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Abstract: The water environment is critical to maintaining ecosystem balance and human well-
being globally. It is essential to comprehend the effects of land use change on water quantity and
quality for sustainable development of the urban environment. Expansion of urban areas leads to
intensified human activity and increased pollution loads in natural waterbodies. This study aimed
to monitor changes in land use over a span of two decades to evaluate the condition of the water
environment in That Luang Marsh (TLM). The land use and land cover (LULC) classes, including
agricultural land, bare land, built-up land, vegetation, waterbody, and wetland, were categorized
via Landsat images utilizing the maximum likelihood algorithm. A digital elevation model was
used to estimate the water surface area and volume, and the nutrient delivery ratio model was
employed to analyze nutrient distribution across the LULC classes. The results showed that from
2001 to 2020, the bare land, built-up, waterbody, and wetland areas increased by 29.92, 18.64, 0.87, and
0.16 times, respectively, while the agricultural and vegetation land decreased by 0.80 and 0.76 times,
respectively. A binary logistic regression model for influential factors implies that road network
expansion within the special economic zone in TLM could result in an increase in residential areas,
thereby impacting the LULC classes. The increase in water volume showed a robust correlation with
the expansion of built-up land, bare land, and waterbody. TLM had an average nitrate-nitrogen
export of 317 tons/year with a 95% confidence interval of (56, 770) tons/year in 2020. The distribution
over LULC classes affected the export, which varied dynamically. Vegetation land had the highest
nitrate-nitrogen load of 0.57 tons/ha/year, probably due to poorly managed use of fertilizers. The
developed land surface for an artificial lake could lead to an increase in the water volume, which
could be involved in the dilution of nutrient concentration. Therefore, it is crucial to prioritize policies
that aim to establish sustainable urban water environments through rational urban planning and by
making LULC management a primary consideration, especially for developing countries undergoing
similar processes of urbanization along the Mekong River in Southeast Asia.

Keywords: That Luang Marsh; land use and land cover (LULC); water availability; nitrate-nitrogen export

1. Introduction

Increasing population size and changes in land use create pressure on urban marshland
ecosystems [1]. In order to effectively plan for conservation and management, it is necessary
to understand the natural conditions of marsh systems, particularly in terms of hydrology,
water quality, and aspects of the ecosystem [2]. Urban marshland slows down the water
flow and retains pollutants including nutrients and toxic chemicals discharged from urban
areas [3,4]. These marshlands also play a critical role in mitigating the risk of urban flooding,
serve as a vital source of food [5] (EPA, 2016), and are crucial components in developing
sustainable nature-based solutions [6] (Ferreira et al., 2023).

Changes in land use and land cover (LULC) of marsh areas are crucial factors in
modifying the capacity of marsh ecosystems to provide essential services [7,8]. These
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changes have a particularly significant impact on soil erosion and runoff, which result
in the export of pollutants such as nutrients and sediment into watercourses [2,9]. The
expansion of agricultural land and urban areas leads to an increase in nutrient loads due
to surface and stormwater runoff into waterbodies [10,11], which results in significant
eutrophication. In addition, climate conditions control the change in water quantity at the
watershed scale [9], whereby land cover change affects climate parameters influenced by
human activities. In the case of urban marshland, the discharge could be relatively high
even in the dry season because of the discharge from urban areas.

Water quality and quantity are crucial for improving environmental flow, sustainable
agriculture, and human health [12,13]. Many global studies have investigated the corre-
lation between LULC and water quantity/quality in various regions. In the Songkhram
River Basin, Thailand, a regulated land use change resulted in a 1.05% (from 5.3% to 6.35%)
increase in streamflow [14], whereas LULC change in a tropical catchment in Tanzania
showed a decrease in flow of 6–8% in 2030 [15]. The Nyazvidzi catchment in Zimbabwe
showed a weak correlation between land use and runoff [16]. In Huang-Huai-Hai Plain,
China, LULC change had negative effects on water environment quality [17]. Urbanization
seriously reduced water quality and quantity in India [18,19]. LULC changes need to
be monitored to ensure a sustainable environment as urban areas have been shown to
significantly contribute to nutrient export [20–22]. Farming and populated areas have
been found to cause water pollution [2,9,23–26], whereas forested areas exhibit a weak
correlation [27,28]. These impacts are a concern in Laos, particularly in That Luang Marsh
(TLM) in the capital, Vientiane (see Figure 1).

