Could Plant-Based Flocculants Substitute the Conventional Synthetic Chemicals in the Sludge Dewatering Process?
Abstract
:1. Introduction
2. Sludge Properties and the Necessity for Dewatering
3. Chemical Flocculants for Improving Sludge Dewatering: Efficiency and Effects on the Environment and Human Health
4. Plant-Based Flocculants for Sludge Dewatering: Efficiency and Comparison with Chemical Flocculants
4.1. Moringa
4.2. Cactus and Aloe
4.3. Okra
5. Potential Dewatering Flocculants: Synthetic or Plant-Based Ones
6. Challenges and Future Prospects in the Application of Plant-Based Flocculants for Sludge Dewatering
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yakamercan, E.; Ari, A.; Aygün, A. Land application of municipal sewage sludge: Human health risk assessment of heavy metals. J. Clean. Prod. 2021, 319, 128568. [Google Scholar] [CrossRef]
- Farca, D.-C.; Surdu, E.; Mare, R. Sludge Dewatering Installations. Hidraulica 2023, 1, 68–75. [Google Scholar]
- Li, C.; Song, Z.; Zhang, W.; Li, L.; Liao, G.; Wang, D. Impact of hydroxyl aluminum speciation on dewaterability and pollutants release of dredged sludge using polymeric aluminum chloride. J. Water Process Eng. 2022, 49, 103051. [Google Scholar] [CrossRef]
- Wu, W.; Li, X.; Zhou, B.; Wang, Z. Impacts of floc breakage on dewaterability of chemically conditioned sludges and implications on practical conditioning strategies. Chem. Eng. J. 2023, 459, 141626. [Google Scholar] [CrossRef]
- Dong, Y.; Shen, Y.; Ge, D.; Bian, C.; Yuan, H.; Zhu, N. A sodium dichloroisocyanurate-based conditioning process for the improvement of sludge dewaterability and mechanism studies. J. Environ. Manag. 2021, 284, 112020. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Nasikai, M.; Luo, G.; Zhang, S. Hydrothermal pretreatment of sewage sludge enhanced the anaerobic degradation of cationic polyacrylamide (cPAM). Water Res. 2021, 190, 116704. [Google Scholar] [CrossRef]
- Butler, T.O.; Acurio, K.; Mukherjee, J.; Dangasuk, M.M.; Corona, O.; Vaidyanathan, S. The transition away from chemical flocculants: Commercially viable harvesting of Phaeodactylum tricornutum. Sep. Purif. Technol. 2021, 255, 117733. [Google Scholar] [CrossRef]
- Justina, M.D.; Skoronski, E. Environmental and agronomical aspects of sludge produced from tannin-based coagulants in dairy industry wastewater treatment. Waste Biomass Valorization 2020, 11, 1385–1392. [Google Scholar] [CrossRef]
- Takigami, H.; Taniguchi, N.; Shimizu, Y.; Matsui, S. Toxicity assays and their evaluation on organic polymer flocculants used for municipal sludge dewatering. Water Sci. Technol. 1998, 38, 207–215. [Google Scholar] [CrossRef]
- Jami, M.S.; Mel, M.; Ariff, A.R.M.; Abdulazeez, Q.M. Investigation of bioflocculant as renewable dewatering aid in sludge treatment. IIUM Eng. J. 2018, 19, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Betatache, H.; Aouabed, A.; Drouiche, N.; Lounici, H. Conditioning of sewage sludge by prickly pear cactus (Opuntia ficus Indica) juice. Ecol. Eng. 2014, 70, 465–469. [Google Scholar] [CrossRef]
- Lee, C.S.; Chong, M.F.; Robinson, J.; Binner, E. Optimisation of extraction and sludge dewatering efficiencies of bio-flocculants extracted from Abelmoschus esculentus (okra). J. Environ. Manag. 2015, 157, 320–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, T.; Ali, E.N. Application of Moringa oleifera plant in water treatment. In Water and Wastewater Treatment Technologies; Springer: Berlin/Heidelberg, Germany, 2018; pp. 63–79. [Google Scholar]
