A Comprehensive Review on Catalytic Activities of Green-Synthesized Selenium Nanoparticles on Dye Removal for Wastewater Treatment
Abstract
:1. Introduction
2. Several Organic Pollutants Dyes (Table 1)
2.1. Methylene Blue
2.2. Rhodamine B
2.3. Bromothymol Blue
2.4. Malachite Green
2.5. Sunset Yellow Azo
2.6. Fuchsin
2.7. Congo Red, Methyl Orange, and Safranine T
NPs | Biosources | Salts | Size (nm) | Shape | Dyes | Irradiations | Ref | |
---|---|---|---|---|---|---|---|---|
SeNPs | Yeast | Na2SeO4 | 170–240 | Rod | MB | Visible | - | [34] |
SeNPs | W. somnifera | H2SeO3 | 45–90 | Spherical | MB | Sunlight | - | [43] |
Se nanowires | Sodium formaldehyde sulfoxylate | SeO2 | 100–200 | Rod | MB | Visible | H2O2 | [44] |
SeNPs | F. benghalensis | Se powder, sodium sulphide | 45–95 | Spherical | MB | UV | - | [45] |
SeNPs | M. purpureus | Na2SeO3 | 46.58 | Round | MB | Sunlight | - | [46] |
SeNPs | Glucose, AA, starch | Na2SeO3 | 2–10 | Spherical | MB | UV | - | [47] |
SeNPs | C. bulbosa tuber | H2SeO3 | 55.9 | Spherical | MB | Halogen lamp | - | [48] |
SeNPs | G. wightii, AA | Na2SeO3 | 80 | Spherical | MB | Sunlight | - | [37] |
SeNPs | A. paradoxum | Na2SeO3 | 37.5 | Semi-spherical | MB | - | NaBH4 | [49] |
SeNPs | C. caspius | Na2SeO3 | 20.34 | Spherical | MB | - | NaBH4 | [50] |
SeNPs | H. esculentus | Na2SeO3 | 62 | Spherical | MB | - | NaBH4 | [51] |
SeNPs | Sulfite reductase in Lysinibacillus sp. ZYM-1 | Na2SeO3 | 100–200 | Cubic and spherical | RhB | Visible | H2O2 | [59] |
SeNPs | Gelatin, AA | Na2SeO3 | <20 | Spherical | RhB, MB | UV | - | [60] |
Chitosan-SeNPs | J. adhatoda | Na2SeO3 | 87–152 | - | RhB | - | - | [61] |
SeNPs | GA, AA | Na2SeO3 | 20–24 | - | RhB | UV-A | - | [35] |
SeNPs | sludge | SeO32- | 178.9, 488.8 | Spherical | RhB | Visible | - | [62] |
PAC-Se nanorods | PAC, AA | Na2SeO3 | 20 | Rod | RhB | UV-A | - | [63] |
Se nanorods | Chitosan, AA | Na2SeO3 | 20–27 | Rod | RhB | UV | - | [64] |
SeNPs | S. griseobrunneus | SeO2 | 73.8 | spherical | BTB | UV | H2O2 | [32] |
SeNPs | A. tereus | Na2SeO3 | 10–100 | Spherical | MG | Sunlight | - | [69] |
SeNPs | M. olifera | Na2SeO3 | 23–35 | Spherical | SY | UV, solar | - | [73] |
SeNPs | AA, polyvinyl alcohol | Na2SeO3 | 8–22.5 | Semi-spherical | Fuchsin | Visible | - | [77] |
SeNPs | E. coli | Na2SeO3 | 60–105 | Irregular spheres | CR, ST, MB | - | - | [36] |
Se-ZnS nanocomposites | Bacillus sp., calcination | Na2SeO3, ZnNO3, L-cysteine | - | Cluster form | MO | UV | - | [84] |
NiSeNPs | H. rosa-sinensis | NiCl3, Se powder | 26 | Spherical | MB | Visible | - | [52] |
Cu2Se sheets | AA, β-CD | Se powder, Cu(CH3COO)2 | - | Sheet | MB | Visible | H2O2 | [53] |
Cu2Se3, Cu2Se3/rGO | Gly, NaBH4, GO | Se powder, Cu(NO3)2 | 75, 25 | Dendritic-like | MB | Solar/visible | - | [54] |
CuxSey/PANI | Gly, NaBH4 | Se powder, Cu(NO3)2, PANI | 25 | - | MB | Visible | - | [55] |
3. Mechanism of Photocatalytic Activity of SeNPs (Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mekonnen, T.B. An overview on the photocatalytic degradation of organic pollutants in the presence of cerium oxide (ceo 2) based nanoparticles: A review. Nanosci. Nanometrol. 2021, 7, 14–26. [Google Scholar] [CrossRef]
- Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci. 2019, 272, 102009. [Google Scholar] [CrossRef] [PubMed]
- Weldegebrieal, G.K. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorg. Chem. Commun. 2020, 120, 108140. [Google Scholar] [CrossRef]
- Su, R.; Dai, X.; Wang, H.; Wang, Z.; Li, Z.; Chen, Y.; Luo, Y.; Ouyang, D. Metronidazole degradation by UV and UV/H2O2 advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Int. J. Environ. Res. Public Health 2022, 19, 12354. [Google Scholar] [CrossRef] [PubMed]