In recent years, the Vientiane area, particularly TLM, has undergone rapid devel-
opment. In 2011, a special economic zone with complex infrastructures was developed
downstream of TLM, with the effects of LULC. The opening of the “China-Laos Railway”
in December 2021 further accelerated the development of TLM. Little attention has been
given to the impacts of LULC on water quality and quantity in this marsh area, and LULC
is not frequently monitored even for Vientiane as a whole. From 2016 to 2020, urbanization
caused a decrease in the amount of farmland in Vientiane [29], whereas from 1995 to 2018,
the amount of waterbody area gradually increased [30]. These studies are vital for sustain-
able urban planning in terms of LULC change. In general, the maximum water stock of
TLM was recorded in December, while the lowest was recorded in April [31]. Some studies
indicated that urban areas released a high amount of nutrients into TLM during the dry
season [32,33], and decentralized wastewater treatment was therefore recommended [34].
These issues are critical in the planning of different aspects of water environmental man-
agement such as urban wastewater treatment, irrigation schemes, and ecosystem balance
within Vientiane. However, investigations into the correlation between LULC and water
quality/quantity are relatively lacking. Therefore, it is imperative to clarify the impact of
LULC change on water quality and quantity to establish comprehensive and sustainable
urban development planning, which is especially significant for developing countries in
the process of urbanization.

This study examined how changes in land use impact water quantity and quality in
the key urban marshland of TLM in Vientiane. The results could assist in the development
of policy measures to minimize the effect of LULC change on the water environment in
the future. The objectives of this study are to (i) analyze the changes in LULC over the
course of two decades, (ii) estimate the surface water quantity affected by LULC change,
and (iii) evaluate the nitrate-nitrogen distribution in LULC classes relevant to marsh areas.
Figure 2 shows the framework of this study.
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2. Materials and Methods
2.1. Study Area

TLM, located on the eastern edge of Vientiane [35], is the largest wetland in the area,
with coordinates of 17◦56′ N and 102◦39′ E (Figure 1). The wetland elevation ranges
from 123 to 151 m above the mean sea level. Based on recorded data (1970–2009) from
the Department of Meteorology and Hydrology of Laos, the annual average temperature
ranged from 22.2 to 29.5 ◦C, and the average annual rainfall was 1664 mm. This area
has two distinct seasons, the dry season from May to October and the rainy season from
November to April, due to its tropical monsoon climate. There are 17 villages in the vicinity
of TLM [36]. Recent land surface development has resulted in barren areas dominating
TLM’s land area, which has also seen an expansion of built-up areas into the marsh area.
Recently, a human-made channel, the Mak Hiao River, has been constructed to connect the
upstream marsh to the main drainage river. The river receives drained water from urban
areas and TLM through natural riverine wetland before entering the Mekong River.

2.2. Data Collection and Preparation

The input data for analysis included remote sensing, GIS data, and other relevant data,
as shown in Table 1. The baseline year 2001 was selected because Laos has been listed
among the fastest-growing economies in the world since 2000 according to the World Bank’s
report on the Lao PDR Country Economic Memorandum. Since 2000, the government of
Lao PDR has promoted domestic and foreign investment, triggering significant changes
in LULC.

Table 1. Data collection and sources.

Data Data Acquisition Source

Remote sensing

Landsat 5 TM, 27 March 2001 (C2L2) USGS
Landsat 5 TM, 06 March 2005 (C2L2) USGS
Landsat 5 TM, 20 March 2010 (C2L2) USGS
Landsat 8 OLI-TIRS, 18 March 2015 (C2L2) USGS
Landsat 8 OLI-TIRS, 31 March 2020 (C2L2) USGS

GIS data
DEM 2000 and DEM 2014 Google Earth, ALOS PALSAR

Road network https://www.openstreetmap.org/
(accessed on 20 October 2022)

https://www.openstreetmap.org/
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Table 1. Cont.

Data Data Acquisition Source

GIS data
Stream network https://www.openstreetmap.org/

(accessed on 20 October 2022)
Commercial food services Field survey
Degree of slope Generated from DEM

Secondary data

Average yearly rainfall between 1975 and 2014 LSB [37]
Monthly streamflow between 2009 and 2010 JICA [32]
Monthly nitrate-nitrogen between 2009 and 2010 JICA [32]
Nitrate-nitrogen retention coefficients InVEST user guideline

Note: LSB: Lao Statistics Bureau.

