Multiple-Stressor Interactions in Tributaries Alter Downstream Ecosystems in Stream Mesocosm Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Response Variables
2.3. Data Analysis
3. Results
3.1. Stressor Effects on First-Order Channels
3.2. Stressor Effects on Second-Order Channels
4. Discussion
4.1. Stressors Altered Invertebrate Communities and Ecosystem Function in First-Order Channels
4.2. Tributaries Influenced Downstream Ecosystems through Dispersal of Sensitive Taxa
4.3. Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Benda, L.; Poff, N.L.; Miller, D.; Dunne, T.; Reeves, G.; Pess, G.; Pollock, M. The network dynamics hypothesis: How channel networks structure riverine habitats. BioScience 2004, 54, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Campbell Grant, E.H.; Lowe, W.H.; Fagan, W.F. Living in the branches: Population dynamics and ecological processes in dendritic networks. Ecol. Lett. 2007, 10, 165–175. [Google Scholar] [CrossRef]
- Fisher, S.G. Creativity, idea generation, and the functional morphology of streams. J. N. Am. Benthol. Soc. 1997, 16, 305–318. [Google Scholar] [CrossRef]
- Allan, J.D.; Castillo, M.M. Stream Ecology, Structure and Function of Running Waters; Springer: Dordrecht, The Netherlands, 2007; p. 436. [Google Scholar]
- Gomi, T.; Sidle, R.C.; Richardson, J.S. Understanding processes and downstream linkages of headwater systems. BioScience 2002, 52, 905–915. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.L.; Swan, C.M.; Auerbach, D.A.; Campbell Grant, E.H.; Hitt, N.P.; Maloney, K.O.; Patrick, C. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J. N. Am. Benthol. Soc. 2011, 30, 310–327. [Google Scholar] [CrossRef]
- Loreau, M.; Mouquet, N.; Holt, R.D. Meta-ecosystems: A theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 2003, 6, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Tomscha, S.A.; Gergel, S.E.; Tomlinson, M.J. The spatial organization of ecosystem services in river-floodplains. Ecosphere 2017, 8. [Google Scholar] [CrossRef]
- Wipfli, M.S.; Richardson, J.S.; Naiman, R.J. Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwaters channels. J. Am. Water Resour. Assoc. 2007, 43, 72–85. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D. Impacts of agricultural land use on biological integrity: A causal analysis. Ecol. Appl. 2011, 21, 3128–3146. [Google Scholar] [CrossRef] [Green Version]
- Woodward, G.; Gessner, M.O.; Giller, P.S.; Gulis, V.; Hladyz, S.; Lecerf, A.; Malmqvist, B.; McKie, B.G.; Tiegs, S.D.; Cariss, H.; et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 2012, 336, 1438–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenhoff, A.; Lange, K.; Townsend, C.R.; Matthaei, C.D. Patterns of benthic algae and cyanobacteria along twin-stressor gradients of nutrients and fine sediment: A stream mesocosm experiment. Freshw. Biol. 2013, 58, 1849–1863. [Google Scholar] [CrossRef]
- García, L.; Pardo, I.; Cross, W.F.; Richardson, J.S. Moderate nutrient enrichment affects algal and detritus pathways differently in a temperate rainforest stream. Aquat. Sci. 2017, 79, 941–952. [Google Scholar] [CrossRef]
- Wood, P.J.; Armitage, P.D. Biological effects of fine sediment in the lotic environment. Environ. Manag. 1997, 21, 203–217. [Google Scholar]
- Matthaei, C.D.; Weller, F.; Kelly, D.W.; Townsend, C.R. Impacts of fine sediment addition to tussock, pasture, dairy and deer farming streams in New Zealand. Freshw. Biol. 2006, 51, 2154–2172. [Google Scholar] [CrossRef]
- Wagenhoff, A.; Townsend, C.R.; Phillips, N.; Matthaei, C.D. Subsidy-stress and multiple-stressor effects along gradients of deposited fine sediment and dissolved nutrients in a regional set of streams and rivers. Freshw. Biol. 2011, 56, 1916–1936. [Google Scholar] [CrossRef]
