The Role of Ponds in Pesticide Dissipation at the Agricultural Catchment Scale: A Critical Review
Abstract
:1. Introduction
2. Scope of the Review
3. Probing Pesticide Dissipation in Ponds: Blindspots and Opportunities
3.1. Distinguishing Degradative and Non-Degradative Processes Driving Pesticide Dissipation
3.1.1. Evaluating Pesticide Biodegradation in Ponds Using Isotope Analysis
3.1.2. Towards Potential Markers of Pesticide Biodegradation in Ponds Based on Degradation-Associated Taxa and Communities?
3.2. Understanding the Role of the Sediment-Water Interface in Pesticide Dissipation
4. Towards a Framework Integrating the Role of Ponds at the Catchment Scale
4.1. Step 1: Evaluating Pesticide Dissipation in Ponds with 2D Models
4.2. Step 2: Considering Pesticide Dissipation in Ponds during and between Hydroperiods
4.3. Step 3: Deriving Simplified Ponds Models for Implementation at Catchment Scale
4.4. Step 4: Adapting Agro-Hydrological Models to Integrate the Role of Ponds
4.5. Step 5: Modelling Pesticide Transfer from Fields to Ponds at the River-Basin Scale
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef][Green Version]
- Implementation of Directive 2009/128/EC on the Sustainable Use of Pesticides. Available online: https://www.europarl.europa.eu/doceo/document/A-8-2019-0045_EN.html (accessed on 5 February 2020).
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Azzi, E.D.; Probst, J.-L.; Teisserenc, R.; Merlina, G.; Baqué, D.; Julien, F.; Payre-Suc, V.; Guiresse, A.M. Trace Element and Pesticide Dynamics During a Flood Event in the Save Agricultural Watershed: Soil-River Transfer Pathways and Controlling Factors. Water Air Soil Pollut. 2016, 227, 442. [Google Scholar] [CrossRef][Green Version]
- Rabiet, M.; Margoum, C.; Gouy, V.; Carluer, N.; Coquery, M. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—Effect of sampling frequency. Environ. Pollut. 2010, 158, 737–748. [Google Scholar] [CrossRef][Green Version]
- Taghavi, L.; Probst, J.-L.; Merlina, G.; Marchand, A.-L.; Durbe, G.; Probst, A. Flood event impact on pesticide transfer in a small agricultural catchment (Montoussé at Auradé, south west France). Int. J. Environ. Anal. Chem. 2010, 90, 390–405. [Google Scholar] [CrossRef]
- CGDD (Commissariat Général Au Développement Durable), Note N°697. Available online: https://www.actu-environnement.com/media/pdf/news-25719-chiffres-pesticides-cours-eau.pdf (accessed on 5 February 2020).
- Boithias, L.; Sauvage, S.; Merlina, G.; Jean, S.; Probst, J.-L.; Pérez, J.M.S. New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: Application to an agricultural catchment in south-western France. Chemosphere 2014, 99, 134–142. [Google Scholar] [CrossRef][Green Version]
- Grégoire, C.; Elsaesser, D.; Huguenot, D.; Lange, J.; Lebeau, T.; Merli, A.; Mose, R.; Passeport, E.; Payraudeau, S.; Schütz, T.; et al. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ. Chem. Lett. 2008, 7, 205–231. [Google Scholar] [CrossRef]
- Maillard, E.; Imfeld, G. Pesticide Mass Budget in a Stormwater Wetland. Environ. Sci. Technol. 2014, 48, 8603–8611. [Google Scholar] [CrossRef] [PubMed]
- Passeport, E.; Tournebize, J.; Chaumont, C.; Guenne, A.; Coquet, Y. Pesticide contamination interception strategy and removal efficiency in forest buffer and artificial wetland in a tile-drained agricultural watershed. Chemosphere 2013, 91, 1289–1296. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Payraudeau, S.; Gregoire, C. Modelling pesticides transfer to surface water at the catchment scale: A multi-criteria analysis. Agron. Sustain. Dev. 2011, 32, 479–500. [Google Scholar] [CrossRef][Green Version]
- Stehle, S.; Elsaesser, D.; Grégoire, C.; Imfeld, G.; Niehaus, E.; Passeport, E.; Payraudeau, S.; Schäfer, R.B.; Tournebize, J.; Schulz, R. Pesticide Risk Mitigation by Vegetated Treatment Systems: A Meta-Analysis. J. Environ. Qual. 2011, 40, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Weatherby, A. 15 years of pond assessment in Britain: Results and lessons learned from the work of Pond Conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 693–714. [Google Scholar] [CrossRef]
