Heavy Metals and Microbial Diversity: A Comparative Analysis of Rivers Swat and Kabul
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water and Sediment Sampling
2.3. Sediment Sample Preparation
2.4. Quality Control
2.5. Microbial Diversity Analysis
2.5.1. Medium Preparation
2.5.2. Isolation of Bacteria
2.5.3. Plate Counting
2.6. Bacterial Culture Characterization
2.6.1. Morphological Studies
Gram Staining of Bacteria
Size, Shape, and Color
2.7. Biochemical Characterization
2.7.1. Urease Test
2.7.2. Acid Phosphatase Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Heavy Metals in Water
3.3. Heavy Metals in Sediments
3.4. Heavy Metals and Microbial Diversity
3.5. Isolation of Bacteria from Water and Sediments
3.6. Morphological and Biochemical Identification of Isolates
3.6.1. Morphological Characteristics
3.6.2. Identification of Isolated Bacteria
3.6.3. Biochemical Characteristics
3.7. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Yasir, M.; Khan, A. Environmental and health impacts of industrial wastewater effluents in Pakistan: A review. Rev. Environ. Health 2019, 34, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Growth of BiOBr/ZIF-67 nanocomposites on carbon fiber cloth as filter-membrane-shaped photocatalyst for degrading pollutants in flowing wastewater. Adv. Fiber Mater. 2022, 4, 1620–1631. [Google Scholar] [CrossRef]
- Khan, B.; Ullah, H.; Khan, S.; Aamir, M.; Khan, A.; Khan, W. Sources and Contamination of Heavy Metals in Sediments of Kabul River: The Role of Organic Matter in Metals Retention and Accumulation. Soil Sediment Contam. 2016, 25, 891–904. [Google Scholar] [CrossRef]
- Singh, V.; Singh, J.; Mishra, V. Sorption kinetics of an eco-friendly and sustainable Cr (VI) ion scavenger in a batch reactor. J. Environ. Chem. Eng. 2021, 9, 105125. [Google Scholar] [CrossRef]
- Avino, P.; Capannesi, G.; Rosada, A. Ultra-trace nutritional and toxicological elements in Rome and Florence drinking waters determined by Instrumental Neutron Activation Analysis. Microchem. J. 2011, 97, 144–153. [Google Scholar] [CrossRef]
- Singh, V.; Singh, N.; Rai, S.N.; Kumar, A.; Singh, A.K.; Singh, M.P.; Sahoo, A.; Shekhar, S.; Vamanu, E.; Mishra, V. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics 2023, 11, 147. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Wang, C.; Liu, Y. Ta3N5/CdS core–shell S-scheme heterojunction nanofibers for efficient photocatalytic removal of antibiotic tetracycline and Cr (VI): Performance and mechanism insights. Adv. Fib. Mater. 2023, 5, 994–1007. [Google Scholar] [CrossRef]
- Singh, V.; Singh, N.; Verma, M.; Kamal, R.; Tiwari, R.; Chivate, M.S.; Rai, S.N.; Kumar, A.; Singh, A.; Singh, M.P.; et al. Hexavalent-chromium-induced oxidative stress and the protective role of antioxidants against cellular toxicity. Antioxidants 2022, 11, 2375. [Google Scholar] [CrossRef]
- Sin, S.N.; Chua, H.; Lo, W.; Ng, L.M. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ. Int. 2001, 26, 297–301. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Liu, Y.; Wang, C.; Yan, R.; Chen, X. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr (VI) reduction. Adv. Powder Mater. 2023, 2, 100073. [Google Scholar] [CrossRef]