- Louhi, P.; Richardson, J.S.; Muotka, T. Sediment addition reduces the importance of predation on ecosystem functions in experimental stream channels. Can. J. Fish. Aquat. Sci. 2017, 74, 32–40. [Google Scholar] [CrossRef]
- Matthaei, C.D.; Piggott, J.J.; Townsend, C.R. Multiple stressors in agricultural streams: Interactions among sediment addition, nutrient enrichment and water abstraction. J. Appl. Ecol. 2010, 47, 639–649. [Google Scholar] [CrossRef]
- Piggott, J.J.; Lange, K.; Townsend, C.R.; Matthaei, C.D. Multiple stressors in agricultural streams: A mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment. PLoS ONE 2012, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wagenhoff, A.; Townsend, C.R.; Matthaei, C.D. Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: A stream mesocosm experiment. J. Appl. Ecol. 2012, 49, 892–902. [Google Scholar] [CrossRef]
- Chará-Serna, A.M.; Richardson, J.S. Chlorpyrifos interacts with other agricultural stressors to alter stream communities in laboratory microcosms. Ecol. Appl. 2018, 28, 162–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chará-Serna, A.; Epele, L.; Morrissey, C.; Richardson, J. Nutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioning. Sci. Total Environ. 2019, 692, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.C.; Pringle, C.M.; Jackson, C.R. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. J. Am. Water Resour. Assoc. 2007, 43, 5–14. [Google Scholar] [CrossRef]
- Rasmussen, J.J.; Wiberg-Larsen, P.; Baattrup-Pedersen, A.; Monberg, R.J.; Kronvang, B. Impacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams. Sci. Total Environ. 2012, 416, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.C.; Kahlert, M.; Kelly, M.G. Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Sci. Total Environ. 2013, 444, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Patrick, C.J.; Fernandez, D.H. The β-richness of two detritivore caddisflies affects fine organic matter export. Oecologia 2013, 172, 1105–1115. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Likens, G.E.; Hall, R.O.; Buso, D.C.; Fisher, S.G.; Burton, T.M.; Meyer, J.L.; Mcdowell, W.H.; Mayer, M.S.; Bowden, W.B.; et al. Ca not see the forest for the stream? In-stream processing and terrestrial nitrogen exports. BioScience 2005, 55, 219–230. [Google Scholar] [CrossRef]
- Richardson, J.S. Seasonal food limitation of detritivores in a montane stream: An experimental test. Ecology 1991, 72, 873–887. [Google Scholar] [CrossRef]
- Lecerf, A.; Richardson, J.S. Assessing the functional importance of large-bodied invertebrates in experimental headwater streams. Oikos 2011, 120, 950–960. [Google Scholar] [CrossRef]
- Townsend, C.R.; Uhlmann, S.S.; Matthaei, C.D. Individual and combined responses of stream ecosystems to multiple stressors. J. Appl. Ecol. 2008, 45, 1810–1819. [Google Scholar] [CrossRef]
- Kiffney, P.M.; Richardson, J.S. Interactions among nutrients, periphyton, and invertebrate and vertebrate (Ascaphus truei) grazers in experimental channels. Copeia 2001, 2, 422–429. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewaters, 21th ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Merritt, R.W.; Cummins, K.W. An Introduction to the Aquatic Insects of North America, 3rd ed.; Kendall/Hunt Pub. Co.: Dubuque, IA, USA, 1996; p. 862. [Google Scholar]
- Hauer, F.R.; Lamberti, G.A. Methods in Stream Ecology; Academic Press: Burlington, MA, USA, 2007; p. 894. [Google Scholar]
- Nakagawa, S.; Cuthill, I.C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. 2007, 82, 591–605. [Google Scholar] [CrossRef]
- Gurevitch, J.; Hedges, L.V. Meta-analysis: Combining the results of independent experiments. In Design and Analysis of Ecological Experiments; Scheiner, S., Gurevitch, J., Eds.; Oxford University Press: Cary, NC, USA, 2006; pp. 347–369. [Google Scholar]