- Isa, E.D.M.; Shameli, K.; Jusoh, N.W.C.; Sukri, S.N.A.M.; Ismail, N. Photocatalytic degradation with green synthesized metal oxide nanoparticles—A mini review. J. Nanosci. Nanotechnol. 2021, 2, 70–81. [Google Scholar]
- Marimuthu, S.; Antonisamy, A.J.; Malayandi, S.; Rajendran, K.; Tsai, P.-C.; Pugazhendhi, A.; Ponnusamy, V.K. Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J. Photochem. Photobiol. B Biol. 2020, 205, 111823. [Google Scholar] [CrossRef]
- Pandey, A.; Shukla, P.; Srivastava, P.K. Remediation of dyes in water using green synthesized nanoparticles (NPs). Int. J. Plant Env. 2020, 6, 68–84. [Google Scholar] [CrossRef]
- Vedhantham, K.; Girigoswami, A.; Harini, A.; Girigoswami, K. Waste water remediation using nanotechnology—A review. Biointerface Res. Appl. Chem. 2022, 12, 4476–4495. [Google Scholar]
- Akbari, A.; Sabouri, Z.; Hosseini, H.A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg. Chem. Commun. 2020, 115, 107867. [Google Scholar] [CrossRef]
- Anandan, S.; Vinu, A.; Mori, T.; Gokulakrishnan, N.; Srinivasu, P.; Murugesan, V.; Ariga, K. Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catal. Commun. 2007, 8, 1377–1382. [Google Scholar] [CrossRef]
- He, Y.; Sang, W.; Lu, W.; Zhang, W.; Zhan, C.; Jia, D. Recent advances of emerging organic pollutants degradation in environment by non-thermal plasma technology: A Review. Water 2022, 14, 1351. [Google Scholar] [CrossRef]
- Feiona, T.A.; Sabeena, G.; Bagavathy, M.S.; Pushpalaksmi, E.; Jenson Samraj, J.; Annadurai, G. Recent advances in the synthesis and characterization of nanoparticles: A green adeptness for photocatalytic and antibacterial activity. Nat. Environ. Pollut. Technol. 2021, 20, 657–663. [Google Scholar] [CrossRef]
- Raza, M.A.; Kanwal, Z.; Rauf, A.; Sabri, A.N.; Riaz, S.; Naseem, S. Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 2016, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Danish, M.S.S.; Estrella-Pajulas, L.L.; Alemaida, I.M.; Grilli, M.L.; Mikhaylov, A.; Senjyu, T. Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals 2022, 12, 769. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Estrella, L.L.; Alemaida, I.M.A.; Lisin, A.; Moiseev, N.; Ahmadi, M.; Nazari, M.; Wali, M.; Zaheb, H.; Senjyu, T. Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals 2021, 11, 80. [Google Scholar] [CrossRef]
- Nair, G.M.; Sajini, T.; Mathew, B. Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta 2022, 5, 100080. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Bhattacharya, A.; Stepanova, D.; Mikhaylov, A.; Grilli, M.L.; Khosravy, M.; Senjyu, T. A systematic review of metal oxide applications for energy and environmental sustainability. Metals 2020, 10, 1604. [Google Scholar] [CrossRef]
- Su, R.; Xie, C.; Alhassan, S.I.; Huang, S.; Chen, R.; Xiang, S.; Wang, Z.; Huang, L. Oxygen reduction reaction in the field of water environment for application of nanomaterials. J. Nanomater. 2020, 10, 1719. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 2021, 300, 102597. [Google Scholar] [CrossRef]
- Sargazi, A.; Barani, A.; Heidari Majd, M. Synthesis and apoptotic efficacy of biosynthesized silver nanoparticles using acacia luciana flower extract in MCF-7 breast cancer cells: Activation of bak1 and bclx for cancer therapy. BioNanoScience 2020, 10, 683–689. [Google Scholar] [CrossRef]
- de Souza, T.A.J.; Souza, L.R.R.; Franchi, L.P. Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol. Environ. Saf. 2019, 171, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Galúcio, J.M.; de Souza, S.G.B.; Vasconcelos, A.A.; Lima, A.K.O.; da Costa, K.S.; de Campos Braga, H.; Taube, P.S. Synthesis, characterization, applications, and toxicity of green synthesized nanoparticles. Curr. Pharm. Biotechnol. 2022, 23, 420–443. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.R.; Ebrahimzadeh, M.A. Characterization and anticancer activities of green synthesized CuO nanoparticles, A review. Anti-Cancer Agents Med. Chem. 2021, 21, 1529–1543. [Google Scholar] [CrossRef] [PubMed]
- Ouerghi, O.; Geesi, M.H.; Riadi, Y.; Ibnouf, E.O. Limon-citrus extract as a capping/reducing agent for the synthesis of titanium dioxide nanoparticles: Characterization and antibacterial activity. Green Chem. Lett. Rev. 2022, 15, 483–490. [Google Scholar] [CrossRef]
- Behzad, F.; Sefidgar, E.; Samadi, A.; Lin, W.; Pouladi, I.; Pi, J. An overview of zinc oxide nanoparticles produced by plant extracts for anti-tuberculosis treatments. Curr. Med. Chem. 2022, 29, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.A.; Sousa, A.M.F.; Furtado, C.R.; Carvalho, N.M. Green magnesium oxide prepared by plant extracts: Synthesis, properties and applications. Mater. Today Sustain. 2022, 20, 100203. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; Fawzy, M.; Hosny, M.; Abd El-Monaem, E.M.; Tamer, T.M.; Omer, A.M. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arab. J. Chem. 2022, 15, 103517. [Google Scholar] [CrossRef]
- Hashemi, Z.; Mizwari, Z.M.; Mohammadi-Aghdam, S.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@ SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab. J. Chem. 2022, 15, 103525. [Google Scholar] [CrossRef]
- Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A. Biosynthesis of noble metal nanoparticles using crataegus monogyna leaf extract (CML@ X-NPs, X = Ag, Au): Antibacterial and cytotoxic activities against breast and gastric cancer cell lines. Surf. Interfaces 2020, 21, 100697. [Google Scholar] [CrossRef]
- Eslami, S.; Ebrahimzadeh, M.A.; Biparva, P. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Adv. 2018, 8, 26144–26155. [Google Scholar] [CrossRef]
- Johnson, J.; Shanmugam, R.; Lakshmi, T. A review on plant-mediated selenium nanoparticles and its applications. J. Popul. Ther. Clin. Pharmacol. 2022, 28, e29–e40. [Google Scholar] [PubMed]
- Ameri, A.; Shakibaie, M.; Ameri, A.; Faramarzi, M.A.; Amir-Heidari, B.; Forootanfar, H. Photocatalytic decolorization of bromothymol blue using biogenic selenium nanoparticles synthesized by terrestrial actinomycete Streptomyces griseobrunneus strain FSHH12. Desalin. Water Treat. 2016, 57, 21552–21563. [Google Scholar] [CrossRef]
- Pouri, S.; Motamedi, H.; Honary, S.; Kazeminezhad, I. Biological synthesis of selenium nanoparticles and evaluation of their bioavailability. Braz. Arch. Biol. Technol. 2018, 60, 170452. [Google Scholar] [CrossRef]
- Goud, K.G.; Veldurthi, N.K.; Vithal, M.; Reddy, G. Characterization and evaluation of biological and photocatalytic activities of selenium nanoparticles synthesized using yeast fermented broth. J. Mater. NanoSci. 2016, 3, 33–40. [Google Scholar]
- Velayati, M.; Hassani, H.; Sabouri, Z.; Mostafapour, A.; Darroudi, M. Biosynthesis of Se-Nanorods using Gum Arabic (GA) and investigation of their photocatalytic and cytotoxicity effects. Inorg. Chem. Commun. 2021, 128, 108589. [Google Scholar] [CrossRef]
- Xia, X.; Zhou, Z.; Wu, S.; Wang, D.; Zheng, S.; Wang, G. Adsorption removal of multiple dyes using biogenic selenium nanoparticles from an Escherichia coli strain overexpressed selenite reductase CsrF. Nanomaterials 2018, 8, 234. [Google Scholar] [CrossRef]
- Santhosh, C.; Balasubramanian, B.; Vino, P.; Viji, M.; Rejeeth, C.; Kannan, S.; Ullah, H.; Rengasamy, K.R.; Daglia, M.; Maruthupandian, A. Biofabricated selenium nanoparticles mediated from Goniothalamus wightii gains biomedical applications and photocatalytic degrading ability. J. King Saud Univ. Sci. 2022, 34, 102331. [Google Scholar] [CrossRef]
- Iqbal, Z.; Imran, M.; Latif, S.; Nazir, A.; Ibrahim, S.M.; Ahmad, I.; Iqbal, M.; Iqbal, S. Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles. Z. Phys. Chem. (N F) 2023, 237, 1139–1152. [Google Scholar] [CrossRef]
- Din, M.I.; Khalid, R.; Najeeb, J.; Hussain, Z. Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies—A critical review. J. Clean. Prod. 2021, 298, 126567. [Google Scholar] [CrossRef]
- Oz, M.; Lorke, D.E.; Hasan, M.; Petroianu, G.A. Cellular and molecular actions of Methylene Blue in the nervous system. Med. Res. Rev. 2011, 31, 93–117. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A. Magsorbents: Potential candidates in wastewater treatment technology—A review on the removal of methylene blue dye. J. Magn. Magn. Mater. 2020, 500, 166408. [Google Scholar] [CrossRef]
- Oladoye, P.; Ajiboye, T.; Omotola, E.; Oyewola, O. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 2019, 9, 105–116. [Google Scholar] [CrossRef]
- Xia, Z.M.; Liu, Y.N.; Huang, Z.; Qin, L.Z.; Lin, H.; Li, Q. A facile green approach for synthesis of selenium nanowires with visible light photocatalytic properties. J. Nanosci. Nanotechnol. 2019, 19, 156–162. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Hameed, P.; Rao, R.P.; Shrivastava, N.; Mittal, J.; Mohapatra, S. Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye. Bionanoscience 2020, 10, 389–396. [Google Scholar] [CrossRef]
- El-Sayed, E.-S.R.; Abdelhakim, H.K.; Ahmed, A.S. Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioprocess Biosyst. Eng. 2020, 43, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Akbari, A.; Sabouri, Z.; Soleimanpour, S.; Zarrinfar, H.; Khatami, M.; Darroudi, M. Green synthesis of colloidal selenium nanoparticles in starch solutions and investigation of their photocatalytic, antimicrobial, and cytotoxicity effects. Bioprocess Biosyst. Eng. 2021, 44, 1215–1225. [Google Scholar] [CrossRef]
- Cittrarasu, V.; Kaliannan, D.; Dharman, K.; Maluventhen, V.; Easwaran, M.; Liu, W.C.; Balasubramanian, B.; Arumugam, M. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci. Rep. 2021, 11, 1032. [Google Scholar] [CrossRef]
- Alizadeh, S.R.; Seyedabadi, M.; Montazeri, M.; Khan, B.A.; Ebrahimzadeh, M.A. Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methylene blue. Mater. Chem. Phys. 2023, 296, 127240. [Google Scholar]
- Alizadeh, S.R.; Abbastabar, M.; Nosratabadi, M.; Ebrahimzadeh, M.A. High antimicrobial, cytotoxicity, and catalytic activities of biosynthesized selenium nanoparticles using Crocus caspius extract. Arab. J. Chem. 2023, 16, 104705. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Moradsomarein, M.; Lalerdi, F.S.; Alizadeh, S.R. Biogenic synthesis of selenium nanoparticles using Hibiscus esculentus L. extract: Catalytic degradation of organic dye and its anticancer, antibacterial and antifungal activities. Eur. J. Chem. 2023, 14, 144–154. [Google Scholar] [CrossRef]
- Velayutham, L.; Parvathiraja, C.; Anitha, D.C.; Mahalakshmi, K.; Jenila, M.; Gupta, J.K.; Wabaidur, S.M.; Siddiqui, M.R.; Aftab, S.; Lai, W.-C. Antibacterial and photocatalytic dye degradation activities of green synthesized nise nanoparticles from hibiscus rosa-sinensis leaf extract. Water 2023, 15, 1380. [Google Scholar] [CrossRef]
- Yang, B.; Yang, J.; Huang, Z.; Qin, L.; Lin, H.; Li, Q. Green fabrication of large-size Cu2Se hexagonal sheets with visible light photocatalytic activity. Appl. Surf. Sci. 2021, 535, 147712. [Google Scholar] [CrossRef]
- Nouri, M.; Saray, A.M.; Azimi, H.; Yousefi, R. High solar-light photocatalytic activity of using Cu3Se2/rGO nanocomposites synthesized by a green co-precipitation method. Solid State Sci. 2017, 73, 7–12. [Google Scholar] [CrossRef]
- Saray, A.M.; Azimi, H.; Shirmardi, A.; Nouri, M.; Yousefi, R. CuxSey@polyaniline core-shell nanocomposites based type-II heterostructures as high-performance photocatalytic materials. J. Alloys Compd. 2023, 951, 169827. [Google Scholar] [CrossRef]
- Al-Gheethi, A.A.; Azhar, Q.M.; Kumar, P.S.; Yusuf, A.A.; Al-Buriahi, A.K.; Mohamed, R.M.S.R.; Al-Shaibani, M.M. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere 2022, 287, 132080. [Google Scholar] [CrossRef]
- Saigl, Z.M. Various adsorbents for removal of rhodamine b dye: A review. Indones. J. Chem. 2021, 21, 1039–1056. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Chang, T.-F.M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef]
- Che, L.; Dong, Y.; Wu, M.; Zhao, Y.; Liu, L.; Zhou, H. Characterization of selenite reduction by Lysinibacillus sp. ZYM-1 and photocatalytic performance of biogenic selenium nanospheres. ACS Sustain. Chem. Eng. 2017, 5, 2535–2543. [Google Scholar] [CrossRef]
- Kazemi, M.; Akbari, A.; Soleimanpour, S.; Feizi, N.; Darroudi, M. The role of green reducing agents in gelatin-based synthesis of colloidal selenium nanoparticles and investigation of their antimycobacterial and photocatalytic properties. J. Clust. Sci. 2019, 30, 767–775. [Google Scholar] [CrossRef]
- Britto, J.; Barani, P.; Vanaja, M.; Pushpalaksmi, E.; Jenson Samraj, J.; Annadurai, G. Adsorption of dyes by chitosan-selenium nanoparticles: Recent developments and adsorption mechanisms. Nat. Environ. Pollut. Technol. 2021, 20, 467–479. [Google Scholar] [CrossRef]
- Lian, S.; Fan, S.; Yang, Y.; Yu, B.; Dai, C.; Qu, Y. Selenium nanoparticles with photocatalytic properties synthesized by residual activated sludge. Sci. Total Environ. 2022, 809, 151163. [Google Scholar] [CrossRef] [PubMed]
- Velayati, M.; Hassani, H.; Darroudi, M. Green synthesis of Se-Nanorods using Poly Anionic Cellulose (PAC) and examination of their photocatalytic and cytotoxicity effects. Inorg. Chem. Commun. 2021, 133, 108935. [Google Scholar] [CrossRef]
- Velayati, M.; Hassani, H.; Sabouri, Z.; Mostafapour, A.; Darroudi, M. Green-based biosynthesis of Se nanorods in chitosan and assessment of their photocatalytic and cytotoxicity effects. Environ. Technol. Innov. 2022, 27, 102610. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Al-Hossainy, A.F.; Saha, B.; Abd El-Aal, M. Removal of bromothymol blue dye by the oxidation method using KMnO4: Accelerating the oxidation reaction by Ru (III) catalyst. J. Mol. Struct. 2022, 1268, 133679. [Google Scholar] [CrossRef]
- Dada, E.O.; Ojo, I.A.; Alade, A.O.; Afolabi, T.J.; Jimoh, M.O.; Dauda, M.O. Biosorption of bromo-based dyes from wastewater using low-cost adsorbents: A review. J. Sci. Res. Rep. 2020, 26, 34–56. [Google Scholar] [CrossRef]
- Raval, N.P.; Shah, P.U.; Shah, N.K. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl. Water Sci. 2017, 7, 3407–3445. [Google Scholar] [CrossRef]
- Srivastava, S.; Sinha, R.; Roy, D. Toxicological effects of malachite green. Aquat. Toxicol. 2004, 66, 319–329. [Google Scholar] [CrossRef]
- Saied, E.; Mekky, A.E.; Al-Askar, A.A.; Hagag, A.F.; El-bana, A.A.; Ashraf, M.; Walid, A.; Nour, T.; Fawzi, M.M.; Arishi, A.A. Aspergillus terreus-mediated selenium nanoparticles and their antimicrobial and photocatalytic activities. Crystals 2023, 13, 450. [Google Scholar] [CrossRef]
- Aliabadi, R.S.; Mahmoodi, N.O. Synthesis and characterization of polypyrrole, polyaniline nanoparticles and their nanocomposite for removal of azo dyes; sunset yellow and Congo red. J. Clean. Prod. 2018, 179, 235–245. [Google Scholar] [CrossRef]
- Fazeli, S.; Sohrabi, B.; Tehrani-Bagha, A.R. The study of Sunset Yellow anionic dye interaction with gemini and conventional cationic surfactants in aqueous solution. Dyes Pigm. 2012, 95, 768–775. [Google Scholar] [CrossRef]
- Rovina, K.; Prabakaran, P.P.; Siddiquee, S.; Shaarani, S.M. Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products—A review. TrAC Trends Anal. Chem. 2016, 85, 47–56. [Google Scholar] [CrossRef]
- Hassanien, R.; Abed-Elmageed, A.A.; Husein, D.Z. Eco-friendly approach to synthesize selenium nanoparticles: Photocatalytic degradation of sunset Yellow Azo Dye and anticancer activity. ChemistrySelect 2019, 4, 9018–9026. [Google Scholar] [CrossRef]
- Ibrahim, A.G.; Sayed, A.Z.; Abd El-Wahab, H.; Sayah, M.M. Synthesis of a hydrogel by grafting of acrylamide-co-sodium methacrylate onto chitosan for effective adsorption of Fuchsin basic dye. Int. J. Biol. Macromol. 2020, 159, 422–432. [Google Scholar] [CrossRef]
- Jain, R.; Mendiratta, S.; Kumar, L.; Srivastava, A. Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye. Curr. Res. Green Sustain. Chem. 2021, 4, 100086. [Google Scholar] [CrossRef]
- El Haddad, M. Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: Equilibrium, kinetics, and thermodynamics. J. Taibah Univ. Sci. 2016, 10, 664–674. [Google Scholar] [CrossRef]
- Al Jahdaly, B.A.; Al-Radadi, N.S.; Eldin, G.M.; Almahri, A.; Ahmed, M.; Shoueir, K.; Janowska, I. Selenium nanoparticles synthesized using an eco-friendly method: Dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J. Mater. Res. Technol. 2021, 11, 85–97. [Google Scholar] [CrossRef]
- Raval, N.P.; Shah, P.U.; Shah, N.K. Adsorptive amputation of hazardous azo dye Congo red from wastewater: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 14810–14853. [Google Scholar] [CrossRef]
- Harja, M.; Buema, G.; Bucur, D. Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Rep. 2022, 12, 6087. [Google Scholar] [CrossRef]
- Karadeniz, S.C.; Isik, B.; Ugraskan, V.; Cakar, F. Agricultural Lolium perenne seeds as a low-cost biosorbent for Safranine T adsorption from wastewater: Isotherm, kinetic, and thermodynamic studies. Phys. Chem. Earth Parts A/B/C 2023, 129, 103338. [Google Scholar] [CrossRef]
- Gupta, V.K.; Mittal, A.; Jain, R.; Mathur, M.; Sikarwar, S. Adsorption of Safranin-T from wastewater using waste materials—Activated carbon and activated rice husks. J. Colloid Interface Sci. 2006, 303, 80–86. [Google Scholar] [CrossRef]
- Wan, H.; Chen, H.; Chu, Y.; Ju, X.; Jiang, H. Structure characterization and optical properties investigation of the four main components of the classical phenazinium dye Safranin O. Analyst 2019, 144, 7149–7156. [Google Scholar] [CrossRef] [PubMed]
- Aljuaid, A.; Almehmadi, M.; Alsaiari, A.A.; Allahyani, M.; Abdulaziz, O.; Alsharif, A.; Alsaiari, J.A.; Saih, M.; Alotaibi, R.T.; Khan, I. g-C3N4 Based photocatalyst for the efficient photodegradation of toxic methyl orange dye: Recent modifications and future perspectives. Molecules 2023, 28, 3199. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, S.; Prakash, N.T.; Prakash, R.; Pal, B. Improved degradation of methyl orange dye using bio-co-catalyst Se nanoparticles impregnated ZnS photocatalyst under UV irradiation. Chem. Eng. J. 2016, 306, 1041–1048. [Google Scholar] [CrossRef]
- Hamza, M.A.; Rizk, S.A.; Ezz-Elregal, E.-E.M.; El-Rahman, S.A.A.; Ramadan, S.K.; Abou-Gamra, Z.M. Photosensitization of TiO2 microspheres by novel Quinazoline-derivative as visible-light-harvesting antenna for enhanced Rhodamine B photodegradation. Sci. Rep. 2023, 13, 12929. [Google Scholar] [CrossRef]
- Vigneshwaran, N.; Bharimalla, A.; Arputharaj, A. Application of functional nanoparticle finishes on cotton textiles. Trends Text. Eng. Fashion Technol. 2018, 3, 1–5. [Google Scholar]
- El-Shazly, A.N.; El-Sayyad, G.S.; Hegazy, A.H.; Hamza, M.A.; Fathy, R.M.; El Shenawy, E.; Allam, N.K. Superior visible light antimicrobial performance of facet engineered cobalt doped TiO2 mesocrystals in pathogenic bacterium and fungi. Sci. Rep. 2021, 11, 5609. [Google Scholar] [CrossRef]
- El-Shazly, A.N.; Hegazy, A.H.; El Shenawy, E.; Hamza, M.A.; Allam, N.K. Novel facet-engineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production. Sol. Energy Mater. Sol. Cells 2021, 220, 110825. [Google Scholar] [CrossRef]
- Hashem, E.M.; Hamza, M.A.; El-Shazly, A.N.; Sanad, M.F.; Hassan, M.M.; Abdellatif, S.O. Investigating the UV absorption capabilities in novel Ag@ RGO/ZnO ternary nanocomposite for optoelectronic devices. Nanotechnology 2020, 32, 085701. [Google Scholar] [CrossRef]
- Hashem, E.M.; Hamza, M.A.; El-Shazly, A.N.; Abd El-Rahman, S.A.; El-Tanany, E.M.; Mohamed, R.T.; Allam, N.K. Novel Z-Scheme/Type-II CdS@ ZnO/g-C3N4 ternary nanocomposites for the durable photodegradation of organics: Kinetic and mechanistic insights. Chemosphere 2021, 277, 128730. [Google Scholar] [CrossRef]
- Hamza, M.A.; Abd El-Rahman, S.A.; El-Shazly, A.N.; Hashem, E.M.; Mohamed, R.T.; El-Tanany, E.M.; Elmahgary, M.G. Facile one-pot ultrasonic-assisted synthesis of novel Ag@ RGO/g-C3N4 ternary 0D@ 2D/2D nanocomposite with enhanced synergetic tandem adsorption-photocatalytic degradation of recalcitrant organic dyes: Kinetic and mechanistic insights. Mater. Res. Bull. 2021, 142, 111386. [Google Scholar] [CrossRef]
- Ahmed, M.; Abou-Gamra, Z.; Medien, H.; Hamza, M. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation. J. Photochem. Photobiol. B Biol. 2017, 176, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.; Abou-Gamra, Z.; Ahmed, M.; Medien, H. The critical role of Tween 80 as a ‘green’template on the physical properties and photocatalytic performance of TiO2 nanoparticles for Rhodamine B photodegradation. J. Mater. Sci.: Mater. Electron. 2020, 31, 4650–4661. [Google Scholar]
- Cui, J.-W.; Hou, S.-X.; Van Hecke, K.; Cui, G.-H. Rigid versus semi-rigid bis (imidazole) ligands in the assembly of two Co (II) coordination polymers: Structural variability, electrochemical properties and photocatalytic behavior. Dalton Trans. 2017, 46, 2892–2903. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Liu, Z.Y.; Ding, B.; Wang, X.G.; Luo, Y.; Zhao, X.J.; Yang, E.C. Water-stable Zn (II) coordination polymers regulated by polysubstituted benzenes and their photocatalytic performance toward methylene blue degradation dominated by ligand-field effects. Cryst. Growth Des. 2021, 21, 1218–1232. [Google Scholar] [CrossRef]
- Luo, Y.; Su, R.; Yao, H.; Zhang, A.; Xiang, S.; Huang, L. Degradation of trimethoprim by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Environ. Sci. Pollut. Res. 2021, 28, 62572–62582. [Google Scholar] [CrossRef]
- Zuo, R.; Du, G.; Zhang, W.; Liu, L.; Liu, Y.; Mei, L.; Li, Z. Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Adv. Mater. Sci. Eng. 2014, 2014, 170148. [Google Scholar] [CrossRef]
- Wang, X.Q.; Han, S.F.; Zhang, Q.W.; Zhang, N.; Zhao, D.D. In photocatalytic oxidation degradation mechanism study of methylene blue dye waste water with GR/iTO2. EDP Sci. 2018, 238, 03006. [Google Scholar] [CrossRef]
- Alizadeh, S.R.; Biparva, P.; Goli, H.R.; Khan, B.A.; Ebrahimzadeh, M.A. Green synthesis of AuNPs by Crocus caspius—Investigation of catalytic degradation of organic pollutants, their cytotoxicity, and antimicrobial activity. Catalysts 2023, 13, 63. [Google Scholar] [CrossRef]
- Naz, M.; Rafiq, A.; Ikram, M.; Haider, A.; Ahmad, S.O.A.; Haider, J.; Naz, S. Elimination of dyes by catalytic reduction in the absence of light: A review. J. Mater. Sci. 2021, 56, 15572–15608. [Google Scholar] [CrossRef]
- Šimšíková, M.; Bartoš, M.; Čechal, J.; Šikola, T. Decolorization of organic dyes by gold nanoflowers prepared on reduced graphene oxide by tea polyphenols. Catal. Sci. Technol. 2016, 6, 3008–3017. [Google Scholar] [CrossRef]
- Liang, L.; Cheng, L.; Zhang, Y.; Wang, Q.; Wu, Q.; Xue, Y.; Meng, X. Efficiency and mechanisms of rhodamine B degradation in Fenton-like systems based on zero-valent iron. RSC Adv. 2020, 10, 28509–28515. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, F.; Tang, Y.; Wen, Y.; Wu, Z.; Fang, Z.; Tian, X. Rapid degradation of rhodamine b through visible-photocatalytic advanced oxidation using self-degradable natural perylene quinone derivatives—Hypocrellins. Bioengineering 2022, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.H.; Liu, J.J.; Hu, Y.X.; Kong, L.J.; Jiang, D.; Xu, X.R. Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: Reactivity, stability, products and mechanism. Sep. Purif. Technol. 2017, 184, 374–383. [Google Scholar] [CrossRef]
- Bouanimba, N.; Laid, N.; Zouaghi, R.; Sehili, T. A comparative study of the activity of TiO2 degussa P25 and millennium PCs in the photocatalytic degradation of bromothymol blue. Int. J. Chem. React. Eng. 2017, 16, 20170014. [Google Scholar] [CrossRef]
- Ayoub, H.; Kassir, M.; Raad, M.; Bazzi, H.; Hijazi, A. Effect of dye structure on the photodegradation kinetic using TiO2 nanoparticles. J. Mater. Sci. Chem. Eng. 2017, 5, 31–45. [Google Scholar]
- Tahir, H.; Saad, M. Ussing dyes to evaluate the photocatalytic activity. Interface Sci. Technol. 2021, 32, 125–224. [Google Scholar]
- Selvaraj, V.; Karthika, T.S.; Mansiya, C.; Alagar, M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct. 2021, 1224, 129195. [Google Scholar] [CrossRef]
- Chen, C.; Lu, C.; Chung, Y.; Jan, J. UV light induced photodegradation of malachite green on TiO2 nanoparticles. J. Hazard. Mater. 2007, 141, 520–528. [Google Scholar] [CrossRef]
- Abu-Zurayk, R.; Khalaf, A.; Abbas, H.A.; Nasr, R.A.; Jamil, T.S.; Al Bawab, A. Photodegradation of carbol fuchsin dye using an Fe2−xCuxZr2−xWxO7 photocatalyst under visible-light irradiation. Catalysts 2021, 11, 1473. [Google Scholar] [CrossRef]
- Ray, S.K.; Dhakal, D.; Lee, S.W. Insight into malachite green degradation, mechanism and pathways by morphology-tuned α-NiMoO4 photocatalyst. J. Photochem. Photobiol. 2018, 94, 552–563. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barani, A.; Alizadeh, S.R.; Ebrahimzadeh, M.A. A Comprehensive Review on Catalytic Activities of Green-Synthesized Selenium Nanoparticles on Dye Removal for Wastewater Treatment. Water 2023, 15, 3295. https://doi.org/10.3390/w15183295
Barani A, Alizadeh SR, Ebrahimzadeh MA. A Comprehensive Review on Catalytic Activities of Green-Synthesized Selenium Nanoparticles on Dye Removal for Wastewater Treatment. Water. 2023; 15(18):3295. https://doi.org/10.3390/w15183295
Chicago/Turabian StyleBarani, Amin, Seyedeh Roya Alizadeh, and Mohammad Ali Ebrahimzadeh. 2023. "A Comprehensive Review on Catalytic Activities of Green-Synthesized Selenium Nanoparticles on Dye Removal for Wastewater Treatment" Water 15, no. 18: 3295. https://doi.org/10.3390/w15183295