- Tournebize, J.; Chaumont, C.; Mander, Ü. Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol. Eng. 2017, 103, 415–425. [Google Scholar] [CrossRef]
- Locke, M.; Weaver, M.; Zablotowicz, R.; Steinriede, R.; Bryson, C.; Cullum, R. Constructed wetlands as a component of the agricultural landscape: Mitigation of herbicides in simulated runoff from upland drainage areas. Chemosphere 2011, 83, 1532–1538. [Google Scholar] [CrossRef]
- Imfeld, G.; Braeckevelt, M.; Kuschk, P.; Richnow, H.H. Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 2009, 74, 349–362. [Google Scholar] [CrossRef]
- Vymazal, J.; Březinová, T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int. 2015, 75, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Passeport, E.; Benoit, P.; Bergheaud, V.; Coquet, Y.; Tournebize, J. Selected pesticides adsorption and desorption in substrates from artificial wetland and forest buffer. Environ. Toxicol. Chem. 2011, 30, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Passeport, E.; Benoit, P.; Bergheaud, V.; Coquet, Y.; Tournebize, J. Epoxiconazole degradation from artificial wetland and forest buffer substrates under flooded conditions. Chem. Eng. J. 2011, 173, 760–765. [Google Scholar] [CrossRef]
- Imfeld, G.; Lefrancq, M.; Maillard, E.; Payraudeau, S. Transport and attenuation of dissolved glyphosate and AMPA in a stormwater wetland. Chemosphere 2013, 90, 1333–1339. [Google Scholar] [CrossRef]
- Krone-Davis, P.; Watson, F.; Huertos, M.L.; Starner, K. Assessing pesticide reduction in constructed wetlands using a tanks-in-series model within a Bayesian framework. Ecol. Eng. 2013, 57, 342–352. [Google Scholar] [CrossRef][Green Version]
- Oeurng, C.; Sauvage, S.; Sánchez-Pérez, J.-M. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol. 2011, 401, 145–153. [Google Scholar] [CrossRef][Green Version]
- Zhang, X.; Zhang, M. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff. Sci. Total. Environ. 2011, 409, 1949–1958. [Google Scholar] [CrossRef]
- Marican, A.; Durán-Lara, E.F. A review on pesticide removal through different processes. Environ. Sci. Pollut. Res. 2018, 25, 2051–2064. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Jia, Z.; Luo, W.; Hong, J.; Yin, X.; Chen, C. Efficiency of different monitoring units in representing pollutant removals in distributed ditches and ponds in agricultural landscapes. Ecol. Indic. 2020, 108, 105677. [Google Scholar] [CrossRef]
- Krause, S.; Lewandowski, J.; Grimm, N.B.; Hannah, D.M.; Pinay, G.; McDonald, K.; Martí, E.; Argerich, A.; Pfister, L.; Klaus, J.; et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 2017, 53, 6359–6376. [Google Scholar] [CrossRef][Green Version]
- Elsner, M.; Imfeld, G. Compound-specific isotope analysis (CSIA) of micropollutants in the environment—Current developments and future challenges. Curr. Opin. Biotechnol. 2016, 41, 60–72. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Garlapati, D.; Charankumar, B.; Ramu, K.; Madeswaran, P.; Murthy, M.V.R. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Bio Technol. 2019, 18, 389–411. [Google Scholar] [CrossRef]
- Han, B.; Zhang, S.; Wang, P.; Wang, C. Effects of water flow on submerged macrophyte-biofilm systems in constructed wetlands. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, Y.; Feng, W.; Chi, H.; Huang, Y.; Ruan, D.; Chao, Y.; Qiu, R.; Wang, S. Could the rhizoplane biofilm of wetland plants lead to rhizospheric heavy metal precipitation and iron-sulfur cycle termination? J. Soils Sediments 2019, 19, 3760–3772. [Google Scholar] [CrossRef]
- Sura, S.; Waiser, M.; Tumber, V.; Farenhorst, A. Effects of herbicide mixture on microbial communities in prairie wetland ecosystems: A whole wetland approach. Sci. Total. Environ. 2012, 435–436, 34–43. [Google Scholar] [CrossRef]
- Hedgespeth, M.L.; Nichols, E.G. Expanding phytoremediation to the realms of known and unknown organic chemicals of concern. Int. J. Phytoremediation 2019, 21, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, O.; Maillard, E.; Vuilleumier, S.; Nijenhuis, I.; Richnow, H.; Imfeld, G. Using compound-specific isotope analysis to assess the degradation of chloroacetanilide herbicides in lab-scale wetlands. Chemosphere 2014, 99, 89–95. [Google Scholar] [CrossRef]