2.3. Classification of Land Use and Land Cover (LULC) Classes

A supervised classification methodology was applied with ArcMap 10.7 to satellite
images captured in 2001, 2005, 2010, 2015, and 2020. This method has been extensively
employed in LULC classification utilizing the maximum likelihood algorithm [38–40]. The
maximum likelihood classification method nested in the ArcMap 10.7 software was utilized
for the LULC classification. As a supervised classification method, the maximum likelihood
classification can effectively evaluate similarity through the mean and variance of samples.
It is widely used for multi-class feature recognition with the help of high-resolution maps
(e.g., Google Earth maps) for the training samples. In total, 600 training samples were
collected to classify the LULC for a single year in the study area. The output raster of the
maximum likelihood method was converted to vector data. Then, the vector data were
manually checked and digitized using high-resolution maps such as Google Earth Pro
maps to identify the actual boundaries, especially for waterbodies and wetlands, which
enabled the definition of real visible images from different years [30,41]. After successful
interpretation of the supervised classification, the LULC was categorized into six classes,
as described in Table 2: agricultural land, bare land, built-up land, vegetation, waterbody,
and wetland.

Table 2. Definition of land use and land cover (LULC) classes.

LULC Class Description

Agricultural land Land for cultivation, including rice paddies, and garden land
Bare land Empty land, clearing land surfaces, and active excavations

Built-up land Construction land, including land for industries, factories, residences,
buildings, houses, roads, etc.

Vegetation Degraded forests, shrubs, fruit trees, rubber trees, and other forms of
vegetation higher than 2 m

Waterbody Open water surfaces, fish ponds, and drainage canals
Wetland Marshlands that are covered by water and grass

The confusion matrix method was used to evaluate the level of accuracy of the LULC
classification in order to clarify the relationship between raw (satellite) images and their
classified versions [39,42,43]. Randomized raster values were extracted from the reference
image (Landsat image) for each classified image taken in 2001, 2005, 2010, 2015, and 2020,
using a total of 360 reference points (60 points for each LULC class). These values were
then imported into the classified images for comparison. The classification accuracy was
confirmed using ground truth data and Google Earth Pro maps. A confusion matrix was
utilized to evaluate the agreement between the classification and ground data, utilizing
Kappa statistics to measure the accuracy of both the producer and the user (Equation (1)
to Equation (4)) [44]. Each element (xkj) in the confusion matrix represents the number
of samples of real land use class k that were classified as class j, so that xkk represents the

https://www.openstreetmap.org/
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number of correctly classified samples. Table 3 summarizes the accuracy of the LULC
classification for the five years.

Producer′s accuracy(%) =

(
xkk
xk+

)
× 100 (1)

User′s accuracy(%) =

(
xkk
x+k

)
× 100 (2)

Overall accuracy =
1
N

r

∑
k=1

xkk (3)

Kappa coefficient =
N∑r

k=1 xkk −∑r
k=1(xk+.x+k)

N2 −∑r
k=1(xk+.x+k)

(4)

where r is the class number (r = 6 for this study), N is the number of total pixels, xk+
represents the sum of values in row k, and x+k represents the sum of values in column k.
The Kappa coefficient values of 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1 represent slight,
fair, moderate, substantial, and almost perfect agreement, respectively [44].

Table 3. Accuracy of LULC classification.

LULC Class
2001 2005 2010 2015 2020

PA UA PA UA PA UA PA UA PA UA

Agricultural land (%) 75.8 83.3 90.0 90.0 82.1 76.7 90.0 90.0 81.8 90.0
Bare land (%) 86.2 83.3 96.7 96.7 96.4 90.0 87.5 93.3 88.9 80.0

Built-up land (%) 90.0 90.0 96.7 96.7 90.9 98.0 93.1 90.0 81.8 90.0
Vegetation (%) 83.3 83.3 88.2 100.0 92.9 86.7 85.3 96.7 100.0 100.0
Waterbody (%) 100.0 93.3 100.0 96.7 100.0 100.0 100.0 100.0 90.9 100.0

Wetland (%) 86.7 86.7 92.6 83.3 78.8 86.7 100.0 83.3 87.5 70.0
OA (%) 86.7 93.9 90.0 92.2 88.3

KC 0.84 0.93 0.88 0.91 0.86

Note: PA = producer accuracy; UA = user accuracy; OA = overall accuracy; KC = Kappa coefficient.