- Miranda, L.S.; Ayoko, G.A.; Egodawatta, P.; Goonetilleke, A. Adsorption-desorption behavior of heavy metals in aquatic environments: Influence of sediment, water and metal ionic properties. J. Hazard. Mater. 2022, 421, 126743. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Wang, Y.; Luo, H. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China. Mar. Pollut. Bull. 2015, 101, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Pande, V.; Joshi, P. Microbial diversity of aquatic ecosystem and its industrial potential. J. Bacteriol. Mycol. 2016, 3, 00048. [Google Scholar]
- Panizzon, J.P.; Pilz, H.L.; Knaak, N.; Ramos, R.C.; Ziegler, D.R.; Fiuza, L.M. Microbial diversity: Relevance and relationship between environmental conservation and human health. Braz. Arc. Biol. Technol. 2015, 58, 137–145. [Google Scholar] [CrossRef]
- Du, X.; Gu, S.; Zhang, Z.; Li, S.; Zhou, Y.; Zhang, Z.; Zhang, Q.; Wang, L.; Ju, Z.; Yan, C.; et al. Spatial distribution patterns across multiple microbial taxonomic groups. Environ. Res. 2023, 223, 115470. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, X.; Wei, H.; Chen, X.; Gong, N.; Ahmad, S.; Lee, T.; Ismail, S.; Ni, S.Q. Insight into impact of sewage discharge on microbial dynamics and pathogenicity in river ecosystem. Sci. Rep. 2022, 12, 6894. [Google Scholar] [CrossRef]
- Klerks, P.L.; Weis, J.S. Genetic adaptation to heavy metals in aquatic organisms: A review. Environ. Pollut. 1987, 45, 173–205. [Google Scholar] [CrossRef]
- Duke, C.V.A.; Williams, C.D. Soil Pollution Chemistry for Environment and Earth Sciences; CRC Press; Taylor and Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Wang, J.; Fan, Y.; Yao, Z. Isolation of a Lysinibacillus fusiformis strain with tetrodotoxin-producing ability from puffer fish Fugu obscurus and the characterization of this strain. Toxicon 2010, 56, 640–643. [Google Scholar] [CrossRef]
- Sagova-Mareckova, M.; Boenigk, J.; Bouchez, A.; Cermakova, K.; Chonova, T.; Cordier, T.; Eisendle, U.; Elersek, T.; Fazi, S.; Fleituch, T.; et al. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res. 2021, 191, 116767. [Google Scholar] [CrossRef]
- Yin, H.; Niu, J.; Ren, Y.; Cong, J.; Zhang, X.; Fan, F.; Xiao, Y.; Zhang, X.; Deng, J.; Xie, M.; et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci. Rep. 2015, 5, 14266. [Google Scholar] [CrossRef] [PubMed]
- Keshri, J.; Yousuf, B.; Mishra, A.; Jha, B. The abundance of functional genes, cbbL, nifH, amoA and apsA, and bacterial community structure of intertidal soil from Arabian Sea. Microbiol. Res. 2015, 175, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Yousafzai, A.M.; Siraj, M.; Ahmad, R.; Ahmad, I.; Nadeem, M.S.; Ahmad, W.; Akbar, N.; Muhammad, K. Pollution problem in river kabul: Accumulation estimates of heavy metals in native fish species. BioMed Res. Int. 2015, 2015, 537368. [Google Scholar] [CrossRef] [PubMed]
- Yousafzai, A.M.; Khan, A.R.; Shakoori, A.R. An assessment of chemical pollution in River Kabul and its possible impacts on fisheries. Pak. J. Zool. 2008, 40, 199. [Google Scholar]