- Imfeld, G.; Aragonés, C.E.; Zeiger, S.; von Eckstädt, C.V.; Paschke, H.; Trabitzsch, R.; Weiss, H.; Richnow, H.H. Tracking in situ Biodegradation of 1,2-Dichloroethenes in a Model Wetland. Environ. Sci. Technol. 2008, 42, 7924–7930. [Google Scholar] [CrossRef] [PubMed]
- Meckenstock, R.U.; Morasch, B.; Griebler, C.; Richnow, H.H. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J. Contam. Hydrol. 2004, 75, 215–255. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, J.; Remy, B.; Vogt, C.; Richnow, H.H. A Bench-Scale Constructed Wetland As a Model to Characterize Benzene Biodegradation Processes in Freshwater Wetlands. Environ. Sci. Technol. 2011, 45, 10036–10044. [Google Scholar] [CrossRef] [PubMed]
- Lollar, B.S.; Slater, G.; Ahad, J.; Sleep, B.; Spivack, J.; Brennan, M.; MacKenzie, P. Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: Implications for intrinsic bioremediation. Org. Geochem. 1999, 30, 813–820. [Google Scholar] [CrossRef]
- Elsner, M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: Principles, prospects and limitations. J. Environ. Monit. 2010, 12, 2005–2031. [Google Scholar] [CrossRef] [PubMed]
- Torabi, E.; Wiegert, C.; Guyot, B.; Vuilleumier, S.; Imfeld, G. Dissipation of S-metolachlor and butachlor in agricultural soils and responses of bacterial communities: Insights from compound-specific isotope and biomolecular analyses. J. Environ. Sci. 2020, 92, 163–175. [Google Scholar] [CrossRef]
- Melsbach, A.; Torrentó, C.; Ponsin, V.; Bolotin, J.; Lachat, L.; Prasuhn, V.; Hofstetter, T.B.; Hunkeler, D.; Elsner, M. Dual-Element Isotope Analysis of Desphenylchloridazon to Investigate Its Environmental Fate in a Systematic Field Study: A Long-Term Lysimeter Experiment. Environ. Sci. Technol. 2020, 54, 3929–3939. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodríguez, P.; Schmitt, A.-D.; Gangloff, S.; Masbou, J.; Imfeld, G. Plants affect the dissipation and leaching of anilide pesticides in soil mesocosms: Insights from compound-specific isotope analysis (CSIA). Agric. Ecosyst. Environ. 2021, 308, 107257. [Google Scholar] [CrossRef]
- Alvarez-Zaldívar, P.; Payraudeau, S.; Meite, F.; Masbou, J.; Imfeld, G. Pesticide degradation and export losses at the catchment scale: Insights from compound-specific isotope analysis (CSIA). Water Res. 2018, 139, 198–207. [Google Scholar] [CrossRef][Green Version]
- Lange, J.; Schuetz, T.; Grégoire, C.; Elsasser, D.; Schulz, R.; Passeport, E.; Tournebize, J. Multi-tracer experiments to characterise contaminant mitigation capacities for different types of artificial wetlands. Int. J. Environ. Anal. Chem. 2011, 91, 768–785. [Google Scholar] [CrossRef]
- Fernández-Pascual, E.; Bork, M.; Hensen, B.; Lange, J. Hydrological tracers for assessing transport and dissipation processes of pesticides in a model constructed wetland system. Hydrol. Earth Syst. Sci. 2020, 24, 41–60. [Google Scholar] [CrossRef][Green Version]
- Ye, J.; Zhao, M.; Niu, L.; Liu, W. Enantioselective Environmental Toxicology of Chiral Pesticides. Chem. Res. Toxicol. 2015, 28, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Lefrancq, M.; Jadas-Hécart, A.; La Jeunesse, I.; Landry, D.; Payraudeau, S. High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts. Sci. Total. Environ. 2017, 587–588, 75–86. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Maillard, E.; Lange, J.; Schreiber, S.; Dollinger, J.; Herbstritt, B.; Millet, M.; Imfeld, G. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands. Chemosphere 2016, 144, 2489–2496. [Google Scholar] [CrossRef] [PubMed]
- Masbou, J.; Meite, F.; Guyot, B.; Imfeld, G. Enantiomer-specific stable carbon isotope analysis (ESIA) to evaluate degradation of the chiral fungicide Metalaxyl in soils. J. Hazard. Mater. 2018, 353, 99–107. [Google Scholar] [CrossRef][Green Version]
- Gutknecht, J.L.M.; Goodman, R.M.; Balser, T.C. Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant. Soil 2006, 289, 17–34. [Google Scholar] [CrossRef]
- Imfeld, G.; Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 2012, 49, 22–30. [Google Scholar] [CrossRef]