2.4. Characterization of LULC Change

The classified maps were utilized to calculate and analyze the change pattern in the
TLM area during 2001–2005, 2005–2010, 2010–2015, and 2015–2020. The Geoprocessing
tool in ArcMap was used to visualize the changes in the area of each LULC class and the
class-to-class transitions for each five-year period. For each LULC class, the rate of change
across any time period was calculated as follows [43,45]:

Rateofchange =
AT2 −AT1

Z
(5)

where AT1 and AT2 are the specific land areas (ha) at times 1 and 2, respectively, and Z is
the time interval (year).

A binary logistic regression analysis was conducted by utilizing IBM SPSS Statistics
27 to explain the relationship between LULC classes and five physical and socioeconomic
factors (i.e., road network, stream, commercial food services, elevation, and degree of slope)
in terms of locational preference. The attribute table of multi-raster values was imported
into SPSS for the analysis. Model outputs were evaluated using the receiver operating
characteristic (ROC) curve. The area under the curve (AUC) value ranged from 0 to 1,
with an AUC value higher than 0.7 (or 0.5) indicating a satisfactory (or moderate) fit of the
logistic regression model [46–48].
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2.5. Analysis of Water Availability

The estimation of water storage was carried out by using 3-D analysis in ArcScene
based on the results of LULC classification with 5-year intervals (2001–2005, 2005–2010,
2010–2015, and 2015–2020). The water volumes were calculated by combining the water-
body boundaries identified in the LULC class classification and a digital elevation model
(DEM). DEM 2000 was used for the years 2001, 2005, and 2010, while DEM 2014 was used
for the years 2015 and 2020. The average water volume (Vw) was calculated as follows:

Vw = Aw ×WLav (6)

where Aw is the area of surface water from analysis of the water boundaries on the land
use map and WLav is the average water level in the marsh in that year, which can be
derived from

WLav = WSele − ELEav (7)

where WSele is the elevation of surface water and ELEav is the average elevation of pixels
under water.

The water quality of TLM was assessed using the nutrient delivery ratio (NDR) of
the InVEST model (www.naturalcapitalproject.org (accessed on 20 October 2022)), taking
nitrate-nitrogen (NO3

−-N) as a representative pollutant. This model maps nutrient sources
from watersheds, calculates their transport to streams, and evaluates nutrient retention
based on environmental conditions on the land surface [49]. The nutrient loads represent
the amount of nutrients contributed by each pixel of the land use image. Surface runoff or
precipitation is a critical factor in transporting nutrients across the slope of the land surface.
Parameters utilized in the NDR model were based on the NatCap database in the InVEST
user guideline which provides a non-exhaustive list of local references for nutrient loads and
retention efficiencies. The model calibration was performed by adjusting the parameters of
retention efficiency, threshold flow accumulation, and hydrological connectivity to achieve
the best consistency of calculated values with observed data. The utilization of model-
provided parameters to simulate nutrient delivery was similarly applied in some other
studies [50–52]. According to the available data on monthly water quality monitoring
conducted by JICA [32] in 2009 and 2010 in the study area, the monitoring points were
overlaid on the LULC map to identify the corresponding point for each LULC class. For
instance, where there is a monitoring point at the outlet of a residential built-up area,
the pollutant load at this point could represent the contribution by the built-up class.
The loads of other LULC classes were estimated in a similar way. Min, mean, and max
values represent the nitrate-nitrogen load in the range from the lowest to the highest, and
they were used for calculating the total export in the scenarios of min, mean, and max,
respectively. Regarding the limitation of available hydrological and water quality data, the
bootstrap statistical method was used to resample the dataset to create a series of simulated
samples for a more informative description of the data distribution, as shown in Table 4.
The optimal calibration parameters, shown in Table S6, were validated by using a point of
observed data at the outlet of the marsh, which was measured at 0.37 kg/ha/year [32]. For
such calculations, the nitrate-nitrogen export at downstream pixels without retention is
described as follows [53]:

NDRi = NDR0,i(1 + exp(
IC0 − ICi

k
))
−1

. (8)

where IC0 and k are calibration parameters that define the shape of the NDR-IC relation-
ship, ICi is an index of connectivity (a topographic index representing the hydrological
connectivity, i.e., how likely it is for the nutrients on a pixel to reach the stream), and NDR0,i

www.naturalcapitalproject.org
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is the proportion of nitrate-nitrogen that is not retained by downslope pixels. The total
nitrate-nitrogen export at the effluent of the marsh was then computed as follows [53]:

xexp_total = ∑
i

xexp_i (9)

where xexp_i is the nitrate-nitrogen export from each LULC class.