- Zhai, L.-F.; Sun, M.; Song, W.; Wang, G. An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot-scale sludge dewatering process. Bioresour. Technol. 2012, 121, 161–168. [Google Scholar] [CrossRef]
- Yousefi, S.A.; Nasser, M.S.; Hussein, I.A.; Benamor, A. Enhancement of flocculation and dewaterability of a highly stable activated sludge using a hybrid system of organic coagulants and polyelectrolytes. J. Water Process Eng. 2020, 35, 101237. [Google Scholar] [CrossRef]
- Khadhraoui, M.; Sellami, M.; Zarai, Z.; Saleh, K.; Rebah, F.B.; Leduc, R. Cactus juice preparations as bioflocculant: Properties, characteristics and application. Environ. Eng. Manag. J. 2019, 18, 137–146. [Google Scholar]
- Mowla, D.; Tran, H.N.; Allen, D.G. A review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass Bioenergy 2013, 58, 365–378. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, G.; Wang, Q.; Yuan, Z. A review on sludge conditioning by sludge pre-treatment with a focus on advanced oxidation. Rsc Adv. 2014, 4, 50644–50652. [Google Scholar] [CrossRef]
- Qi, Y.; Thapa, K.B.; Hoadley, A.F.A. Application of filtration aids for improving sludge dewatering properties—A review. Chem. Eng. J. 2011, 171, 373–384. [Google Scholar] [CrossRef]
- Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/flocculation in dewatering of sludge: A review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef]
- Mnif, W.; Rebah, F.B. Bioflocculants as Alternative to Synthetic Polymers to Enhance Wastewater Sludge Dewaterability: A Review. Energies 2023, 16, 3392. [Google Scholar] [CrossRef]
- Ge, D.; Yuan, H.; Xiao, J.; Zhu, N. Insight into the enhanced sludge dewaterability by tannic acid conditioning and pH regulation. Sci. Total Environ. 2019, 679, 298–306. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Dong, B.; Dai, X. Characterizing the sludge moisture distribution during anaerobic digestion process through various approaches. Sci. Total Environ. 2019, 675, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, W.; Wang, D.; Ma, T.; Bai, R. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology. Water Res. 2015, 83, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Li, J.; Xue, M.; Wang, S.; Li, Q.; Qin, K.; Jiang, J.; Ding, J.; Zhao, Q. Adsorption behaviors of Cu2+, Zn2+ and Cd2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS: Sorption properties and mechanisms. Bioresour. Technol. 2019, 291, 121868. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Xie, L.; Guo, Z.; Yang, J.; Tian, G.; Ma, L.; Ning, P.; Ren, N. Develop a green sludge treatment: Effects of a new additive on sludge properties and co-removal of bound water, organics and toxic elements in sludge. J. Clean. Prod. 2021, 304, 127148. [Google Scholar] [CrossRef]
- Kamizela, T.; Kowalczyk, M. Sludge dewatering: Processes for enhanced performance. In Industrial and Municipal Sludge; Elsevier: Amsterdam, The Netherlands, 2019; pp. 399–423. [Google Scholar]
- Boráň, J.; Houdková, L.; Elsäßer, T. Processing of sewage sludge: Dependence of sludge dewatering efficiency on amount of flocculant. Resour. Conserv. Recycl. 2010, 54, 278–282. [Google Scholar] [CrossRef]
