect of land use change on water quality: A case study in Ciliwung Watershed. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012026. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, K.; Li, Y.; Sun, Y.; Li, H.; Yang, G. Human activities increase the nitrogen in surface water on the eastern Loess Plateau. Geofluids 2021, 2021, 9957731. [Google Scholar] [CrossRef]
- Chen, D.; Elhadj, A.; Xu, H.; Xu, X.; Qiao, Z. A study on the relationship between land use change and water quality of the Mitidja watershed in Algeria based on GIS and RS. Sustainability 2020, 12, 3510. [Google Scholar] [CrossRef]
- Kändler, M.; Blechinger, K.; Seidler, C.; Pavlů, V.; Šanda, M.; Dostál, T.; Krása, J.; Vitvar, T.; Štich, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Camara, M.; Jamil, N.R.; Abdullah, A.F. Impact of land uses on water quality in Malaysia: A review. Ecol. Process. 2019, 8, 10. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, F.; Shi, J.; Kung, H. What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective. Environ. Sci. Pollut. Res. 2022, 29, 56887–56907. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Romero, A.; Rico-Sánchez, A.; Mendoza-Martínez, E.; Gómez-Ruiz, A.; Sedeño-Díaz, J.; López-López, E. Impact of changes of land use on water quality, from tropical forest to anthropogenic occupation: A multivariate approach. Water 2018, 10, 1518. [Google Scholar] [CrossRef]
- Bahar, M.M.; Ohmori, H.; Yamamuro, M. Relationship between river water quality and land use in a small river basin running through the urbanizing area of Central Japan. Limnology 2008, 9, 19–26. [Google Scholar] [CrossRef]
- Xia, L.L.; Liu, R.Z.; Zao, Y.W. Correlation analysis of landscape pattern and water quality in Baiyangdian Watershed. Procedia Environ. Sci. 2012, 13, 2188–2196. [Google Scholar] [CrossRef]
- Phompila, C.; Sihapanya, V.; Chanthavong, B.; Thongmanivong, S.; Van Khoa, P.; Noda, K.; Vadrevu, K.P. Agricultural land use/cover changes in the Vientiane, Laos. In Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries; Springer: Chem, Switzerland, 2022; pp. 573–586. [Google Scholar] [CrossRef]
- Faichia, C.; Tong, Z.; Zhang, J.; Liu, X.; Kazuva, E.; Ullah, K.; Al-Shaibah, B. Using RS data-based CA–Markov model for dynamic simulation of historical and future LUCC in Vientiane, Laos. Sustainability 2020, 12, 8410. [Google Scholar] [CrossRef]
- Kyophilavong, P. The Impact of Irrigation on Aquatic Wetland Resources: A Case Study of That Luang Marsh, Lao PDR; Economy and Environment Program for Southeast Asia, IDRC Regional Office for Southeast and East Asia: Singapore, 2008. [Google Scholar]
- JICA. The Study on Improvement of Water Environment in Vientiane City Final Report; JICA: Tokyo, Japan, 2011. [Google Scholar]
- JICA. The Project for Urban Water Environment Improvement in Vientiane Capital; JICA: Tokyo, Japan, 2017. [Google Scholar]
- Chanthavilay, M.; Wang, H.; Ying, W.; Li, F. Assessment of wastewater treatment in developing countries current practices in Vientiane Capital, LAOS. Int. J. Adv. Res. 2017, 5, 335–344. [Google Scholar] [CrossRef]
- Claridge, C. An Inventory of Wetlands of the Lao PDR; Saeed, S., Ed.; IUCN: Gland, Switzerland, 1996. [Google Scholar]
- Gerrard, P. Integrating Wetland Ecosystem Values into Urban Planning: The Case of That Luang Marsh, Vientiane, Lao PDR; IUCN − The World Conservation UnionAsia Regional Environmental Economics Programme and WWF Lao Country Office: Vientiane, Laos, 2004. [Google Scholar]
- Lao Statistics Bureau. Population Census 2015. 2015. Available online: https://laosis.lsb.gov.la/ (accessed on 20 June 2023).