Table 4. Statistics of nitrate-nitrogen load in different LULC classes.

LULC
Class

Descriptive Statistics from Raw Data
(kg/ha/Year)

Mean 95% Confidence
Interval by Bootstrap

Estimation (kg/ha/Year)
Other Parameters

Min Mean Max Standard
Deviation Lower Upper Retention

Efficiency
Critical
Length

Proportion of
Subsurface

Agricultural
land 0.16 9.99 28.38 10.32 3.40 17.71 0.56 12.5 0

Bare land 0.99 14.86 40.50 14.02 5.09 25.08 0.05 12.5 0
Built-up

land 30.10 281.34 1536.44 424.51 37.07 661.08 0.15 12.5 0

Vegetation 0.00 568.62 2369.51 844.68 47.33 1158.82 0.80 12.5 0
Waterbody 34.86 478.13 2574.09 693.57 107.74 1118.42 0.25 12.5 0

Wetland 18.79 415.32 2649.20 699.96 63.91 1070.62 0.85 12.5 0

Note: Raw data were adopted from JICA [32]; bootstrap method was used 1000 times for parameter estimation.

3. Results and Discussion
3.1. Characteristics of Land Use Change

The areas of various LULC classes from 2001 to 2020 are illustrated in Figure 3.
The overall accuracy and Kappa statistics of the satellite-image-based classification were
87–94% and 0.84–0.93, respectively, demonstrating that the classification was acceptable
(see Table 3) [38,47]. From 2001 to 2020, agricultural and vegetation lands decreased rapidly
from 1121.9 ha (70.7% of the total area of TLM) and 28.7 ha (1.8%) to 226.3 ha (14.3%) and
6.9 ha (0.4%), respectively, whereas the built-up land and bare land increased rapidly from
11.4 ha (0.7%) and 18.9 ha (1.2%) to 224.3 ha (14.1%) and 583.1 ha (36.7%), respectively. This
reflected the abandonment of agricultural land and the development of urban areas [29].
The most significant change occurred during 2010–2015 for agricultural, built-up, and bare
land, while it was during 2015–2020 that the vegetation area decreased most significantly.

From 2001 to 2020, the waterbody area increased gradually from 105.7 ha (6.7%) to
197.2 ha (12.4%). This may be due to the encroachment of human activities from 2001 to
2020 onto the southern part of TLM, such as ponds for recreation and small fishery farming,
and the construction, from 2010 to 2020, of a 350 ha circular lake in the northern region
of TLM as part of the special economic zone [54]. A similar trend in the waterbody area
of Vientiane was reported by Faichia et al. and Vongpraseuth [30,55]. Wetland areas are
known for their significant natural purification and water storage functions. The area of
wetland fluctuated over time and decreased from 2015 to 2020.

The specific changes in LULC area from one class to another during different periods
are shown as transfer matrices in Figure 4. From 2001 to 2005, there was a 22.4% conversion
of bare land to built-up area, while vegetation area and wetland area saw 16.2% and 8.4%
changes to agricultural land, respectively. In the subsequent period, 2005–2010, only 28.1%
of bare land remained, while 31.3%, 8.8%, and 10.2% of bare land, vegetation land, and
waterbody, respectively, were converted to built-up areas. The wetland area experienced a
15.3% decrease while the waterbody increased by the same percentage. Agricultural land
and waterbody witnessed gains of 14.7% and 9.9%, respectively. From 2010 to 2015, an
increase in abandoned agricultural land was observed, with 31.7%, 19.4%, and 10.5% of
area converted to bare land, wetland, and built-up area, respectively. Finally, from 2015
to 2020, deforestation of the settlement area was observed, resulting in the conversion of
approximately 46.1% and 25.4% of vegetation land to built-up and bare land, respectively.
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In terms of waterbody, there was a slight loss of 5.4% and gain of 3.0% in exchanges
with wetland during 2001–2005. However, during 2005–2010, waterbody was converted
to agricultural land (8.9%), built-up area (10.2%), and wetland (9.9%) but gained from
wetland (15.3%) and bare land (8.3%). The following period, 2010–2015, exhibited the most
significant exchanges of waterbody with wetland (17.4% gain and 38.7% loss) and built-up
area (21.5% gain and 5.4% loss). Furthermore, waterbody became bare land continuously
by 4.9% and 11.7% during 2010–2015 and 2015–2020, respectively. These two periods
presented quite stable transitions of waterbody to built-up areas by 5.3–5.4% (Figure 4).