- Lyu, T.; Zhang, L.; Xu, X.; Arias, C.A.; Brix, H.; Carvalho, P.N. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environ. Pollut. 2018, 233, 71–80. [Google Scholar] [CrossRef][Green Version]
- Feld, L.; Hjelmsø, M.H.; Nielsen, M.S.; Jacobsen, A.D.; Rønn, R.; Ekelund, F.; Krogh, P.H.; Strobel, B.W.; Jacobsen, C.S. Pesticide Side Effects in an Agricultural Soil Ecosystem as Measured by amoA Expression Quantification and Bacterial Diversity Changes. PLoS ONE 2015, 10, e0126080. [Google Scholar] [CrossRef]
- Chará-Serna, A.M.; Epele, L.B.; Morrissey, C.A.; Richardson, J.S. Nutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioning. Sci. Total. Environ. 2019, 692, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Chen, Y.; Wang, Y.; Yang, X.; He, Q. Disturbances of electron production, transport and utilization caused by chlorothalonil are responsible for the deterioration of soil denitrification. Soil Biol. Biochem. 2019, 134, 100–107. [Google Scholar] [CrossRef]
- Su, X.; Chen, Y.; Wang, Y.; Yang, X.; He, Q. Impacts of chlorothalonil on denitrification and N2O emission in riparian sediments: Microbial metabolism mechanism. Water Res. 2019, 148, 188–197. [Google Scholar] [CrossRef]
- Mauffrey, F.; Baccara, P.-Y.; Gruffaz, C.; Vuilleumier, S.; Imfeld, G. Bacterial Community Composition and Genes for Herbicide Degradation in a Stormwater Wetland Collecting Herbicide Runoff. Water Air Soil Pollut. 2017, 228, 452. [Google Scholar] [CrossRef]
- Gaullier, C.; Dousset, S.; Billet, D.; Baran, N. Is pesticide sorption by constructed wetland sediments governed by water level and water dynamics? Environ. Sci. Pollut. Res. 2018, 25, 14324–14335. [Google Scholar] [CrossRef] [PubMed]
- Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35, 11–17. [CrossRef]
- Sánchez-Pérez, J.; Montuelle, B.; Mouchet, F.; Gauthier, L.; Julien, F.; Sauvage, S.; Teissier, S.; Dedieu, K.; Destrieux, D.; Vervier, P.; et al. Role of the hyporheic heterotrophic biofilm on transformation and toxicity of pesticides. Ann. Limnol. Int. J. Limnol. 2013, 49, 87–95. [Google Scholar] [CrossRef][Green Version]
- Babcsányi, I.; Meite, F.; Imfeld, G. Biogeochemical gradients and microbial communities in Winogradsky columns established with polluted wetland sediments. FEMS Microbiol. Ecol. 2017, 93, 93. [Google Scholar] [CrossRef]
- Carluer, N.; Noll, D.; Bernard, K.; Fontaine, A.; Lauvernet, C. Dimensionner les zones tampons enherbées et boisées pour réduire le transfert hydrique des produits phytosanitaires. Tech. Sci. Méthodes 2014, 101–120. [Google Scholar] [CrossRef]
- Babcsányi, I.; Imfeld, G.; Granet, M.; Chabaux, F. Copper Stable Isotopes to Trace Copper Behavior in Wetland Systems. Environ. Sci. Technol. 2014, 48, 5520–5529. [Google Scholar] [CrossRef]
- Budd, R.; O’Geen, A.; Goh, K.S.; Bondarenko, S.; Gan, J. Removal mechanisms and fate of insecticides in constructed wetlands. Chemosphere 2011, 83, 1581–1587. [Google Scholar] [CrossRef]
- Honti, M.; Fenner, K. Deriving Persistence Indicators from Regulatory Water-Sediment Studies—Opportunities and Limitations in OECD 308 Data. Environ. Sci. Technol. 2015, 49, 5879–5886. [Google Scholar] [CrossRef]
- Kaufman, M.H.; Cardenas, M.B.; Buttles, J.; Kessler, A.J.; Cook, P.L.M. Hyporheic hot moments: Dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations. Water Resour. Res. 2017, 53, 6642–6662. [Google Scholar] [CrossRef]
- Guan, M.; Ahilan, S.; Yu, D.; Peng, Y.; Wright, N. Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond. J. Hydrol. 2018, 556, 87–99. [Google Scholar] [CrossRef][Green Version]
- Silva, G.; Ginzburg, I. Stokes–Brinkman–Darcy Solutions of Bimodal Porous Flow Across Periodic Array of Permeable Cylindrical Inclusions: Cell Model, Lubrication Theory and LBM/FEM Numerical Simulations. Transp. Porous Media 2016, 111, 795–825. [Google Scholar] [CrossRef]
- Chen, W.; Nover, D.; Yen, H.; Xia, Y.; He, B.; Sun, W.; Viers, J. Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment. Water Res. 2020, 184, 115987. [Google Scholar] [CrossRef]