- Feng, X.; Deng, J.; Lei, H.; Bai, T.; Fan, Q.; Li, Z. Dewaterability of waste activated sludge with ultrasound conditioning. Bioresour. Technol. 2009, 100, 1074–1081. [Google Scholar] [CrossRef]
- Kazemi, M.; Gholikandi, G.B. Digested wastewater sludge dewatering process using water treatment plants chemical sludge and walnut shell activated carbon powder. J. Mater. Cycles Waste Manag. 2023, 25, 1096–1107. [Google Scholar] [CrossRef]
- Kang, X.; Li, C.; Ding, W.; Ma, Y.; Zhou, X.; Gao, S.; Chen, C.; Liu, W.; He, Z.; Li, X.; et al. Optimization of biological enzymes combined with Fe2+-activated advanced oxidation process for waste activated sludge conditioning using the response surface method. J. Water Process Eng. 2023, 53, 103634. [Google Scholar] [CrossRef]
- Kang, X.; Li, C.; Ding, W.; Ma, Y.; Gao, S.; Zhou, X.; Chen, Y.; Liu, W.; Jiang, G. Optimization of operating conditions in the biological enzymes for efficient waste activated sludge dewatering. Process Saf. Environ. Prot. 2023, 170, 545–552. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Dou, C.; Sun, R. Mechanism of thermally activated sodium persulfate–biochar skeleton treatment to improve the dewaterability of waste activated sludge. J. Environ. Chem. Eng. 2023, 11, 109062. [Google Scholar] [CrossRef]
- Wang, H.-F.; Ma, Y.-J.; Wang, H.-J.; Hu, H.; Yang, H.-Y.; Zeng, R.J. Applying rheological analysis to better understand the mechanism of acid conditioning on activated sludge dewatering. Water Res. 2017, 122, 398–406. [Google Scholar] [CrossRef]
- Xu, S.; Shi, J.; Deng, J.; Sun, H.; Wu, J.; Ye, Z. Flocculation and dewatering of the Kaolin slurry treated by single- and dual-polymer flocculants. Chemosphere 2023, 328, 138445. [Google Scholar] [CrossRef] [PubMed]
- Othmani, B.; Rasteiro, M.G.; Khadhraoui, M. Toward green technology: A review on some efficient model plant-based coagulants/flocculants for freshwater and wastewater remediation. Clean Technol. Environ. Policy 2020, 22, 1025–1040. [Google Scholar] [CrossRef]
- Luo, H.; Sun, Y.; Taylor, M.; Nguyen, C.; Strawn, M.; Broderick, T.; Wang, Z. Impacts of aluminum- and iron-based coagulants on municipal sludge anaerobic digestibility, dewaterability, and odor emission. Water Environ. Res. 2022, 94, e1684. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, K.; Tian, G.; Liu, B.; Jiang, Z.; Bian, B. Feasibility of improving wastewater sludge dewaterability by combination of cationic polyacrylamide and synthetic fibers for resource utilization. Sep. Purif. Technol. 2023, 306, 122620. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Gao, Q.; Li, T.; Zhu, F. Relationship between the Characteristics of Cationic Polyacrylamide and Sewage Sludge Dewatering Performance in a Full-Scale Plant. Procedia Environ. Sci. 2012, 16, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liu, F.; Pan, C. Effects of cationic polyacrylamide characteristics on sewage sludge dewatering and moisture evaporation. PLoS ONE 2014, 9, e98159. [Google Scholar] [CrossRef] [PubMed]
- Masihi, H.; Gholikandi, G.B. Using acidic-modified bentonite for anaerobically digested sludge conditioning and dewatering. Chemosphere 2020, 241, 125096. [Google Scholar] [CrossRef]