- Jackson, M.C.; Loewen, C.J.G.; Vinebrooke, R.D.; Chimimba, C.T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Chang. Biol. 2016, 22, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Rosemond, A.D.; Benstead, J.P.; Bumpers, P.M.; Gulis, V.; Kominoski, J.S.; Manning, D.W.P.; Suberkropp, K.; Wallace, J.B. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 2015, 347, 318–321. [Google Scholar] [CrossRef]
- Naman, S.M.; Rosenfeld, J.S.; Richardson, J.S. Causes and consequences of invertebrate drift in running waters: From individuals to populations and trophic fluxes. Can. J. Fish. Aquat. Sci. 2016, 73, 1292–1305. [Google Scholar] [CrossRef] [Green Version]
- Hammock, B.G.; Wetzel, W.C. The relative importance of drift causes for stream insect herbivores across a canopy gradient. Oikos 2013, 122, 1586–1593. [Google Scholar] [CrossRef]
- O’Callaghan, P.; Jocqué, M.; Kelly-Quinn, M. Nutrient- and sediment-induced macroinvertebrate drift in Honduran cloud forest streams. Hydrobiologia 2015, 758, 75–86. [Google Scholar] [CrossRef]
- Naman, S.M.; Rosenfeld, J.S.; Richardson, J.S.; Way, J.L. Species traits and channel architecture mediate flow disturbance impacts on invertebrate drift. Freshw. Biol. 2017, 62, 340–355. [Google Scholar] [CrossRef]
- Piggott, J.J.; Salis, R.K.; Lear, G.; Townsend, C.R.; Matthaei, C.D. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Glob. Chang. Biol. 2015, 21, 1887–1906. [Google Scholar] [CrossRef]
- Connolly, N.M.; Pearson, R.G. The effect of fine sedimentation on tropical stream macroinvertebrate assemblages: A comparison using flow-through artificial stream channels and recirculating mesocosms. Hydrobiologia 2007, 592, 423–438. [Google Scholar] [CrossRef]
- Young, R.G.; Matthaei, C.D.; Townsend, C.R. Organic matter breakdown and ecosystem metabolism: Functional indicators for assessing river ecosystem health. J. N. Am. Benthol. Soc. 2008, 27, 605–625. [Google Scholar] [CrossRef]
- Tank, J.L.; Rosi-Marshall, E.J.; Griffiths, N.A.; Entrekin, S.A.; Stephen, M.L. A review of allochthonous organic matter dynamics and metabolism in streams. J. N. Am. Benthol. Soc. 2010, 29, 118–146. [Google Scholar] [CrossRef] [Green Version]
- Danger, M.; Cornut, J.; Elger, A.; Chauvet, E. Effects of burial on leaf litter quality, microbial conditioning and palatability to three shredder taxa. Freshw. Biol. 2012, 57, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Piggott, J.J.; Niyogi, D.K.; Townsend, C.R.; Matthaei, C.D. Multiple stressors and stream ecosystem functioning: Climate warming and agricultural stressors interact to affect processing of organic matter. J. Appl. Ecol. 2015, 52, 1126–1134. [Google Scholar] [CrossRef]
- Yule, C.M.; Gan, J.Y.; Jinggut, T.; Lee, K.V. Urbanization affects food webs and leaf-litter decomposition in a tropical stream in Malaysia. Freshw. Sci. 2015, 34, 702–715. [Google Scholar] [CrossRef] [Green Version]
N | S | N*S | |||||
---|---|---|---|---|---|---|---|
Response Variables | df | F | P | F | P | F | P |
Habitat variables | |||||||
Sediment dry mass | 1, 21 | 0.592 | 0.450 | 114.206 | <0.0001 | 1.061 | 0.315 |
Sediment AFDM | 1, 21 | 2.218 | 0.151 | 11.349 | 0.003 | 2.284 | 0.146 |
Sediment % organic | 1, 21 | 0.984 | 0.333 | 19.115 | <0.0001 | 0.823 | 0.375 |
Benthic invertebrates | |||||||
Total density | 1, 18 | 0.002 | 0.966 | 5.975 | 0.025 | 0.000 | 0.988 |
Total richness | 1, 18 | 0.240 | 0.630 | 0.004 | 0.953 | 2.452 | 0.135 |
EPT density | 1, 18 | 0.320 | 0.578 | 1.343 | 0.262 | 0.576 | 0.458 |
EPT richness | 1, 18 | 0.110 | 0.744 | 0.504 | 0.487 | 2.440 | 0.136 |
Scraper density | 1, 18 | 1.483 | 0.239 | 0.007 | 0.934 | 1.144 | 0.299 |