- Amin, M.G.M.; Veith, T.L.; Shortle, J.S.; Karsten, H.D.; Kleinman, P.J.A. Addressing the spatial disconnect between national-scale total maximum daily loads and localized land management decisions. J. Environ. Qual. 2020, 49, 613–627. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Engebretsen, A.; Vogt, R.D.; Bechmann, M. SWAT model uncertainties and cumulative probability for decreased phosphorus loading by agricultural Best Management Practices. Catena 2019, 175, 154–166. [Google Scholar] [CrossRef]
- Watanabe, H.; Takagi, K. A Simulation Model for Predicting Pesticide Concentrations in Paddy Water and Surface Soil II. Model Validation and Application. Environ. Technol. 2000, 21, 1393–1404. [Google Scholar] [CrossRef]
- Fu, B.; Merritt, W.S.; Croke, B.F.; Weber, T.R.; Jakeman, A.J. A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environ. Model. Softw. 2019, 114, 75–97. [Google Scholar] [CrossRef]
- Battiato, I.; Rubol, S. Single-parameter model of vegetated aquatic flows. Water Resour. Res. 2014, 50, 6358–6369. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Almeida-Dias, J.; Figueira, J.; Roy, B. A multiple criteria sorting method where each category is characterized by several reference actions: The Electre Tri-nC method. Eur. J. Oper. Res. 2012, 217, 567–579. [Google Scholar] [CrossRef][Green Version]
- Macary, F.; Almeida-Dias, J.; Uny, D.; Probst, A. Assessment of the effects of best environmental practices on reducing pesticide contamination in surface water, using multi-criteria modelling combined with a GIS. Int. J. Multicriteria Decis. Mak. 2013, 3, 178. [Google Scholar] [CrossRef][Green Version]
- Macary, F.; Morin, S.; Probst, J.-L.; Saudubray, F. A multi-scale method to assess pesticide contamination risks in agricultural watersheds. Ecol. Indic. 2014, 36, 624–639. [Google Scholar] [CrossRef][Green Version]
- Billen, G.; Garnier, J.; Silvestre, M. A simplified algorithm for calculating benthic nutrient fluxes in river systems. Ann. Limnol. Int. J. Limnol. 2015, 51, 37–47. [Google Scholar] [CrossRef][Green Version]
- Gaillardet, J.; Braud, I.; Hankard, F.; Anquetin, S.; Bour, O.; Dorfliger, N.; De Dreuzy, J.; Galle, S.; Galy, C.; Gogo, S.; et al. OZCAR: The French Network of Critical Zone Observatories. Vadose Zone J. 2018, 17, 180067. [Google Scholar] [CrossRef][Green Version]
- Mougin, C.; Gouy, V.; Bretagnolle, V.; Berthou, J.; Andrieux, P.; Ansart, P.; Benoit, M.; Coeurdassier, M.; Comte, I.; Dagès, C.; et al. RECOTOX, a French initiative in ecotoxicology-toxicology to monitor, understand and mitigate the ecotoxicological impacts of pollutants in socioagroecosystems. Environ. Sci. Pollut. Res. 2018, 25, 33882–33894. [Google Scholar] [CrossRef][Green Version]
- Bretagnolle, V.; Benoit, M.; Bonnefond, M.; Breton, V.; Church, J.M.; Gaba, S.; Gilbert, D.; Gillet, F.; Glatron, S.; Guerbois, C.; et al. Action-orientated research and framework: Insights from the French long-term social-ecological research network. Ecol. Soc. 2019, 24. [Google Scholar] [CrossRef][Green Version]
- Boithias, L.; Sauvage, S.; Taghavi, L.; Merlina, G.; Probst, J.-L.; Pérez, J.M.S. Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods. J. Hazard. Mater. 2011, 196, 210–219. [Google Scholar] [CrossRef][Green Version]
- Taghavi, L.; Merlina, G.; Probst, J.-L. The role of storm flows in concentration of pesticides associated with particulate and dissolved fractions as a threat to aquatic ecosystems—Case study: The agricultural watershed of Save river (Southwest of France). Knowl. Manag. Aquat. Ecosyst. 2011, 6, 06. [Google Scholar] [CrossRef][Green Version]
- Headley, T.R.; Kadlec, R.H. Conducting hydraulic tracer studies of constructed wetlands: A practical guide. Ecohydrol. Hydrobiol. 2007, 7, 269–282. [Google Scholar] [CrossRef]
- Tsavdaris, A.; Williams, J.B.; Mitchell, S. An experimental evaluation of sustainable drainage systems. J. Urban. Environ. Eng. 2013, 7, 206–214. [Google Scholar] [CrossRef][Green Version]
- German, J.; Jansons, K.; Svensson, G.; Karlsson, D.; Gustafsson, L.-G. Modelling of different measures for improving removal in a stormwater pond. Water Sci. Technol. 2005, 52, 105–112. [Google Scholar] [CrossRef]
- Kang, H. Flow characteristics and morphological changes in open-channel flows with alternate vegetation zones. KSCE J. Civ. Eng. 2013, 17, 1157–1165. [Google Scholar] [CrossRef]