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef]
- Seyam, M.M.H.; Haque, M.R.; Rahman, M.M. Identifying the land use land cover (LULC) changes using remote sensing and GIS approach: A case study at Bhaluka in Mymensingh, Bangladesh. Case Stud. Chem. Environ. Eng. 2023, 7, 100293. [Google Scholar] [CrossRef]
- Wang, S.W.; Munkhnasan, L.; Lee, W.K. Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Shiferaw, H.; Bewket, W.; Alamirew, T.; Zeleke, G.; Teketay, D.; Bekele, K.; Schaffner, U.; Eckert, S. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Sci. Total Environ. 2019, 675, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Gondwe, J.F.; Lin, S.; Munthali, R.M. Analysis of land use and land cover changes in urban areas using remote sensing: Case of Blantyre City. Discret. Dyn. Nat. Soc. 2021, 2021, 8011565. [Google Scholar] [CrossRef]
- Mariye, M.; Jianhua, L.; Maryo, M. Land use and land cover change, and analysis of its drivers in Ojoje watershed, Southern Ethiopia. Heliyon 2022, 8, 09267. [Google Scholar] [CrossRef] [PubMed]
- Islami, F.A.; Tarigan, S.D.; Wahjunie, E.D.; Dasanto, B.D. Accuracy assessment of land use change analysis using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conf. Ser. Earth Environ. Sci. 2022, 950, 012091. [Google Scholar] [CrossRef]
- Lemessa, D. A robust method of computing the annual rate of land use/land covers change in landscapes. East Afr. J. Sci. 2020, 14, 163–168. [Google Scholar]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Polo, T.C.F.; Miot, H.A. Use of roc curves in clinical and experimental studies. J. Vasc. Bras. 2020, 19, e20200186. [Google Scholar] [CrossRef]
- Gil Pontius, R., Jr.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Kulsoontornrat, J.; Ongsomwang, S. Suitable land-use and land-cover allocation scenarios to minimize sediment and nutrient loads into kwan phayao, upper ing watershed, thailand. Appl. Sci. 2021, 11, 10430. [Google Scholar] [CrossRef]
- Redhead, J.W.; May, L.; Oliver, T.H.; Hamel, P.; Sharp, R.; Bullock, J.M. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 2018, 610–611, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Benez-Secanho, F.J.; Dwivedi, P. Does Quantification of Ecosystem Services Depend Upon Scale (Resolution and Extent)? A Case Study Using the InVEST Nutrient Delivery Ratio Model in Georgia, United States. Environments 2019, 6, 52. [Google Scholar] [CrossRef]
- Tikuye, B.G.; Gill, L.; Rusnak, M.; Manjunatha, B.R. Modelling the impacts of changing land use and climate on sediment and nutrient retention in Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Ecol. Model. 2023, 482, 110383. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; ChaplinKramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.8.0 User’s Guide; Natural Capital Project: Stanford, CA, USA, 2020. [Google Scholar]
- LTID (Lao ThatLuang Investment and Development). Environmental Impact Assessment; Lao ThatLuang Investment and Development (LTID): Vientiane, Laos, 2020. [Google Scholar]
- Vongpraseuth, T. Reality of urbanization and urban master plan of Vientiane Capital, Lao PDR: Issues and prospects. Am. Sci. J. Eng. Technol. Sci. 2020, 70, 1–15. [Google Scholar]