Shredder density | 1, 18 | 0.298 | 0.592 | 1.270 | 0.275 | 0.381 | 0.545 |
Predator density | 1, 18 | 0.062 | 0.806 | 10.492 | 0.005 | 0.016 | 0.902 |
Collector density | 1, 18 | 0.035 | 0.854 | 3.585 | 0.074 | 0.065 | 0.801 |
drift rate day 2 | 1, 18 | 0.033 | 0.857 | 0.828 | 0.374 | 0.132 | 0.720 |
drift rate day 22 | 1, 18 | 1.769 | 0.205 | 0.087 | 0.773 | 0.023 | 0.881 |
Ecosystem function | |||||||
Leaf decomposition | 1, 18 | 2.351 | 0.141 | 2.185 | 0.155 | 8.520 | 0.008 |
Count Model | Zero-Inflation Model | |||||||
---|---|---|---|---|---|---|---|---|
Factor | Estimate | SE | z | P | Estimate | SE | z | P |
N | 1.735 | 0.307 | 5.650 | <0.0001 | 3.302 | 154.596 | 0.021 | 0.983 |
S | −0.619 | 0.307 | −2.060 | 0.044 | −2.689 | 154.596 | −0.017 | 0.986 |
N*S | −0.015 | 0.307 | −0.034 | 0.973 | 2.969 | 154.596 | 0.019 | 0.985 |
Cumulative | Single | t-Test | ||||
---|---|---|---|---|---|---|
Response Variable | Mean | SD | Mean | SD | t | P |
Habitat variables | ||||||
Sediment dry mass (g m−2) | 133.53 | 113.53 | 502.79 | 249.26 | −2.4 | 0.076 |
Sediment AFDM (g m−2) | 16.18 | 3.68 | 23.82 | 15.29 | −0.6 | 0.659 |
Nitrate (μg L−1) | 76.5 | 0.5 | 80.5 | 0.5 | −1.1 | 0.446 |
Benthic invertebrates | ||||||
Total density (ind m−2) | 1083.3 | 770.1 | 823.6 | 420.3 | 0.5 | 0.642 |
Total richness (taxa per mesocosm) | 11.3 | 3.1 | 11.7 | 2.3 | −0.2 | 0.888 |
EPT density (ind m−2) | 156.9 | 44.9 | 254.9 | 37.0 | −2.9 | 0.045 |
EPT richness (taxa per mesocosm) | 3.3 | 0.6 | 6.0 | 1.0 | −4.0 | 0.025 |
Response Variable | Mean | SD | Mean | SD | t | P |
Scraper density (ind m−2) | 44.1 | 29.4 | 122.5 | 44.9 | −2.5 | 0.074 |
Shredder density (ind m−2) | 39.2 | 30.6 | 58.8 | 58.8 | −0.5 | 0.644 |
Predator density (ind m−2) | 78.4 | 55.7 | 39.2 | 22.5 | 1.1 | 0.350 |
Collector density (ind m−2) | 142.1 | 51.6 | 122.5 | 17.0 | 0.6 | 0.586 |
Drift rate day 2 (ind h−1) | 1.3 | 1.2 | 1.3 | 0.3 | 0.0 | 0.976 |
Drift rate day 22 (ind h−1) | 0.3 | 0.1 | 0.6 | 0.1 | −3.2 | 0.123 |
Ecosystem function | ||||||
Leaf decomposition (g AFDM lost) | 0.5 | 0.1 | 0.7 | 0.1 | −1.8 | 0.140 |
Stress Level | |||
---|---|---|---|
Response Variables | df | F | P |
Habitat variables | |||
Sediment dry mass | 2, 6 | 19.024 | 0.003 |
Sediment AFDM | 2, 6 | 13.852 | 0.006 |
Sediment % organic | 2, 6 | 2.113 | 0.202 |
Nitrate | 2, 6 | 0.106 | 0.901 |
Benthic invertebrates | |||
Total density | 2, 6 | 1.344 | 0.329 |
Total richness | 2, 6 | 4.167 | 0.081 |
EPT density | 2, 6 | 5.187 | 0.049 |
EPT richness | 2, 6 | 1.716 | 0.232 |
Scraper density | 2, 6 | 1.972 | 0.220 |
Shredder density | 2, 6 | 2.197 | 0.192 |
Predator density | 2, 6 | 1.839 | 0.238 |
Collector density | 2, 6 | 0.736 | 0.518 |
Drift rate day 2 | 2, 5 | 0.299 | 0.754 |
Drift rate day 22 | 2, 6 | 1.760 | 0.264 |
Ecosystem function | |||
Leaf decomposition | 2, 6 | 0.300 | 0.751 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chará-Serna, A.M.; Richardson, J.S. Multiple-Stressor Interactions in Tributaries Alter Downstream Ecosystems in Stream Mesocosm Networks. Water 2021, 13, 1194. https://doi.org/10.3390/w13091194
Chará-Serna AM, Richardson JS. Multiple-Stressor Interactions in Tributaries Alter Downstream Ecosystems in Stream Mesocosm Networks. Water. 2021; 13(9):1194. https://doi.org/10.3390/w13091194
Chicago/Turabian StyleChará-Serna, Ana M., and John S. Richardson. 2021. "Multiple-Stressor Interactions in Tributaries Alter Downstream Ecosystems in Stream Mesocosm Networks" Water 13, no. 9: 1194. https://doi.org/10.3390/w13091194
APA StyleChará-Serna, A. M., & Richardson, J. S. (2021). Multiple-Stressor Interactions in Tributaries Alter Downstream Ecosystems in Stream Mesocosm Networks. Water, 13(9), 1194. https://doi.org/10.3390/w13091194