- Guo, J.; Chen, C.; Jiang, S.; Zhou, Y. Feasibility and Mechanism of Combined Conditioning with Coagulant and Flocculant To Enhance Sludge Dewatering. ACS Sustain. Chem. Eng. 2018, 6, 10758–10765. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, W.; Wang, D.; Chen, Y.; Chen, R. Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants. Bioresour. Technol. 2013, 144, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zheng, H.; Jiang, Z.; Zhang, Z.; Liu, L.; Sun, Y.; Tshukudu, T. Synthesis and characterization of a dewatering reagent: Cationic polyacrylamide (P(AM–DMC–DAC)) for activated sludge dewatering treatment. Desalination Water Treat. 2013, 51, 2791–2801. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Zizeng, W.; Feng, L.; Xie, J.; Lin, Z.; Xu, Z.; Liu, B.; Li, X.; Zheng, H. Research on a new cationic polyacrylamide (CPAM) with a cationic microblock structure and its enhanced effect on sludge condition and dewatering. Environ. Sci. Pollut. Res. 2021, 28, 51865–51878. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Stachowicz, F. Influence of physical, chemical and dual sewage sludge conditioning methods on the dewatering efficiency. Powder Technol. 2019, 344, 96–102. [Google Scholar] [CrossRef]
- Wu, W.; Ma, J.; Xu, J.; Wang, Z. Mechanistic insights into chemical conditioning by polyacrylamide with different charge densities and its impacts on sludge dewaterability. Chem. Eng. J. 2021, 410, 128425. [Google Scholar] [CrossRef]
- Dearfield, K.L.; Abernathy, C.O.; Ottley, M.S.; Brantner, J.H.; Hayes, P.F. Acrylamide: Its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutat. Res. Rev. Genet. Toxicol. 1988, 195, 45–77. [Google Scholar] [CrossRef]
- Mallevialle, J.; Bruchet, A.; Fiessinger, F. How safe are organic polymers in water treatment? J. Am. Water Work. Assoc. 1984, 76, 87–93. [Google Scholar] [CrossRef]
- Guo, J.; Chen, C. Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability. Chemosphere 2017, 185, 277–283. [Google Scholar] [CrossRef]
- Lekniute-Kyzike, E.; Bendoraitiene, J.; Navikaite-Snipaitiene, V.; Peciulyte, L.; Rutkaite, R. Production of Cationic Starch-Based Flocculants and Their Application in Thickening and Dewatering of the Municipal Sewage Sludge. Materials 2023, 16, 2621. [Google Scholar] [CrossRef]
- Campbell, A. The potential role of aluminium in Alzheimer’s disease. Nephrol. Dial. Transplant. 2002, 17, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Tony, M.A. Valorization of undervalued aluminum-based waterworks sludge waste for the science of “The 5 Rs’ criteria”. Appl. Water Sci. 2022, 12, 20. [Google Scholar] [CrossRef]
- Lee, C.H.; Liu, J.C. Enhanced Sludge Dewatering by Dual Polyelectrolytes Conditioning. Water Res. 2000, 34, 4430–4436. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, T.; Zhang, W.; Wang, D. Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res. 2021, 189, 116650. [Google Scholar] [CrossRef] [PubMed]
- Ge, D.; Bian, C.; Yuan, H.; Zhu, N. An in-depth study on the deep-dewatering mechanism of waste activated sludge by ozonation pre-oxidation and chitosan re-flocculation conditioning. Sci. Total Environ. 2020, 714, 136627. [Google Scholar] [CrossRef]
- Karnena, M.K.; Saritha, V. Contemplations and investigations on green coagulants in treatment of surface water: A critical review. Appl. Water Sci. 2022, 12, 150. [Google Scholar] [CrossRef]
- Doglas, B.; Kimwaga, R.; Mayo, A. A multiple regression model for prediction of optimal dose of Moringa Oleifera in faecal sludge dewatering. Water Pract. Technol. 2022, 17, 405–418. [Google Scholar] [CrossRef]