- Yousafzai, A.M.; Khan, A.R.; Shakoori, A.R. Heavy metal pollution in River Kabul affecting the inhabitant fish population. Pak. J. Zool. 2008, 40, 331–339. [Google Scholar]
- Khan, S.; Khan, A.M.; Khan, M.N. Investigation of pollutants loads in waste water of Hayatabad Industrial Estate, Peshawar, Pakistan. J. App. Sci. 2002, 2, 457–461. [Google Scholar]
- Khan, S.; Shahnaz, M.; Jehan, N.; Rehman, S.; Shah, M.T.; Din, I. Water quality and human health risk in Charsadda district. Pakistan. J. Clean. Prod. 2012, 10, 10–16. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality (Electronic Resource), Incorporating 1st and 2nd Addenda; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Ahmed, M.K.; Baki, M.A.; Islam, M.S.; Kundu, G.K.; Habibullah-Al-Mamun, M.; Sarkar, S.K.; Hossain, M.M. Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environ. Sci. Pollut. Res. 2015, 22, 15880–15890. [Google Scholar] [CrossRef]
- CCME. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2001. [Google Scholar]
- Buchman, M. NOAA Screening Quick Reference Tables. NOAA HAZMAT Report 99-1; Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration: Seattle, WA, USA, 1999. [Google Scholar]
- USEPA. United States Environmental Protection Agency. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments; Environmental Response Team: Edison, NJ, USA, 1997. [Google Scholar]
- Afzaal, M.; Hameed, S.; Liaqat, I.; Khan, A.M.A.; Manan, H.A.; Shahid, R.; Altaf, M. Heavy metals contamination in water, sediments and fish of freshwater ecosystems in Pakistan. Water Pract. Technol. 2022, 17, 1253–1272. [Google Scholar] [CrossRef]
- Mohite, B.V.; Koli, S.H.; Patil, S.V. Heavy metal stress and its consequences on exopolysaccharide (EPS)-producing Pantoea agglomerans. App. Biochem. Biotechnol. 2018, 186, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Staninska-Pięta, J.; Czarny, J.; Piotrowska-Cyplik, A.; Juzwa, W.; Wolko, Ł.; Nowak, J.; Cyplik, P. Heavy metals as a factor increasing the functional genetic potential of bacterial community for polycyclic aromatic hydrocarbon biodegradation. Molecules 2020, 25, 319. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Subrahmanyam, G.; Mondal, R.; Cabral-Pinto, M.M.S.; Shabnam, A.A.; Jigyasu, D.K.; Malyan, S.K.; Fagodiya, R.K.; Khan, S.A.; Yu, Z.-G. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 2021, 268, 128855. [Google Scholar] [CrossRef] [PubMed]
- Acioly, L.M.; Cavalcanti, D.; Luna, M.C.; Júnior, J.C.; Andrade, R.F.; Silva, T.A.D.L.; Campos-Takaki, G.M. Cadmium removal from aqueous solutions by strain of Pantoea agglomerans UCP1320 isolated from laundry effluent. Open Microbiol. J. 2018, 12, 297–307. [Google Scholar] [CrossRef]
- Eltarahony, M.; Zaki, S.; Abd-El-Haleem, D. Aerobic and anaerobic removal of lead and mercury via calcium carbonate precipitation mediated by statistically optimized nitrate reductases. Sci. Rep. 2020, 10, 4029. [Google Scholar] [CrossRef] [PubMed]
- Eltarahony, M.; Zaki, S.; ElKady, M.; Abd-El-Haleem, D. Biosynthesis, characterization of some combined nanoparticles, and its biocide potency against a broad spectrum of pathogens. J. Nanomat. 2018, 2018, 5263814. [Google Scholar] [CrossRef]