- Hamdy, O.; Zhao, S.; Salheen, M.A.; Eid, Y.Y. Analyses the driving forces for urban growth by using IDRISI®Selva models abouelreesh—Aswan as a case study. Int. J. Eng. Technol. 2017, 9, 226–232. [Google Scholar] [CrossRef]
- Nahib, I.; Suryanta, J.; Niedyawati Kardono, P.; Turmudi Lestari, S.; Windiastuti, R. Integration of logistic regression and multicriteria land evaluation to simulation establishment of sustainable paddy field zone in Indramayu Regency, West Java Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 012005. [Google Scholar] [CrossRef]
- MTPC; JICA. The Survey on Existing Road and Drainage Conditions in Vientiane Municipality Project; Ministry of Communication Transport Post and Construction, Department of Roads; Japan International Cooperation Agency: Vientiane, Laos, 2002. [Google Scholar]
- Department of Pollution Control. Decree on the Lao National Environmental Standard (No. 81); Ministry of Natural Resources and Environment: Vientiane, Laos, 2017. [Google Scholar]
- Ahmad, W.; Iqbal, J.; Nasir, M.J.; Ahmad, B.; Khan, M.T.; Khan, S.N.; Adnan, S. Impact of land use/land cover changes on water quality and human health in district Peshawar Pakistan. Sci. Rep. 2021, 11, 16526. [Google Scholar] [CrossRef]
Data | Data Acquisition | Source |
---|---|---|
Remote sensing | Landsat 5 TM, 27 March 2001 (C2L2) | USGS |
Landsat 5 TM, 06 March 2005 (C2L2) | USGS | |
Landsat 5 TM, 20 March 2010 (C2L2) | USGS | |
Landsat 8 OLI-TIRS, 18 March 2015 (C2L2) | USGS | |
Landsat 8 OLI-TIRS, 31 March 2020 (C2L2) | USGS | |
GIS data | DEM 2000 and DEM 2014 | Google Earth, ALOS PALSAR |
Road network | https://www.openstreetmap.org/ (accessed on 20 October 2022) | |
Stream network | https://www.openstreetmap.org/ (accessed on 20 October 2022) | |
Commercial food services | Field survey | |
Degree of slope | Generated from DEM | |
Secondary data | Average yearly rainfall between 1975 and 2014 | LSB [37] |
Monthly streamflow between 2009 and 2010 | JICA [32] | |
Monthly nitrate-nitrogen between 2009 and 2010 | JICA [32] | |
Nitrate-nitrogen retention coefficients | InVEST user guideline |
LULC Class | Description |
---|---|
Agricultural land | Land for cultivation, including rice paddies, and garden land |
Bare land | Empty land, clearing land surfaces, and active excavations |
Built-up land | Construction land, including land for industries, factories, residences, buildings, houses, roads, etc. |
Vegetation | Degraded forests, shrubs, fruit trees, rubber trees, and other forms of vegetation higher than 2 m |
Waterbody | Open water surfaces, fish ponds, and drainage canals |
Wetland | Marshlands that are covered by water and grass |
LULC Class | 2001 | 2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | |
Agricultural land (%) | 75.8 | 83.3 | 90.0 | 90.0 | 82.1 | 76.7 | 90.0 | 90.0 | 81.8 | 90.0 |
Bare land (%) | 86.2 | 83.3 | 96.7 | 96.7 | 96.4 | 90.0 | 87.5 | 93.3 | 88.9 | 80.0 |
Built-up land (%) | 90.0 | 90.0 | 96.7 | 96.7 | 90.9 | 98.0 | 93.1 | 90.0 | 81.8 | 90.0 |
Vegetation (%) | 83.3 | 83.3 | 88.2 | 100.0 | 92.9 | 86.7 | 85.3 | 96.7 | 100.0 | 100.0 |
Waterbody (%) | 100.0 | 93.3 | 100.0 | 96.7 | 100.0 | 100.0 | 100.0 | 100.0 | 90.9 | 100.0 |
Wetland (%) | 86.7 | 86.7 | 92.6 | 83.3 | 78.8 | 86.7 | 100.0 | 83.3 | 87.5 | 70.0 |
OA (%) | 86.7 | 93.9 | 90.0 | 92.2 | 88.3 | |||||