- Jaouadi, T.; Hajji, M.; Kasmi, M.; Kallel, A.; Chatti, A.; Hamzaoui, H.; Mnif, A.; Tizaoui, C.; Trabelsi, I. Aloe sp. leaf gel and water glass for municipal wastewater sludge treatment and odour removal. Water Sci. Technol. 2020, 81, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Othmani, B.; Gamelas, J.A.; Rasteiro, M.G.; Khadhraoui, M. Characterization of Two Cactus Formulation-Based Flocculants and Investigation on Their Flocculating Ability for Cationic and Anionic Dyes Removal. Polymers 2020, 12, 1964. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.K.F.S.; Ambrosio, E.; Domingues, F.S.; Geraldino, H.C.L.; De Souza, M.T.F.; de Souza, R.P.; Garcia, J.C. Treatment of Textile Wastewater by Dual Coagulant from Fe(III) and Purple Okra (Abelmoschus esculentus) Waste. In Sustainable Green Chemical Processes and their Allied Applications; Inamuddin, Asiri, A., Eds.; Nanotechnology in the Life Sciences; Springer International Publishing: Cham, Switzerland, 2020; pp. 339–358. [Google Scholar] [CrossRef]
- Rabea, A.; El Shahawy, A.; Salem, M.A.; El Kersh, I. Enhancing Sludge Dewatering Process by Using Green and Environmental Wastes. Suez Canal Eng. Energy Environ. Sci. 2023, 1, 8–12. [Google Scholar] [CrossRef]
- Muyibi, S.A.; Noor, M.J.M.M.; Ong, D.T.; Kai, K.W. Moringa oleifera seeds as a flocculant in waste sludge treatment. Int. J. Environ. Stud. 2001, 58, 185–195. [Google Scholar] [CrossRef]
- Wai, K.T.; Idris, A.; Johari, M.M.N.M.; Mohammad, T.A.; Ghazali, A.H.; Muyibi, S.A. Evaluation on different forms of Moringa oleifera seeds dosing on sewage sludge conditioning. Desalination Water Treat. 2009, 10, 87–94. [Google Scholar] [CrossRef]
- Tat, W.K.; Idris, A.; Noor, M.J.M.M.; Mohamed, T.A.; Ghazali, A.H.; Muyibi, S.A. Optimization study on sewage sludge conditioning using Moringa oleifera seeds. Desalination Water Treat. 2010, 16, 402–410. [Google Scholar] [CrossRef]
- Mohammad, T.A.; Mohamed, E.H.; Noor, M.J.M.M.; Ghazali, A.H. Dual polyelectrolytes incorporating Moringa oleifera in the dewatering of sewage sludge. Desalination Water Treat. 2015, 55, 3613–3620. [Google Scholar] [CrossRef]
- Abdulazeez, Q.M.; Jami, M.S.; Alam, M.Z. Effective sludge dewatering using Moringa oleifera seed extract combined with aluminium sulfate. J. Eng. Appl. Sci. 2016, 11, 372–381. [Google Scholar]
- Ghebremichael, K.A.; Hultman, B. Alum sludge dewatering using Moringa oleifera as a conditioner. Water Air Soil Pollut. 2004, 158, 153–167. [Google Scholar] [CrossRef]
- Mazaheri, R.; Ghazani, M.T.; Alighardashi, A. Effects of Moringa Peregrina and Ferric Chloride (FeCl3) on Water Treatment Sludge Dewatering. Biosci. Biotechnol. Res. Asia 2018, 15, 975–980. [Google Scholar] [CrossRef]
- Carneiro-Marra, L.; Sad, L.; Silva-Batista, D. Evaluation of mucilage and powder of Okra as bio-flocculant in water treatment. Rev. Ion 2019, 32, 53–58. [Google Scholar] [CrossRef]
- Lee, C.S.; Binner, E.; Winkworth-Smith, C.; John, R.; Gomes, R.; Robinson, J. Enhancing natural product extraction and mass transfer using selective microwave heating. Chem. Eng. Sci. 2016, 149, 97–103. [Google Scholar] [CrossRef]
- Lee, C.S.; Chong, M.F.; Binner, E.; Gomes, R.; Robinson, J. Techno-economic assessment of scale-up of bio-flocculant extraction and production by using okra as biomass feedstock. Chem. Eng. Res. Des. 2018, 132, 358–369. [Google Scholar] [CrossRef]