- Drouin, G.; Fahs, M.; Droz, B.; Younes, A.; Imfeld, G.; Payraudeau, S. Pollutant Dissipation at the Sediment-Water Interface: A Robust Discrete Continuum Numerical Model and Recirculating Laboratory Experiments. Water Resour. Res. 2021, 57. [Google Scholar] [CrossRef]
- García, J.; Solimeno, A.; Zhang, L.; Marois, D.; Mitsch, W.J. Constructed wetlands to solve agricultural drainage pollution in South Florida: Development of an advanced simulation tool for design optimization. J. Clean. Prod. 2020, 258, 120868. [Google Scholar] [CrossRef]
- Berg, P.; Rysgaard, S.; Thamdrup, B. Dynamic Modeling of Early Diagenesis and Nutrient Cycling. A Case Study in an Artic Marine Sediment. Am. J. Sci. 2003, 303, 905–955. [Google Scholar] [CrossRef]
- Van Breukelen, B.M. Quantifying the Degradation and Dilution Contribution to Natural Attenuation of Contaminants by Means of an Open System Rayleigh Equation. Environ. Sci. Technol. 2007, 41, 4980–4985. [Google Scholar] [CrossRef] [PubMed]
- Lutz, S.R.; Van Der Velde, Y.; Elsayed, O.F.; Imfeld, G.; Lefrancq, M.; Payraudeau, S.; Van Breukelen, B.M. Pesticide fate on catchment scale: Conceptual modelling of stream CSIA data. Hydrol. Earth Syst. Sci. 2017, 21, 5243–5261. [Google Scholar] [CrossRef][Green Version]
- Alvarez-Zaldívar, P.; Centler, F.; Maier, U.; Thullner, M.; Imfeld, G. Biogeochemical modelling of in situ biodegradation and stable isotope fractionation of intermediate chloroethenes in a horizontal subsurface flow wetland. Ecol. Eng. 2016, 90, 170–179. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. GLUE: 20 years on. Hydrol. Process. 2014, 28, 5897–5918. [Google Scholar] [CrossRef][Green Version]
- Shao, Q.; Fahs, M.; Younes, A.; Makradi, A. A high-accurate solution for Darcy-Brinkman double-diffusive convection in saturated porous media. Numer. Heat Transfer Part. B Fundam. 2016, 69, 26–47. [Google Scholar] [CrossRef]
- Abimbola, O.; Mittelstet, A.; Messer, T.; Berry, E.; van Griensven, A. Modeling and Prioritizing Interventions Using Pollution Hotspots for Reducing Nutrients, Atrazine and E. coli Concentrations in a Watershed. Sustainability 2020, 13, 103. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, T.; Wang, R.; Engel, B.A.; Flanagan, D.C.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Lee, J.G.; Wallace, C.W. A SWAT-based optimization tool for obtaining cost-effective strategies for agricultural conservation practice implementation at watershed scales. Sci. Total. Environ. 2019, 691, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.G.; Allen, P.M.; Bernhardt, G. A comprehensive surface-groundwater flow model. J. Hydrol. 1993, 142, 47–69. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, Y.; Yen, H.; Grieneisen, M.; Arnold, J.; Wang, D.; Wang, C.; Zhang, M. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Sci. Total. Environ. 2019, 669, 512–526. [Google Scholar] [CrossRef]
- Quilbé, R.; Rousseau, A.N.; Lafrance, P.; Leclerc, J.; Amrani, M. Selecting a Pesticide Fate Model at the Watershed Scale Using a Multi-criteria Analysis. Water Qual. Res. J. 2006, 41, 283–295. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Yang, X.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Macary, F.; Dias, J.A.; Figueira, J.R.; Roy, B. A Multiple Criteria Decision Analysis Model Based on ELECTRE TRI-C for Erosion Risk Assessment in Agricultural Areas. Environ. Model. Assess. 2014, 19, 221–242. [Google Scholar] [CrossRef]
- Ferrant, S.; Oehler, F.; Durand, P.; Ruiz, L.; Salmon-Monviola, J.; Justes, E.; Dugast, P.; Probst, A.; Probst, J.-L.; Sánchez-Pérez, J.-M. Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches. J. Hydrol. 2011, 406, 1–15. [Google Scholar] [CrossRef][Green Version]
- Macary, F.; Leccia, O.; Dias, J.A.; Morin, S.; Sánchez-Pérez, J.-M. Agro-environmental risk evaluation by a spatialised multi-criteria modelling combined with the PIXAL method. Rev. Int. Géomatique 2013, 23, 39–70. [Google Scholar] [CrossRef]
- Macary, F.; Ombredane, D.; Uny, D. A multicriteria spatial analysis of erosion risk into small watersheds in the low Normandy bocage (France) by ELECTRE III method coupled with a GIS. Int. J. Multicriteria Decis. Mak. 2010, 1, 25. [Google Scholar] [CrossRef]