KC | 0.84 | 0.93 | 0.88 | 0.91 | 0.86 |
LULC Class | Descriptive Statistics from Raw Data (kg/ha/Year) | Mean 95% Confidence Interval by Bootstrap Estimation (kg/ha/Year) | Other Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | Standard Deviation | Lower | Upper | Retention Efficiency | Critical Length | Proportion of Subsurface | |
Agricultural land | 0.16 | 9.99 | 28.38 | 10.32 | 3.40 | 17.71 | 0.56 | 12.5 | 0 |
Bare land | 0.99 | 14.86 | 40.50 | 14.02 | 5.09 | 25.08 | 0.05 | 12.5 | 0 |
Built-up land | 30.10 | 281.34 | 1536.44 | 424.51 | 37.07 | 661.08 | 0.15 | 12.5 | 0 |
Vegetation | 0.00 | 568.62 | 2369.51 | 844.68 | 47.33 | 1158.82 | 0.80 | 12.5 | 0 |
Waterbody | 34.86 | 478.13 | 2574.09 | 693.57 | 107.74 | 1118.42 | 0.25 | 12.5 | 0 |
Wetland | 18.79 | 415.32 | 2649.20 | 699.96 | 63.91 | 1070.62 | 0.85 | 12.5 | 0 |
Independent Variable | Land Use Class (Dependent Variable) | |||||
---|---|---|---|---|---|---|
Bare Land | Agricultural Land | Built-Up Land | Vegetation | Waterbody | Wetland | |
Intercept | 19.74 | −26.77 | −19.42 | −24.83 | 5.60 | 10.04 |
Distance from commercial food services (m) | 1.53 × 10−4 ** | 2.60 × 10−4 ** | 4.36 × 10−4 ** | 1.24 × 10−3 ** | 1.26 × 10−4 ** | 2.38 × 10−4 ** |
Distance from road (m) | −6.46 × 10−3 ** | 2.46 × 10−3 ** | −1.10 × 10−2 ** | −4.16 × 10−3 ** | 2.28 × 10−3 ** | 8.42 × 10−3 ** |
Elevation (m) | −1.46 × 10−1 ** | 1.80 × 10−1 ** | 1.38 × 10−1 ** | 1.47 × 10−1 ** | −5.63 × 10−2 ** | −9.21 × 10−2 ** |
Distance from streams (m) | −1.13 × 10−3 ** | 1.36 × 10−3 ** | 2.10 × 10−4 ** | −3.05 × 10−3 ** | 3.08 × 10−4 ** | 1.16 × 10−3 ** |
Slope (degree) | −3.02 × 10−2 ** | 1.30 × 10−1 ** | −1.50 × 10−2 * | 2.00 × 10−2 | 2.03 × 10−3 | −8.80 × 10−2 ** |
AUC | 0.640 | 0.643 | 0.850 | 0.899 | 0.583 | 0.726 |
LULC Class | LULC Area (ha) in 2020 | NO3−-N Export (kg/Year) | 95% Confidence Interval of Mean | |||
---|---|---|---|---|---|---|
Min | Mean | Max | Lower | Upper | ||
Bare land | 583.09 | 577 | 8665 | 23,615 | 2966 | 14,622 |
Agricultural land | 226.34 | 36 | 2261 | 6423 | 771 | 4009 |
Built-up land | 224.28 | 6751 | 63,098 | 344,593 | 8314 | 148,268 |
Vegetation | 6.94 | 0 | 3933 | 16,437 | 328 | 8039 |
Waterbody | 197.24 | 6876 | 94,306 | 507,713 | 21,251 | 220,597 |
Wetland | 349.30 | 6563 | 145,071 | 925,365 | 22,325 | 373,969 |
Sum | 1587.19 | 20,803 | 317,334 | 1824,146 | 55,955 | 769,504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phanmala, K.; Lai, Y.; Xiao, K. Impact of Land Use Change on the Water Environment of a Key Marsh Area in Vientiane Capital, Laos. Water 2023, 15, 4302. https://doi.org/10.3390/w15244302
Phanmala K, Lai Y, Xiao K. Impact of Land Use Change on the Water Environment of a Key Marsh Area in Vientiane Capital, Laos. Water. 2023; 15(24):4302. https://doi.org/10.3390/w15244302
Chicago/Turabian StylePhanmala, Keophouxone, Yizhe Lai, and Kang Xiao. 2023. "Impact of Land Use Change on the Water Environment of a Key Marsh Area in Vientiane Capital, Laos" Water 15, no. 24: 4302. https://doi.org/10.3390/w15244302
APA StylePhanmala, K., Lai, Y., & Xiao, K. (2023). Impact of Land Use Change on the Water Environment of a Key Marsh Area in Vientiane Capital, Laos. Water, 15(24), 4302. https://doi.org/10.3390/w15244302