- Edet, U.O.; Bassey, I.U.; Joseph, A.P. Heavy metal co-resistance with antibiotics amongst bacteria isolates from an open dumpsite soil. Heliyon 2023, 9, e13457. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, M.; Li, B.; Dong, Y. Mechanisms, application advances and future perspectives of microbial-induced heavy metal precipitation: A review. Int. Biodeterior. Biodeg. 2023, 178, 105544. [Google Scholar] [CrossRef]
- Kalkan, S. Heavy metal resistance of marine bacteria on the sediments of the Black Sea. Marine Pollut. Bull. 2022, 179, 113652. [Google Scholar] [CrossRef]
Swat | Kabul | ||||
---|---|---|---|---|---|
Parameters | Range | Mean ± SD | Range | Mean ± SD | WHO Limit |
Water | |||||
pH | 8.10–8.48 | 8.28 ± 0.16 | 6.77–7.94 | 7.52 ± 0.47 | 6.5–8.5 |
EC (µS/cm) | 233.6–662.1 | 420.16 ± 179.57 | 1.99–114.80 | 43.72 ± 56.82 | 1500 |
Sediments | |||||
pH | 6.77–7.94 | 7.62 ± 0.23 | 6.79–7.54 | 7.28 ± 0.31 | 6.5–8.5 |
EC (µS/cm) | 450.1–950.6 | 769.76 ± 193.67 | 2.53–175.8 | 116.47 ± 70.18 | 1500 |
Swat Sample | No of Isolates | Kabul Sample | No of Isolates |
---|---|---|---|
Mingora Kanju pull (S1) | 4 | Sardaryab Charsada (K1) | 4 |
Charbagh (S2) | 7 | Agrah (K2) | 3 |
Khawaza Khela (S3) | 6 | Motorway pull (K3) | 4 |
Madyan (S4) | 4 | Nowshehra pull (K4) | 4 |
Bahrain (S5) | 6 | Hakeem Abad (K5) | 2 |
Sample | Characteristics | a | b | c | D | e | f | g |
---|---|---|---|---|---|---|---|---|
River Swat | ||||||||
Mingora Kanju pull (S1) | Name | E. agglomerans | E. agglomerans | Hafnia alvei | Plesiomona shigelloides | |||
Shape | Round | Round | Straight rod | Round-ended | -- | -- | -- | |
Color | Yellow | Yellow | Gray | White | -- | -- | -- | |
Charbagh (S2) | Name | E. agglomerans | E. agglomerans | Y. intermedia, | P.Mirabilis | V. metschnikovii | V. splendidus | P. leiognathi |
Shape | Round | Round | Rod | Rod | Curved rod | Rod | Coccobacillus | |
Color | Yellow | Yellow | Dark pink | Cream | Grayish | White | Colorless | |
Khawaza Khela (S3) | Name | Y. ruckeri | P. leiognathi, | V. gazogenes | V. metschnikovii | V. metschnikovii | V. gazogenes | |
Shape | Round | Coccobacillus | Curved rod | Curved rod | Curved rod | Curved rod | -- | |
Color | Pink | Colorless | Red | Purple | Purple | Red | -- | |
Madyan (S4) | Name | E. cloacae | V. metschnikovii | V. metschnikovii | S. marcescens | |||
Shape | Rod | Curved rod | Curved rod | Round | -- | -- | -- | |
Color | Orange | Purple | Purple | Red | -- | -- | -- | |
Bahrain (S5) | Name | Y. ruckeri | V. hollisae | V. hollisae | P. leiognathi | V. damse | V. alginolyticus | |
Shape | Round | Rod | Rod | Coccobacillus | Rod | Short rod | -- | |
Color | Pink | Green | Green | Colorless | Purple | Yellow | -- | |
River Kabul | ||||||||
Sardaryab Charsada (K1) | Name | P. mirabilis | S. marcescens | V. proteolyticus | V. gazogenes | |||
Shape | Rod | Round | Rod | Curved rod | ||||
Color | Cream | Red | White | Red | ||||
Agrah (K2) | Name | E. agglomerans | E. agglomerans | E. agglomerans | ||||
Shape | Round | Round | Round | -- | ||||
Color | Yellow | Yellow | Yellow | -- | ||||
Motorway pull (K3) | Name | Y. ruckeri | E. agglomerans | P. mirabilis | E. agglomerans | |||
Shape | Round | Round | Rod | Round | ||||
Color | Pink | Yellow | Cream | Yellow | ||||
Nowshehra pull (K4) | Name | E. agglomerans | Y. ruckeri | E. americana | P. mirabilis | |||
Shape | Round | Round | Rod | Rod | ||||
Color | Yellow | Pink | White | Cream | ||||
Hakeem Abad (K5) | Name | Y. ruckeri | P. fontium | |||||
Shape | Rod | Rod | -- | -- | ||||
Color | Pink | Gray | -- | -- |
Characteristics | Microbial Isolates | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Gram Staining | G-Negative * | G-Negative | G-Negative | G-Negative | G-Negative | G-Negative | G-Negative |
Arginine dihydrolase (ADH) | K−, C−, H−, M+, B− | K−, C−, H−, M+, B− | K+, C−, H−, M+, B− | K+, C−, H−, M−, B− | C+, H−, B− | C+, H−, B− | C+ |
Lysine decarboxylase (LDC) | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | K+, C−, H−, M−, B− | K+, C−, H−, M−, B− | C−, H−, B− | C−, H−, B− | C− |
Ornithine decarboxylase (ODC) | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | K+, C−, H−, M−, B− | C−, H−, B− | C−, H−, B− | C− |
Citrate (CIT) | K−, C−, H−, M+, B− | K+, C−, H−, M+, B− | K−, C−, H+, M−, B− | K−, C−, H−, M+, B− | C−, H−, B− | C−, H+, B+ | C− |
Hydrogen sulfide (H2S) | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | K−, C−, H−, M−, B+ | K−, C−, H−, M−, B+ | C−, H−, B− | C−, H−, B− | C− |
Tryptophan deaminase (TDA) | K−, C−, H−, M−, B− | K+, C−, H−, M−, B− | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | C−, H−, B− | C+, H+, B− | C− |
Glucose (GLU) | K+, C−, H−, M+, B− | K−, C+, H+, M−, B− | K−, C+, H+, M+, B− | K+, C−, H−, M−, B− | C−, H−, B− | C+, H+, B− | C+ |
Inositol (INO) | K−, C−, H−, M+, B− | K−, C−, H−, M−, B− | K−, C−, H−, M+, B− | K−, C−, H−, M−, B− | C+, H−, B− | C−, H−, B− | C− |
Sorbitol (SOR) | K−, C−, H−, M+, B− | K−, C+, H−, M−, B− | K−, C−, H−, M+, B− | K−, C−, H−, M−, B− | C−, H−, B− | C−, H+, B− | C+ |
Arabinose (ARA) | K−, C−, H−, M+, B+ | K+, C−, H−, M−, B+ | K+, C+, H+, M+, B+ | K−, C−, H−, M−, B− | C−, H−, B− | C−, H−, B− | C− |
ONPG | K+, C−, H−, M−, B− | K−, C−, H+, M−, B− | K−, C−, H−, M−, B− | K−, C−, H−, M+, B− | C+, H−, B− | C+, H+, B− | C+ |
Indole (IND) | K+, C+, H−, M−, B− | K−, C+, H−, M+, B− | K−, C+, H−, M−, B− | K+, C+, H−, M−, B− | C+, H−, B− | C+, H−, B− | C+ |
Voges–Proskauer (VP) | K+, C+, H+, M+, B+ | K+, C+, H+, M+, B+ | K+, C+, H+, M+, B− | K+, C+, H+, M+, B+ | C+, H+, B+ | C+, H+, B+ | C+ |
Gelatinase (GEL) | K+, C−, H−, M−, B− | K−, C+, H−, M+, B− | K−, C+, H−, M−, B− | K−, C−, H−, M+, B− | C+, H−, B− | C+, H−, B+ | C− |
Mannose (MAN) | K+, C−, H−, M+, B− | K−, C+, H−, M−, B− | K−, C+, H−, M+, B− | K−, C−, H−, M−, B− | C−, H−, B− | C+, H+, B− | C+ |
Rahmnose (RHA) | K+, C−, H−, M−, B− | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | C+, H−, B− | C+, H+, B− | C− |
Sucrose (SAC) | K+, C−, H−, M+, B− | K−, C+, H−, M−, B− | K−, C−, H−, M+, B− | K−, C−, H−, M−, B− | C−, H−, B− | C+, H+, B− | C− |
Melibiose (MEL) | K+, C−, H−, M−, B− | K+, C−, H−, M−, B− | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | C−, H−, B− | C−, H+, B− | C− |
Amygdalin (AMY) | K+, C−, H−, M+, B− | K−, C+, H−, M−, B− | K−, C+, H−, M+, B− | K−, C−, H−, M−, B− | C−, H−, B− | C−, H+, B− | C− |
Urease (URE) | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | K−, C−, H−, M−, B− | C−, H−, B+ | C−, H−, B− | C− |
Characteristics | Microbial Isolates | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Gram staining | G-Negative | G-Negative | G-Negative | G-Negative |
Arginine dihydrolase (ADH) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S+, A−, M+, N− | S−, M−, N− |
Lysine decarboxylase (LDC) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S+, A−, M+, N− | S−, M−, N− |
Ornithine decarboxylase (ODC) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S−, A−, M−, N− | S+, M+, N− |
Citrate (CIT) | S−, A+, M−, N−, H− | S−, A+, M−, N−, H− | S+, A+, M+, N− | S+, M+, N− |
Hydrogen sulfide (H2S) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S−, A−, M−, N− | S−, M−, N− |
Tryptophan deaminase (TDA) | S−, A+, M−, N−, H− | S−, A+, M−, N−, H− | S+, A+, M+, N− | S−, M−, N+ |
Glucose (GLU) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S+, A−, M+, N− | S+, M+, N− |
Inositol (INO) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S−, A−, M−, N− | S−, M−, N− |
Sorbitol (SOR) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S−, A−, M−, N− | S−, M−, N− |
Arabinose (ARA) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S+, A−, M+, N− | S+, M+, N− |
ONPG | S−, A−, M−, N−, H− | S+, A−, M+, N−, H− | S−, A−, M−, N− | S+, M+, N− |
Indole (IND) | S+, A+, M+, N+, H− | S+, A+, M+, N−, H− | S+, A+, M+, N− | S+, M+, N+ |
Voges–Proskauer (VP) | S+, A+, M+, N+, H+ | S+, A+, M+, N+, H+ | S+, A+, M+, N+ | S+, M+, N+ |
Gelatinase (GEL) | S−, A−, M−, N−, H+ | S+, A−, M+, N−, H− | S−, A−, M−, N− | S+, M+, N+ |
Mannose (MAN) | S−, A−, M−, N−, H− | S+, A−, M+, N−, H− | S−, A−, M−, N− | S+, M+, N− |
Rahmnose (RHA) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S−, A−, M−, N− | S−, M−, N− |
Sucrose (SAC) | S−, A−, M−, N−, H− | S+, A−, M+, N−, H− | S−, A−, M−, N− | S+, M+, N− |
Melibiose (MEL) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S+, A−, M+, N− | S+, M+, N− |
Amygdalin (AMY) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S−, A−, M−, N− | S+, M+, N− |
Urease (URE) | S−, A−, M−, N−, H− | S−, A−, M−, N−, H− | S−, A−, M−, N− | S−, M−, N− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, B.; Khan, A.; Ali, S.S.; Khan, H.; Alam, M.; Ali, A.; Alrefaei, A.F.; Almutairi, M.H.; Kim, K.I. Heavy Metals and Microbial Diversity: A Comparative Analysis of Rivers Swat and Kabul. Water 2023, 15, 3297. https://doi.org/10.3390/w15183297
Ali B, Khan A, Ali SS, Khan H, Alam M, Ali A, Alrefaei AF, Almutairi MH, Kim KI. Heavy Metals and Microbial Diversity: A Comparative Analysis of Rivers Swat and Kabul. Water. 2023; 15(18):3297. https://doi.org/10.3390/w15183297
Chicago/Turabian StyleAli, Basharat, Anwarzeb Khan, Syed Shujait Ali, Haji Khan, Mehboob Alam, Asmat Ali, Abdulwahed Fahad Alrefaei, Mikhlid H. Almutairi, and Ki In Kim. 2023. "Heavy Metals and Microbial Diversity: A Comparative Analysis of Rivers Swat and Kabul" Water 15, no. 18: 3297. https://doi.org/10.3390/w15183297