- Ang, T.-H.; Kiatkittipong, K.; Kiatkittipong, W.; Chua, S.-C.; Lim, J.W.; Show, P.-L.; Bashir, M.J.K.; Ho, Y.-C. Insight on extraction and characterisation of biopolymers as the green coagulants for microalgae harvesting. Water 2020, 12, 1388. [Google Scholar] [CrossRef]
- Maćczak, P.; Kaczmarek, H.; Ziegler-Borowska, M. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment. Materials 2020, 13, 3951. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.V.; Palanca, C.F.; de Oliveira, M.A.C.; Ito, C.Y.K.; Reis, A.G.D. Use of Moringa oleifera seed as a natural coagulant in domestic wastewater tertiary treatment: Physicochemical, cytotoxicity and bacterial load evaluation. J. Water Process Eng. 2021, 40, 101859. [Google Scholar] [CrossRef]
- Feria-Díaz, J.J.; Polo-Corrales, L.; Hernandez-Ramos, E.J. Evaluation of coagulation sludge from raw water treated with Moringa oleifera for agricultural use. Ing. E Investig. 2016, 36, 14–20. [Google Scholar]
Conditioning Methods | Principle | Limitations |
---|---|---|
Biological methods | Lysis of EPS and microbial cells to release the bound water in the sludge through the addition of enzyme or microbial leachate [32]. |
|
Physical methods | Modification of the structural properties of the sludge to increase its filterability and settle ability via the addition of solid and porous material (skeleton builder) or through thermal treatment (freeze-thawing, thermal, and microwave treatment) [33]. |
|
Chemical methods | Modification of the physicochemical properties of the sludge via the addition of chemical reagents conducive to either solids degradation to ease bound water release as a result of pH alteration (alkali or acid treatment) or by the consolidation of solids to increase its permeability and promote solid/liquid separation (coagulation/flocculation) [34,35]. |
|
Raw Sludge | Chemical Flocculant | Dewatered Sludge Parameters | References | ||||
---|---|---|---|---|---|---|---|
SRF × 1012 (m/kg) | CST (s) | TTF (s) | DS (%) | MC (%) | |||
Anaerobically digested sludge SRF = 265 × 1012 m/kg CST = 283 s TTF = 600 s MC = 97.80% | Al2(SO4)3 Optimal dose = 300 mg/g | 51.94 | 57 | 140 | _ | 89 | [41] |
Fe2(SO4)3 Optimal dose = 300 mg/g | 43.99 | 51 | 137 | _ | 88 | ||
AlCl3 Optimal dose = 150 mg/g | 18.29 | 35 | 118 | _ | 87 | ||
FeCl3 Optimal dose = 150 mg/g | 13.25 | 32 | 129 | _ | 86 | ||
Biological sludge SRF = 11.30 × 1012 m/kg DS = 12% MC = 98.50% CST = 132 s | PACl Optimal dose = 10% | 3.90 | 55 | _ | 22.50 | 80.80 | [42] |
Sewage sludge SRF = 1.72 × 1012 m/kg | FeCl3 Optimal dose = 10% | 0.07 | _ | _ | _ | _ | [43] |
PACl Optimal dose = 10% | 0.50 | _ | _ | _ | _ | ||
Sewage sludge MC = 98% SRF = 2.19 × 1012 m/kg CST = 150 s | Cationic PAM Optimal dose = 2 g/kg | 1.07 | 9.77 | _ | _ | 74.70 | [46] |
Waste-activated sludge SRF = 14.20 × 1012 m/kg CST = 225 s | PAM Optimal dose = 3 mg/g | 0.40 | 19.70 | _ | _ | _ | [47] |
Raw Sludge. | Flocculant | Sludge Dewatering Performance | References |
---|---|---|---|
Sewage sludge SRF = 1.22 × 1016 m/kg | MO powder Optimal dose = 6 g/L | SRF = 3.43 × 1015 m/kg | [62] |
Waste-activated sludge SRF = 4.50 × 1012 m/kg | MO powder Optimal dose = 4 g/L | SRF = 2.50 × 1012 m/kg | [63] |
Sewage sludge SRF = 8.00 × 1010 m/kg CST = 6.8 s | MO powder Optimal dose = 2 g/L (for SRF) Optimal dose = 3 g/L (for CST) | SRF = 3.30 × 1010 m/kg CST = 5.60 s | [64] |
Chemical polymer (Zetag 7653) Optimal dose = 0.05 g/L | SRF = 3.30 × 1010 m/kg CST = 3.60 s | ||
Sewage sludge SRF = 4.45 × 1011 m/kg CST = 6.90 s | MO water extract Optimal dose = 4.69 g/L | SRF = 1.22 × 1011 m/kg CST = 4.50 s | [65] |
Sewage sludge SRF = 0.90 × 1012 m/kg CST = 9 s | MO water extract Optimal dose = 3 g/L (for SRF) Optimal dose = 5 g/L (for CST) | SRF = 3.64 × 1011 m/kg CST = 7.10 s | [66] |
Chemical polymer (Zetag 8140) Optimal dose = 13 mg/L | SRF = 1.48 × 1011 m/kg CST = 5.50 s | ||
Synthetic Kaolin sludge SRF = 3.90 × 1011 m/kg | MO salt extract Optimal dose = 235.58 mg/L | SRF = 1.10 × 1011 m/kg | [67] |
Alum Optimal dose = 212.02 mg/L | SRF = 0.80 × 1011 m/kg | ||
Water treatment sludge SRF = 35.10 × 1012 m/kg CST = 175.4 s | MO salt extract Optimal dose = 40 mL/L | SRF = 12.10 × 1012 m/kg CST = 59.70 s | [68] |
Alum Optimal dose = 40 mL/L | SRF = 6.64 × 1012 m/kg CST = 42.20 s | ||
Water treatment sludge SRF = 1.61 × 1013 m/kg CST = 44 s | Moringa Pergerina Optimal dose = 100 mL/L | SRF = 1.21 × 1013 m/kg CST = 19 s | [69] |
Ferric chloride Optimal dose = 100 mL/L | SRF = 0.97 × 1013 m/kg CST = 9 s |
Raw Sludge | Flocculant | Sludge Dewatering Performance | References |
---|---|---|---|
Sewage sludge SRF = 1.03 × 1013 m/kg | Cactus juice Optimal dose = 0.4 g/kg | SFR = 0.17 × 1012 m/kg | [11] |
Cationic polyacrylamide (Chimfloc C4346) Optimal dose = 6 g/kg | SFR = 0.3 × 1012 m/kg | ||
Non-ionic polyacrylamide (Sedipur NF 102) Optimal dose = 6 g/kg | SFR = 4 × 1012 m/kg | ||
Alum Optimal dose = 40 g/kg | SFR = 1.3 × 1012 m/kg | ||
FeCl3 Optimal dose = 80 g/kg | SFR = 1.3 × 1012 m/kg | ||
Municipal wastewater sludge Settling rate = 55% | Aloe vera gel Optimal dose = 3 mL/L | Settling rate = 67.50% | [59] |
Raw Sludge | Flocculant | Sludge Dewatering Performance | References |
---|---|---|---|
Synthetic Kaolin sludge | Okra water extract Optimal dose = 175 mg/L | SS removal ≥ 98% Water recovery ≥ 68% | [12,71,72] |
Okra oven-dried powder Optimal dose = 150 mg/L | SS removal ≥ 98% Water recovery ≥ 68% | ||
Okra microwave-extracted powder Optimal dose = 30 mg/L | SS removal ≥ 99% Water recovery ≥ 75% | ||
Cationic polyacrylamide (FO 4400 SH) Optimal dose = 70 mg/L | SS removal ≥ 98% Water recovery ≥ 65% | ||
Anionic polyacrylamide (AN 934 SH) Optimal dose = 50 mg/L | SS removal ≥ 95% Water recovery ≥ 60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadj Mansour, Y.; Othmani, B.; Ben Rebah, F.; Mnif, W.; Saoudi, M.; Khadhraoui, M. Could Plant-Based Flocculants Substitute the Conventional Synthetic Chemicals in the Sludge Dewatering Process? Water 2023, 15, 2602. https://doi.org/10.3390/w15142602
Hadj Mansour Y, Othmani B, Ben Rebah F, Mnif W, Saoudi M, Khadhraoui M. Could Plant-Based Flocculants Substitute the Conventional Synthetic Chemicals in the Sludge Dewatering Process? Water. 2023; 15(14):2602. https://doi.org/10.3390/w15142602
Chicago/Turabian StyleHadj Mansour, Yosra, Bouthaina Othmani, Faouzi Ben Rebah, Wissem Mnif, Mongi Saoudi, and Moncef Khadhraoui. 2023. "Could Plant-Based Flocculants Substitute the Conventional Synthetic Chemicals in the Sludge Dewatering Process?" Water 15, no. 14: 2602. https://doi.org/10.3390/w15142602