Spatiotemporal Variation on Water Quality and Trophic State of a Tropical Urban Reservoir: A Case Study of the Lake Paranoá-DF, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Preparation and Chemical Analysis
2.4. Geospatial Analysis of Variables Dataset of Surface Water
2.5. Trophic Status Assessment
2.6. Statistical Data Analysis
3. Results and Discussion
3.1. Seasonal Variation
3.2. Spatial Distribution
3.3. Trophic State Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polis, G.A.; Anderson, W.B.; Holt, R.D. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 1997, 28, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Mariani, M.A.; Padedda, B.M.; Kaštovský, J.; Buscarinu, P.; Sechi, N.; Virdis, T.; Lugliè, A. Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs. Sci. Rep. 2015, 5, 17964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, F.K.L.; Fonseca, B.M.; Felisberto, S.A. Community structure of periphytic Zygnematophyceae (Streptophyta) in urban ponds from central Brazil (Goiânia, GO). Acta Limnol. Bras. 2018, 30, 206. [Google Scholar] [CrossRef] [Green Version]
- Sepulveda-Jauregui, A.; Hoyos-Santillan, J.; Martinez-Cruz, K.; Antony, K.M.W.; Casper, P.; Belomonte-Izquierdo, Y.; Thalasso, F. Eutrophication exacerbates the impact of climate warming on lake methane emission. Sci. Total Environ. 2018, 636, 411–419. [Google Scholar] [CrossRef]
- Li, J.; Brown, E.T.; Crowe, S.; Kalsev, S. Sediment geochemistry and contribution to carbon and nutrient cycling in a deep meromictic tropical Lake: Lake Malawi (East Africa). J. Great Lakes Res. 2018, 44, 1221–1234. [Google Scholar] [CrossRef]
- Jain, A.; Rai, S.C.; Pal, J.; Sharma, E. Hydrology and nutrient dynamics of a sacred lake in Sikkim Himalaya. Hydrobiologia 1999, 416, 13–22. [Google Scholar] [CrossRef]
- Yan, X.; Cai, Z.; Yang, R.; Ti, C.; Xia, Y.; Li, F.; Wang, J.; Ma, A. Nitrogen budget and riverine nitrogen output in a rice paddy dominated agricultural watershed in eastern China. Biogeochemistry 2011, 106, 489–501. [Google Scholar] [CrossRef]
- Manahan, S.E. Environmental Chemistry, 7th ed.; Lewis Publishers: Boca Raton, FL, USA, 2000; pp. 500–501. [Google Scholar]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Policy Analysis Eutrophication of U.S. Freshwaters: Damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Dupas, R.; Delmas, M.; Dorioz, J.M.; Garnier, J.; Moatar, F.; Gascuel-Odoux, C. Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecol. Indic. 2015, 48, 396–407. [Google Scholar] [CrossRef]
- Han, H.; Lu, X.; David, F.B.; Joshi, U.M.; Zhang, L. Nitrogen dynamics at the sediment-water interface in a tropical reservoir. Ecol. Eng. 2014, 73, 146–153. [Google Scholar] [CrossRef]
- Fontana, L.; Albuquerque, A.L.S.; Brenner, M.; Bonotto, D.M.; Sabaris, T.P.P.; Pires, M.A.F.; Cotrim, M.E.B.; Bicudo, D.C. The eutrophication history of a tropical water supply reservoir in Brazil. J. Paleolimnol. 2014, 51, 29–43. [Google Scholar] [CrossRef]
- Zorzal-Almeida, S.; Salim, A.; Andrade, M.R.M.; Nascimento, M.N.; Bini, L.M.; Bicudo, D.C. Effects of land use and spatial processes in water and surface sediment of tropical reservoir at local and regional scales. Sci. Total Environ. 2018, 644, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Gownaris, N.J.; Routons, K.J.; Kaufman, L.; Kolding, J.; Lwiza, K.M.M.; Pikitch, E.K. Water level fluctuation and ecosystem functioning of lakes. J. Great Lakes Res. 2018, 44, 1154–1163. [Google Scholar] [CrossRef]
- Noori, R.; Ansari, E.; Jeong, Y.-W.; Aradpour, S.; Maghrebi, M.; Hosseinzadeh, M.; Bateni, S.M. Hyper-nutrient enrichment status in the Sabalan Lake, Iran. Water 2021, 13, 2874. [Google Scholar] [CrossRef]
- Fan, C.W. Particles dynamics in a deep reservoir trigged by tryphoons. J. Hydrol. 2011, 406, 82–87. [Google Scholar] [CrossRef]
- Wu, B.; Wang, G.; Jiang, H.; Wamg, J.; Liu, C. Impact of revised thermal stability on polluant transport time in a deep reservoir. J. Hydrol. 2016, 535, 671–687. [Google Scholar] [CrossRef]
- Crowe, S.A.; O’Neill, A.H.; Katsev, S.; Hehamussa, P.; Haffner, G.D.; Sundby, B.; Mucci, A.; Fowle, D.A. The biogeochemistry of tropical lakes: A case study from Lake Matano, Indonesia. Limnol. Oceanogr. 2008, 53, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Han, H.J.; Los, F.J.; Burger, D.F.; Lu, X.X. A modelling approach to determine systematic nitrogen transformations in a tropical reservoir. Ecol. Eng. 2016, 94, 37–49. [Google Scholar] [CrossRef]
- ADASA. Sistema de Informações sobre Recursos Hídricos DF. Available online: http://gis.adasa.df.gov.br/portal/home/ (accessed on 9 March 2019).
- Governo do Distrito Federal e Territórios (GDF). Zoneamento Ecológico-Econômico do DF Subproduto 3.1—Relatório do Meio Físico e Biótico. Available online: https://www.zee.dfgov.br (accessed on 12 March 2019).
- De Carvalho Pires, V.A. Metodologia para apoio à gestão estratégica de reservatórios de usos múltiplos: O caso do Lago Paranoá, no Distrito Federal. Master’s Thesis, Universidade de Brasília, Brasília, Brazil, 2004. [Google Scholar]
- Barbosa, J.S.B.; Silva, D.B.; Bellotto, V.R.; Lima, T.B. Nitrogen ans Phosphorous Budget for a Deep Tropical Reservoir of the Brazilian Savannah. Water 2019, 11, 1205. [Google Scholar] [CrossRef] [Green Version]
- Mar Da Costa, N.Y.; Boaventura, G.R.; Mulholland, D.S.; Araújo, D.F.; Moreira, R.C.A.; Faial, K.F.C.; Bonfim, E.O. Biochemical mechanisms controlling trophic state and micropolluant concentrations in a tropical artificial lake. Environ. Earth Sci. 2016, 75, 854. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Carmouze, J.-P.; Bellotto, V.R.; Maddock, J.; Romanazzi, A. A versatile in situ sediment pore water sampler. Mangroves Salt Marshes 1997, 1, 77–78. [Google Scholar] [CrossRef]
- IUPAC Technical Report; Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guideliness for single laboratory validation of methods of analysis. Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Khouni, I.; Louhichi, G.; Ghrabi, A. Use of GIS based Inverse Distance Weighted interpolationto assesss surface water quality: Case of Wadi El Bey, Tunisia. Environ. Technol. Innov. 2021, 24, 101892. [Google Scholar] [CrossRef]
- Jorgensen, S.E.; Löffler, H.; Rast, W.; Straskraba, M. Lake and Reservoir Management, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2005; pp. 107–130. [Google Scholar]
- Modabberi, A.; Noori, R.; Madani, K.; Ehsani, A.H.; Mehr, A.D.; Hooshyaripor, F.; Kløve, B. Caspian Sea is eutrophying: The alarming message of satellite data. Environ. Res. Lett. 2020, 15, 124047. [Google Scholar] [CrossRef]
- Cunha, D.G.F.; do Calijuri, M.C.; Lamparelli, M.C. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol. Eng. 2013, 60, 123–134. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Lamparelli, M.C. Graus de Trofia em Corpos D’água do Estado de São Paulo: Avaliação dos Métodos de Monitoramento. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2004. [Google Scholar] [CrossRef]
- (OECD) The Organisation for Economic Co-operation and Development. Eutrophication of Waters Monitoring Assessment and Control; OECD: Paris, France, 1982; p. 154. [Google Scholar]
- Thomann, R.; Mueller, J.A. A Principles of Water Quality Modeling and Control, 1st ed.; Harper & Row: New York, NY, USA, 1987; p. 644. [Google Scholar]
- Salas, H.; Martino, P. A simplified phosphorous trophic state model for warm-water tropical lakes. Water Res. 1991, 25, 341–350. [Google Scholar] [CrossRef]
- Finkler, N.R.; Bortolin, T.A.; Cocconi, J.; Mendes, L.A.; Schnider, V.E. Spatial and temporal assessment of water quality data using multivariate statistical techniques. Ciênc. Nat. 2016, 38, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Woldeab, B.; Beyene, A.; Ambelu, A.; Buffam, I.; Mereta, S.T. Seasonal and spatial variation of reservoirwater quality in the southwest of Ethiopia. Environ. Monit. Assess. 2018, 190, 163. [Google Scholar] [CrossRef] [PubMed]
- Fearnside, P.M. Hidrelétricas como “fábricas de metano”: O papel do reservatório em áreas de floresta tropical na emissão de gases de efeito estufa. Oecologia Bras. 2008, 12, 100–115. [Google Scholar] [CrossRef] [Green Version]
- Brasil, J.; Attayde, J.L.; Vasconcelos, F.R.; Dantas, D.D.; Huzcar, V.L. Drought-indiced water-level reduction favors cyanobacteria blooms in a tropical shallow lakes. Hydrobiologia 2016, 770, 145–164. [Google Scholar] [CrossRef]
- Vernieu, W.S. Effects of reservoir drawdown in resuspension of deltaic sediments in Lake Powell. J. Lake Reserv. Manag. 1997, 13, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Valipour, R.; Boegman, L.; Bouffard, D.; Rao, Y.R. Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol. Oceanogr. 2017, 62, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Lewis, W.M. Causes for the high frequency of nitrogen limitation in tropical lakes. Int. Ver. