Temporal and Spatial Changes in Soil Organic Carbon in a Semi-Arid Area of Aohan County, Chifeng City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling
2.3. Geostatistics
2.4. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistical Analysis of SOC
3.2. Analyses of the Spatial Structures of SOC
3.3. SOC Content according to the Change in Land-Use Types
4. Discussion
4.1. Spatial Distribution Characteristics of SOC
4.2. The Influence of Land-Use Types on SOC Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Regina, S.; Jūratė, A.; Donata, T.; Gintaras, S. Impact of sward formation on soil organic carbon variation and relations with soil microbial activity. Zemdirbyste-Agriculture 2022, 109, 195–202. [Google Scholar]
- Benito, M.; Jaime, B.; Daniel, L.; Osorio, M.; Jimenez, M.; Melendez, J.R. Differences in the ratio of soil microbial biomass carbon (MBC) and soil organic carbon (SOC) at various altitudes of Hyperalic Alisol in the Amazon region of Ecuador. F1000Research 2020, 9, 443. [Google Scholar]
- Simes, R.; Menezes, C.; Sales, A.T.; Primo, D.C.; Sampaio, B. Soil and vegetation carbon stocks after land-use changes in a seasonally dry tropical forest. Geoderma 2021, 390, 114943. [Google Scholar]
- Bouajila, A.; Omar, Z.; Magherbi, G. Soil aggregation, aggregate-associated organic carbon, and total nitrogen under different land use in regosols of coastal arid lands in gabes, tunisia. Arab. J. Geosci. 2021, 14, 1933. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change:processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Gao, G.; Tuo, D.; Han, X.; Jiao, L.; Fu, B. Effects of land-use patterns on soil carbon and nitrogen variations along revegetated hillslopes in the chinese loess plateau. Sci. Total Environ. 2020, 746, 141156. [Google Scholar] [CrossRef]
- Lozano-García, B.; Francaviglia, R.; Renzi, G.; Doro, L.; Parras-Alcántara, L. Land use change effects on soil organic carbon store. an opportunity to soils regeneration in mediterranean areas: Implications in the 4p1000 notion. Ecol. Indic. 2020, 119, 106831. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van, W.B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Tahir, M.M.; Khalid, A.B.; Mehmood, K.; Khaliq, A.; Rahim, N. Variations in Soil Carbon and Nitrogen Contents under Different Land Uses in Sub-Temperate Highland of Azad Kashmir. Eurasian Soil Sci. 2021, 54, 586–596. [Google Scholar] [CrossRef]
- Li, Y.; Xie, T.; Yang, H.; Li, X. Revegetation enhances soil organic carbon mineralization and its temperature sensitivity in the Tengger Desert, North China. Catena 2022, 218, 712. [Google Scholar] [CrossRef]
- Neff, J.C.; Barger, N.N.; Baisden, W.T.; Fernandez, D.P.; Asner, G.P. Soil carbon storage responses to expanding pinyonjuniper populations in southern Utah. Ecol. Appl. 2009, 19, 1405–1416. [Google Scholar] [CrossRef]
- Laganiere, J.; Angers, D.A.; Pare, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Change Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Lv, X.; Jia, G.; Yu, X.; Niu, L. Vegetation and Topographic Factors Affecting SOM, SOC, and N Contents in a Mountainous Watershed in North China. Forests 2022, 13, 742. [Google Scholar] [CrossRef]
- State Forestry Administration. Monitoring of Ecological Benefits of Returning Farmland to Forest Project: 2014; China Forestry Press: Beijing, China, 2015. [Google Scholar]
- Wang, S.Q.; Zhou, C.H.; Li, K.R.; Zhu, S.L.; Huang, F.H. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geogr. Sin. 2000, 55, 533–544. [Google Scholar]
- Breuer, L.; Huisman, J.A.; Keller, T.; Frede, H.G. Impact of a conversion from cropland to grassland on C and N storage and related soil properties: Analysis of a 60-year chronosequence. Geoderma 2006, 133, 6–18. [Google Scholar] [CrossRef]
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils-effects of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- Chien, Y.J.; Lee, D.Y.; Guo, H.Y.; Houng, K.H. Geostatistical analysis of soil properties of mid-west Tai soils. Soil Sci. 1997, 162, 291–298. [Google Scholar] [CrossRef]
- Gamma Design Software 2004, GS+ Version 7. GeoStatistics for the Environmental Sciences. User’s Guide. Gamma Design Software, LLC: Plainwell, MI, USA, 2004; p. 160.
- Zhang, Y.; Ai, J.; Sun, Q.; Li, Z.; Hou, L.; Song, L.; Tang, G.; Li, L.; Shao, G. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. Catena 2021, 196, 104872. [Google Scholar] [CrossRef]
- Yu, Z.; Si, X.; Tiezhou, W. Multi-stage constant current charging strategy considering SOC intervals and voltage thresholds. Glob. Energy Interconnect. 2022, 5, 143–153. [Google Scholar]
- Luan, H.; Yuan, S.; Gao, W.; Tang, J.; Li, R.; Zhang, H.; Huang, S. Changes in organic C stability within soil aggregates under different fertilization patterns in a greenhouse vegetable field. J. Integr. Agric. 2021, 20, 2758–2771. [Google Scholar] [CrossRef]
- Dong, J.; Wang, L.; Quan, Q.; Zhang, J.; Li, X.; Zhao, D.; Fang, J.; Cao, Q.; Liu, J. Factors controlling soil organic carbon content in wetlands at multiple scales and assessment of the universality of estimation equations: A mega-data study. Sci. Total Environ. 2022, 827, 154380. [Google Scholar] [CrossRef] [PubMed]
- Zhi, J.; Jing, C.; Lin, S.; Zhang, C.; Liu, Q.; DeGloria, S.D.; Wu, J. Estimating soil organic carbon stocks and spatial patterns with statistical and GIS-based methods. PLoS ONE 2017, 9, e97757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, X.; Wang, H.; Huang, Q. Comprehensive analysis of grazing intensity impacts soil organic carbon: A case study in typical steppe of Inner Mongolia, China. Appl. Soil Ecol. 2018, 129, 1–12. [Google Scholar] [CrossRef]
- Gouri, S.B.; Pravat, K.S.; Ramkrishna, M. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [Google Scholar]
- Xueqi, X.; Zhongfang, Y.; Yuan, X.; Xin, S.; Tao, Y.; Hou, Q. Spatial analysis of land use change effect on soil organic carbon stocks in the eastern regions of China between 1980 and 2000. Geosci. Front. 2017, 8, 597–603. [Google Scholar]
- Chipomho, J.; Parwada, C.; Rugare, J.T.; Mabasa, S.; Chikowo, R.; Mashingaidze, A.B. Influence of soil organic carbon, fertiliser management, and weeding regime on weed dynamics and maize productivity on sandy soils in eastern Zimbabwe. South Afr. J. Plant Soil 2021, 38, 81–92. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, K.; Yang, Q. Prediction of the impact of returning farmland to forests on soil organic carbon in the Loess Plateau. Reg. Res. Dev. 2006, 25, 94–99. [Google Scholar]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J. Effects of land use and land cover change on soil organic carbon storage in the Hexi regions, Northwest China. J. Environ. Manag. 2022, 312, 114911. [Google Scholar] [CrossRef]
- Pedra, F.; Polo, A.; Ribeiro, A.; Domingues, H. Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biol. Biochem. 2007, 39, 1375–1382. [Google Scholar] [CrossRef]
- Anderson, R.; Brye, K.R.; Wood, L.S. Aggregate Stability as Affected by Landuse and Soil Properties in the Lower Mississippi River Valley. Soil Sci. Soc. Am. J. 2019, 85, 1512–1524. [Google Scholar] [CrossRef]
- Qiu, L.F.; Zhu, J.X.; Zhu, Y.H.; Hong, Y.; Wang, K.; Deng, J.S. Land use changes induced soil organic carbon variations in agricultural soils of Fuyang County, China. J. Soils Sediments 2013, 13, 981–988. [Google Scholar] [CrossRef]
- Juan, A.; Roque, O.; Noelia, G.F.; Antonio, R.N.; Maria, A.; Javier, G.P.; Maria, M.M. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. J. Soils Sediments 2013, 13, 265–277. [Google Scholar]
- Assad, E.D.; Pinto, H.S.; Martins, S.C.; Groppo, J.D.; Salgado, P.R.; Evangelista, B.; Vasconcellos, E.; Sano, E.E.; Pavão, E.; Luna, R.; et al. Changes in soil carbon stocks in Brazil due to land use: Paired site comparisons and a regional pasture soil survey. Biogeosciences 2013, 10, 6141–6160. [Google Scholar] [CrossRef]
- Martin, W.; Margit, V.L.; Peter, S.U.G.; Hangen, A.R.; Bernd, S.; Ingrid, K.K. Land use effects on organic carbon storage in soils of Bavaria: The importance of soil types. Soil Tillage Res. 2005, 146, 296–302. [Google Scholar]
- Yao, M.K.; Angui, P.K.T.; Konate, S.; Tondoh, J.E.; Tano, Y.; Abbadie, L.; Benest, D. Effects of land use types on soil organic carbon and nitrogen dynamics in midwest Côte d’Ivoire. Eur. J. Sci. Res. 2010, 40, 211–222. [Google Scholar]
- Daniel, B.; Cristiane, A.S.; Kellen, B.C.; Nagomi, K.; Galdino, A.; Waldemar, Z.; Marco, A.N. Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil. Eur. J. Soil Biol. 2013, 55, 117–123. [Google Scholar]
- Zhong, Z.; Wu, S.; Lu, X.; Ren, Z.; Wu, Q.; Xu, M.; Ren, C.; Yang, G.; Han, X. Organic carbon, nitrogen accumulation, and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China. Catena 2021, 196, 104867. [Google Scholar] [CrossRef]
- Fu, Y.S.; Xia, X.Q.; Yang, Z.F.; Li, J. Storage and Distribution of Soil Organic Carbon in Inner Mongolia. Geoscience 2012, 26, 886–895. [Google Scholar]
- Christopher, P.; Axel, D. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 2013, 192, 189–201. [Google Scholar]
- Yuan, J.; Zhang, Y.; You, C.; Cao, R.; Tan, B.; Li, H.; Jiang, Y.; Yang, W. The three-dimension zonal pattern of soil organic carbon density in China’s forests. Catena 2021, 196, 104950. [Google Scholar] [CrossRef]
- Davis, M.R.; Condron, L.M. Impact of grassland afforestation on soil carbon in New Zealand: A review of paired-site studies. Aust. J. Soil Res. 2002, 40, 675–690. [Google Scholar] [CrossRef]
- Thuille, A.; Schulze, E.D. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob. Chang. Biol. 2006, 12, 325–342. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Morris, S.J.; Bohm, S.; Haile-Mariam, S.; Paul, E. Evaluation of carbon accrual in afforested agricultural soils. Glob. Chang. Biol. 2007, 13, 1145–1156. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA. Environ. Pollut. 2002, 116, 53–62. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Li, X.; Liu, S. Effects of environmental factors and tree species mixtures on the functional groups of soil organic carbon across subtropical plantations in southern China. Plant Soil 2022, 480, 265–281. [Google Scholar] [CrossRef]
- Aslan, T.; Choudhary, M.A.; Saggar, S. Tillage impacts on soil microbial biomass C, N and P, earthworms and agronomy after two years of cropping following permanent pasture in New Zealand. Soil Tillage Res. 1999, 51, 103–111. [Google Scholar] [CrossRef]
- Xing, G.; Wang, X.; Jiang, Y.; Yang, H.; Mai, S.; Xu, W.; Hou, E.; Huang, X.; Yang, Q.; Liu, W.; et al. Variations and influencing factors of soil organic carbon during the tropical forest succession from plantation to secondary and old–growth forest. Front. Ecol. Evol. 2023, 10, 1104369. [Google Scholar] [CrossRef]
- Uddin, M.J.; Hooda, P.S.; Mohiuddin, A.S.M.; Haque, M.E.; Smith, M.; Waller, M.; Biswas, J.K. Soil organic carbon dynamics in the agricultural soils of Bangladesh following more than 20 years of land use intensification. J. Environ. Manag. 2022, 305, 114427. [Google Scholar] [CrossRef]
- Vargas, D.N.; Bertiller, M.B.; Ares, J.O.; Carrera, A.L.; Sain, C.L. Soil C and N dynamics induced by leaf-litter decomposition of shrubs and perennial grasses of the Patagonian Monte. Soil Biol. Biochem. 2006, 38, 2401–2410. [Google Scholar] [CrossRef]
- John, B.; Yamashita, T.; Ludwig, B.; Flessa, H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 2005, 128, 63–79. [Google Scholar] [CrossRef]
- Marin, S.E.; Silver, W.L.; Swanston, C.W.; Ostertag, R. Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob. Chang. Biol. 2009, 15, 1584–1597. [Google Scholar] [CrossRef]
- Rice, P.J.; Anderson, T.A.; Coats, J.R. Degradation and persistence of metolachlor in soil: Effects of concentration, soil moisture, soil depth, and sterilization. Environ. Toxicol. Chem. 2002, 21, 2640–2648. [Google Scholar] [CrossRef] [PubMed]
Year | Slope (°) | Number of Plots | Altitude (m) | Number of Plots | Soil Type | Number of Plots | Land-Use Change Type | Number of Plots |
---|---|---|---|---|---|---|---|---|
1985 | <5 | 23 | <500 | 24 | Aeolian Sandy soil | 16 | Farmland | 12 |
5~10 | 16 | 500~700 | 15 | Chestnut soil | 18 | Forestland | 29 | |
10~15 | 10 | 700~900 | 13 | Cinnamon soil | 20 | Grassland | 13 | |
15~20 | 8 | 900~1100 | 7 | Brown earth | 11 | Sandy land | 11 | |
20~25 | 4 | >1100 | 6 | |||||
>25 | 4 | |||||||
2021 | <5 | 81 | <500 | 32 | Aeolian Sandy soil | 45 | Farmland | 89 |
5~10 | 37 | 500~700 | 43 | Chestnut soil | 64 | Forestland | 30 | |
10~15 | 22 | 700~900 | 54 | Cinnamon soil | 40 | Grassland | 37 | |
15~20 | 21 | 900~1100 | 38 | Brown earth | 33 | Sandy land | 26 | |
20~25 | 12 | >1100 | 15 | |||||
>25 | 9 |
Year | SOC Contents (g kg−1) | SD | CV (%) | Skewness | Kurtosis | N | ||
---|---|---|---|---|---|---|---|---|
Minimum | Mean | Maximum | ||||||
1985 | 0.58 | 6.91 a | 20.11 | 2.83 | 40.96 | 1.29 | 5.55 | 65 |
2021 | 1.23 | 7.49 b | 19.95 | 3.80 | 50.73 | 0.17 | 1.09 | 182 |
Year | Model | Nugget | Sill | Range (m) | Nugget/Sill (%) | RSS | R2 |
---|---|---|---|---|---|---|---|
1985 | Exponential | 0.001 | 0.387 | 18300 | 0.26 | 0.04 | 0.74 |
2021 | Spherical | 0.28 | 0.77 | 2100 | 36.61 | 21.10 | 0.73 |
Land-Use Change Type | SOC Change (g kg−1) | N | Clay (%) | Silt (%) | Sandy (%) | C/N Ratio |
---|---|---|---|---|---|---|
Farmland to Forestland | 2.01 | 7 | 0.65 (1.12) * | 17.01 (17.75) | 82.33 (81.13) * | 11.51 (13.46) * |
Farmland to Grassland | 4.21 | 8 | 0.84 (1.44) * | 21.21 (24.41) * | 77.96 (74.15) * | 10.12 (11.54) * |
Grassland to Forestland | −1.43 | 5 | 1.04 (1.11) | 23.79 (22.64) | 75.18 (76.25) * | 12.52 (13.12) * |
Sandy land to Grassland | 3.11 | 4 | 0.97 (1.22) * | 11.47 (13.98) * | 87.32 (84.79) * | 10.41 (12.25) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Dong, X.; Sheng, Y.; Zhang, P.; Zhang, S.; Zhu, Z. Temporal and Spatial Changes in Soil Organic Carbon in a Semi-Arid Area of Aohan County, Chifeng City, China. Water 2023, 15, 3253. https://doi.org/10.3390/w15183253
Li L, Dong X, Sheng Y, Zhang P, Zhang S, Zhu Z. Temporal and Spatial Changes in Soil Organic Carbon in a Semi-Arid Area of Aohan County, Chifeng City, China. Water. 2023; 15(18):3253. https://doi.org/10.3390/w15183253
Chicago/Turabian StyleLi, Long, Xiaoyu Dong, Yan Sheng, Peng Zhang, Shangxuan Zhang, and Zhizhuo Zhu. 2023. "Temporal and Spatial Changes in Soil Organic Carbon in a Semi-Arid Area of Aohan County, Chifeng City, China" Water 15, no. 18: 3253. https://doi.org/10.3390/w15183253