A binary logistic regression model was utilized to measure the correlation between the
dependent variable (identification of each LULC class) and independent variables (physical
and socioeconomic factors). The regression coefficients and AUC value for each LULC
class are presented in Table 5. A positive (or negative) coefficient value indicates that the
target LULC class was positively (or negatively) influenced by the factor. The primary
determinant for waterbody transformation in the study area was elevation, with distance
from roads ranking second in importance. Furthermore, elevation played a significant role
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in the conversion of all LULC classes, with different influencing values, while distance
from roads was a crucial factor in the socioeconomic transition of all LULC classes.
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Table 5. Results of the binary logistic regression model for the LULC class location preference as a
function of physical and socioeconomic factors (2020).

Independent
Variable

Land Use Class (Dependent Variable)

Bare Land Agricultural
Land Built-Up Land Vegetation Waterbody Wetland

Intercept 19.74 −26.77 −19.42 −24.83 5.60 10.04
Distance from
commercial
food services (m)

1.53 × 10−4 ** 2.60 × 10−4 ** 4.36 × 10−4 ** 1.24 × 10−3 ** 1.26 × 10−4 ** 2.38 × 10−4 **

Distance from
road (m) −6.46 × 10−3 ** 2.46 × 10−3 ** −1.10 × 10−2 ** −4.16 × 10−3 ** 2.28 × 10−3 ** 8.42 × 10−3 **
Elevation (m) −1.46 × 10−1 ** 1.80 × 10−1 ** 1.38 × 10−1 ** 1.47 × 10−1 ** −5.63 × 10−2 ** −9.21 × 10−2 **
Distance from
streams (m) −1.13 × 10−3 ** 1.36 × 10−3 ** 2.10 × 10−4 ** −3.05 × 10−3 ** 3.08 × 10−4 ** 1.16 × 10−3 **
Slope (degree) −3.02 × 10−2 ** 1.30 × 10−1 ** −1.50 × 10−2 * 2.00 × 10−2 2.03 × 10−3 −8.80 × 10−2 **
AUC 0.640 0.643 0.850 0.899 0.583 0.726

Note: N = 99,026 sample points; * p value < 0.05; ** p value < 0.001.

The above findings show that the decreases in agricultural and vegetation lands were
associated with the expansion of built-up area or urbanization. Phompila et al. revealed that
the increase in built-up area in Vientiane from 2016 to 2020 was due to the development
of farmlands for residential, commercial, and economic purposes [29]. Since 2011, the
special economic zone boundary located downstream of TLM has been introduced and
started to develop [54], which attracted people who wanted to live and stay close to
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convenient facilities and new road networks. This development direction could therefore
provide vital information for people selecting or developing their homes. According to
Figure 3a–e, the expansion of bare land, waterbody, and wetland might be related to the
replacement of land surfaces with soil and artificial lakes/ponds, which is consistent with
previous studies in Vientiane by Faichia et al. and Vongpraseuth [30,55]. The increase
in built-up area over TLM might result from unmanaged settlements due to the lack of
enforcement of the land use plan. According to the Lao Statistic Bureau (2015) [37], the
share of urban population in Laos increased from 27% to 33% during 2005–2015. The
distance to roads significantly impacted all LULC classes, positively affecting waterbody,
wetland, and agricultural land but negatively impacting vegetation, built-up land, and bare
land. Settlements are commonly located near roads and bring about change in LULC classes
due to the intensive human activity. This result is similar to cases in Aswan, Southern
Egypt, and West Java Province, Indonesia [56,57].

TLM provides significant services in flood control and wastewater purification [58].
This marsh has a restricted range of biodiversity, containing only 41 species of vegeta-
tion that can be used for natural wastewater purification [31]. The continued growth of
the special economic zone and residential zones might diminish biodiversity and com-
promise the effectiveness of the wetland’s capacity for purification, leading to increased
water pollution.

3.2. Water Quantity Estimation

As shown in Figure 5, the total water volume increased steadily at an average rate
of 4129 m3/year from 2001 to 2020. To further understand the details of the change, the
distribution of water over TLM was identified in the northern, middle, and southern
parts, as illustrated in Figure 6. During 2001–2020, the middle part exhibited a significant
proportion of water volume. The northern part presented a rapid increase in water volume
from 2982 to 11,020 m3 between 2010 and 2020. This could be attributed to the new
development of an artificial lake in the special economic zone [34,54]. The southern part
fluctuated but slightly increased after 2010. Figure 6 illustrates the longitudinal profile of
elevation and water surface where the marsh was developed from north to south. Clear
changes were observed in the northern part from 2010 to 2015 and in the southern part
from 2015 to 2020.
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The correlation between changes in LULC area and water volume across different
years was examined by nonparametric correlation analysis, as displayed in Figure 7. The
built-up land, bare land, waterbody, and wetland exhibited a strongly positive relationship
between area and water volume with Spearman’s correlation coefficients (Rs) of 1.0, 1.0,
1.0, and 0.8, respectively. Conversely, agricultural and vegetation areas indicated strongly
negative correlations of −0.9 and −1, respectively. The artificial lake and ponds occurred
where the residential areas were located, and the land surface was developed before
these water features were constructed. Therefore, built-up and bare land showed a strong
relationship in changing the water volume. Additionally, built-up land, bare land, and
waterbody were statistically significant (p < 0.05) in changing the water volume, whereas
agricultural land and wetland were not statistically significant (p ≥ 0.1). A case study in
the Songkhram River Basin, Thailand, revealed that the development of a special economic
zone was concurrent with an increase in streamflow from 5.30% to 6.35% [14], and a case in
China revealed that an increase in construction and waterbody areas was linked to a loss of
farmland [17]. These similar phenomena might be explained by the specific water resource
conservation encouraged by the government of Lao PDR [54]. Such promotion could
support a dilution effect, but the intensive discharge of pollutants due to expanded built-up
areas is never negligible. Therefore, a comprehensive consideration of the multifaceted
impacts of LULC change on the water environment is necessary for sustainable urban
environmental planning.
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3.3. Nutrient Distribution

Nitrate-nitrogen export was evaluated in various scenarios for each LULC class, as
illustrated in Table 6. The mean value indicates the average export scenario, while the
minimum and maximum values correspond to the lowest and highest export scenarios,
respectively. In terms of average exports, the wetland exhibited the highest level, followed
by waterbody, built-up land, bare land, vegetation, and agricultural land. This may suggest
the accumulation of nitrate-nitrogen rather than the self-production of nitrate-nitrogen
in waterbody and wetland due to their lower elevations in the marsh. In contrast, the
built-up area discharged a large amount of nitrate-nitrogen in three different scenarios
compared to other LULC classes, which is similar to the results of Kulsoontornrat and
Ongsomwang [49]. Furthermore, as illustrated in Figure 8, the northern region (especially
the waterbody) exhibited a high load of nitrate-nitrogen, serving as the marsh outlet. Even
though a high export was observed in the max scenario of all LULC classes, the min
and mean scenarios were below 5 mg/L according to the Lao National Environmental
Standard [59].

Table 6. Estimated nitrate-nitrogen export in different LULC classes in 2020.

LULC Class LULC Area (ha) in 2020
NO3−-N Export (kg/Year) 95% Confidence Interval of Mean

Min Mean Max Lower Upper

Bare land 583.09 577 8665 23,615 2966 14,622
Agricultural land 226.34 36 2261 6423 771 4009
Built-up land 224.28 6751 63,098 344,593 8314 148,268
Vegetation 6.94 0 3933 16,437 328 8039
Waterbody 197.24 6876 94,306 507,713 21,251 220,597
Wetland 349.30 6563 145,071 925,365 22,325 373,969
Sum 1587.19 20,803 317,334 1824,146 55,955 769,504
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The analysis of nitrate-nitrogen export using linear interpolation for each LULC class
from 2010 to 2020 indicated increased levels in the wetland and waterbody over the years.
This trend was similar to the proportion of nitrate-nitrogen export from built-up area, as
shown in Figure 9a. This result might be related to the extent of the expansion of residential
areas into the marsh, which may decrease the retention capability of natural surfaces.
Changes in areas of LULC classes may impact the proportions of nitrate-nitrogen. In
2020, the total amount of nitrate-nitrogen was estimated to be 320,242 kg/year (estimated
as bootstrap mean, slightly different from the actual mean). Similarly, Lei et al. and
Permatasari et al. confirmed that the export of high total nitrogen concentrations is strongly
related to the increase in urban land [9,20].

The vegetation presented the lowest land coverage ratio but the highest nitrate load
compared to other LULC classes (see the sensitivity analysis in Figure 9b). It is possible
that these outcomes resulted from the use of fertilizers in the fruit tree orchard, which were
then carried into the watercourses through rainfall runoff. Conversely, even though bare
land covered the largest area in 2020, it displayed a very low nitrate contribution, likely
due to the absence of human activities. Case studies from other countries also found that
high concentrations were accompanied by the excessive use of fertilizers in agricultural
and built-up areas [23,25,28,60].
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As shown in Table 6, the high concentrations of pollutants produced by human activi-
ties in urban areas significantly affect water quality across seasons. Therefore, to ensure the
sustainability of Vientiane’s water environment, the critical solution is to enhance land use
management by conserving urban wetland and waterbody areas and educating urban resi-
dents on controlling nitrate-nitrogen export. For instance, JICA conducted an experiment at
a drainage canal leading to TLM and revealed that water spinach was capable of absorbing
nitrogen and phosphorus at a rate of 0.1–0.2 mg/L/m2 and <0.01 mg/L/m2, respectively,
per unit area covered [32]. Additionally, it was able to retain suspended solids of up to
0.19 kg/day/m2 and reduce the flow velocity by 0.12–0.15 m/s. Therefore, TLM can be
viewed as a nature-based solution for purifying domestic wastewater using various plant
species, which presents a viable alternative approach for Vientiane. Simultaneously, it is
crucial to enhance the responsibility of urban residents to become involved in pollutant con-
trol. These findings might be significant for the management of urban water environments
in other similar developing countries, especially those experiencing rapid urbanization.

4. Conclusions

This study utilized Landsat images with the maximum likelihood method to classify
the LULC of TLM in Vientiane, Laos. From 2001 to 2020, the bare land, built-up land,
waterbody, and wetland areas increased by 29.92, 18.64, 0.87, and 0.16 times, respectively,
whereas the agricultural and vegetation areas decreased by 0.80 and 0.76 times. Intensive
exchange of waterbody with other LULC classes was witnessed over the years under
the influence of physical and socioeconomic factors such as elevation and distance from
roads. The total water volume increased from 14,036 m3 in 2001 to 30,552 m3 in 2020.
The total nitrate-nitrogen export in 2020 reached 317 tons/year with a 95% confidence
interval of (56, 770) tons/year, which would vary most sensitively with the vegetation land
area according to the simulation. The findings could be attributed to the change in urban
layout in TLM over the years: on the one hand, the road network expansion resulted in
increased residential areas; on the other hand, an artificial lake increased the water volume
for pollutant dilution. Therefore, it is necessary to develop comprehensive urban plans
and prioritize related policies by emphasizing LULC management as a key factor in a
sustainable urban water environment.

The Mekong River Basin is an important gateway for the China-proposed “Belt and
Road Initiative”, along which Thailand, Laos, Cambodia, Vietnam, Myanmar, and other
countries have been developing more closely and rapidly since 2013. Within this region,
TLM holds great significance as a highly representative area of the Mekong River Basin.
The findings of the study can provide valuable references for managing urban water
environments in other developing countries, particularly those situated along the Mekong
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River in Southeast Asia, which are undergoing similar processes of urbanization. Moreover,
this study may also have implications for the water environment protection, water resource
utilization, and coordinated development of the Mekong River Basin.
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www.mdpi.com/article/10.3390/w15244302/s1, Figure S1: Location of discrete monitoring points
for different projects in the center of Vientiane Capital; Table S1: Satellite image and sources; Table S2:
Confusion matrix results for LULC classification; Table S3: Flow rate at different monitoring points in
Vientiane Capital; Table S4: Nutrient concentration monitored by JICA; Table S5: Nutrient load from
Vientiane Capital at different monitoring points; Table S6: Calibration parameters for the NDR model.
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