- Gassmann, M.; Olsson, O.; Stamm, C.; Weiler, M.; Kümmerer, K. Physico-chemical characteristics affect the spatial distribution of pesticide and transformation product loss to an agricultural brook. Sci. Total. Environ. 2015, 532, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Droz, B.; Drouin, G.; Maurer, L.; Villette, C.; Payraudeau, S.; Imfeld, G. Phase Transfer and Biodegradation of Pesticides in Water–Sediment Systems Explored by Compound-Specific Isotope Analysis and Conceptual Modeling. Environ. Sci. Technol. 2021, 55, 4720–4728. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute Technical Report, No. 406; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Gobas, F.A.; Lai, H.-F.; Mackay, D.; Padilla, L.E.; Goetz, A.; Jackson, S.H. AGRO-2014: A time dependent model for assessing the fate and food-web bioaccumulation of organic pesticides in farm ponds: Model testing and performance analysis. Sci. Total. Environ. 2018, 639, 1324–1333. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, M. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Environ. Pollut. 2009, 157, 3370–3378. [Google Scholar] [CrossRef]
Step 1: Evaluating Pesticide Dissipation in Ponds with 2D Models [89] | Step 2: Considering Pesticide Dissipation in Ponds during and between Hydroperiods with 2D Models [89,108] | Step 3: Deriving Simplified Ponds Models for Implementation at Catchment Scale with 2D Model Monte Carlo Runs | Step 4: Table 2 | Step 5: Modelling Pesticide Transfer from the Fields to the Ponds at the River-Basin Scale with SWAT [100,109] | |
---|---|---|---|---|---|
Compartments | Water, sediment, vegetation | Water, sediment, vegetation | Water, sediment, vegetation | ||
Phases | Dissolved and particulate | Dissolved and particulate | Dissolved and Particulate | ||
Water mass balance | Pond Hydraulic Retention Time (HRT) = f(pond geometry ranges [lengh, width, depth, shortcuts, dead-zones], vegetation patches, and inflow) | Rainfall, Infiltration, Evapotranspiration Percolation, Runoff, Lateral sub-surface flow, Capillary fringe, River/aquifer exchanges, soil erosion for both pond upstream and dowstream | |||
Physico-chemical process rates | Pesticides partitioning between dissolved particulate, sediment and TOC phases and biofilm on vegetation and sediment = f(range of pond HRT, TSS, DOC, sediment range in inflow and physico-chemical properties of targeted pesticides, vegetation types and density)Pesticides degradation* = f(range of HRT, TSS, DOC, Oxygen consumption in sediment and physico-chemical properties of targeted pesticides) * including biodegradation, direct and indirect photolysis and hydrolysis | •Between interstitial water and soil particles •Field scale degradation with a lumped half-life integrating volatilization, photolysis, hydrolysis and biodegradation •Transport from fields to rivers by soil water fluxes (surface runoff, lateral flow and percolation) in dissolved and particulate phases •In-stream process including degradation, volatilization, settling, diffusion and burial. | |||
Biological process rates (Michaelis- Menten) | Oxygen consumption in sediment Oxygen controlled degradation Modelling of stable isotope fractionation (e.g., carbon): | ||||
Variables and parameters | S1, S2, S3 and S4: coefficient for overlying water with Navier-Stokes (S1 = S3 = S4 = 1 and S2 = 0), the water-sediment transition layer (S1 = S2 = S3 = S4 = 1) and the sediment bed with Darcy’s law (S2 = S4 = 1 and S1 = S3 = 0); u: fluid velocity, including horizontal and vertical components [L/T]; P: water pressure [M/L/T2]; r and µ: water volumetric mass density [M/L3] and dynamic viscosity [M/L/T]; : sediment porosity [L3/L3]; g: gravity [L/T2]; z: vertical position [L]; Ci: dissolved pollutant conc. [M/L3]; subscript i: pesticide targeted; Si: sorbed concentration [M/M]; bulk: bulk density of the porous medium [M/L3]; Di: dispersion tensor [L2/T] accounting for pollutant molecular diffusion Dm,i [L2/T] and longitudinal (aL) and transversal (aT) dispersions [L]; dlm: Kronecker function with l, m = 1, 2; ri: reactive term representing sorption or degradation of species i (i.e. hydrolysis, photolysis and biodegradation); Kd,i: phase partitioning coefficient of pesticide i [L3/M]; ai: first order rate of sorption [T-1]; kO2: oxygen consumption rate in sediment [T-1]; KM: half saturation constant for oxygen [M.L-3]; kmax, oxic: oxic degradation rate [T-1]; k13C and k12C: isotopologue degradation rates [T1], isotopic fractionation factor (carbon) [‰]; HRT: Hydraulic Residence Time [T]; TSS DOC: Dissolved organic Carbon [Mcarbon/L] | ||||
Compounds used for validation | NaCl and Foron Blue 91 used as conservative and sorptive tracers, respectively, and caffeine as a degradative organic compound | Validation with data from well-referred experimental sites of the PESTIPOND project (see Supplementary Materials) | 33 different pesticides at the catchment scale |
PCPF-1 [72] | AGRO-2014 [110] | SWAT [109,111] | Tank-in-Series TIS [22] | |
---|---|---|---|---|
Compartments | Paddy water Paddy surface soil layer (1cm) | Water column, Total suspended solids (TSS), Pore-water , Sediment | Water, vegetation, soil, aquifer, river | Water |
Phases | No distinction between the dissolved and particulate phases | Dissolved and particulate | Dissolved and particulate | No distinction between the dissolved and particulate phases |
Water mass balance | Constant water volume | |||
Physico-chemical process rates (1st order model) | Desorption: Photolysis: | Volatilization: Settling: Resuspension: Lumped degradation rates:* Water: Sediment: * Biodegradation, photolysis and hydrolysis | Volatilization: Settling: Sorption: Resuspension: Lumped degradation rates:* Water: Sediment: * Biodegradation, photolysis and hydrolysis | One parameter k describes the pesticide decay between the inlet and outlet of the wetland at each tank |
Biological processes rates (1st order model) | Biodegradation: Water: Sediment: | |||
Pesticide mass balance | Water: Sediment: | Steady state Where N is the number of tanks Non-steady state Where g* is the HRT distribution function normalized to unit sum over i | ||
Description of variables and parameters | wseep: water entering the vadose zone from the soil profile; Qoutflow: pond outflow; Cw: Pesticide concentration in water; Cs: Pesticide concentration in the sediments; kdes: First-order rate constant for pesticide desorption from the sediment surface; ds: Depth of the sediment layer; hw: Water depth; Sw: Water surface area; Vw: Water volume; ρb: Bulk density of the sediment layer; kphoto: First-order rate coefficient of photochemical degradation with respect to the cumulative UV-B radiation as measured in laboratory conditions; EUVB-C: Cumulative UV-B radiation (kJM-2); EVP: Evaporation rate; DT50,s: Half-life in sediments; DT50,w: Half-life in water; kv: First-order rate constant for pesticide volatilization in water; vs: Settling velocity; vr: Resuspension velocity; Kd: Sediment-water partition coefficient, HRT: pond Hydraulic Residence Time. | |||
Pesticides used for validation | Mefenacet, Pretilachlor, Bensufuronmethyl | Metaflumizone, Kresoxim-methyl, Pyraclostrobin | Chlorpyrifos, Diazinon | Diazinon, Methomyl, Acephate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imfeld, G.; Payraudeau, S.; Tournebize, J.; Sauvage, S.; Macary, F.; Chaumont, C.; Probst, A.; Sánchez-Pérez, J.-M.; Bahi, A.; Chaumet, B.; Gilevska, T.; Alexandre, H.; Probst, J.-L. The Role of Ponds in Pesticide Dissipation at the Agricultural Catchment Scale: A Critical Review. Water 2021, 13, 1202. https://doi.org/10.3390/w13091202
Imfeld G, Payraudeau S, Tournebize J, Sauvage S, Macary F, Chaumont C, Probst A, Sánchez-Pérez J-M, Bahi A, Chaumet B, Gilevska T, Alexandre H, Probst J-L. The Role of Ponds in Pesticide Dissipation at the Agricultural Catchment Scale: A Critical Review. Water. 2021; 13(9):1202. https://doi.org/10.3390/w13091202
Chicago/Turabian StyleImfeld, Gwenaël, Sylvain Payraudeau, Julien Tournebize, Sabine Sauvage, Francis Macary, Cédric Chaumont, Anne Probst, José-Miguel Sánchez-Pérez, Aya Bahi, Betty Chaumet, Tetyana Gilevska, Hugues Alexandre, and Jean-Luc Probst. 2021. "The Role of Ponds in Pesticide Dissipation at the Agricultural Catchment Scale: A Critical Review" Water 13, no. 9: 1202. https://doi.org/10.3390/w13091202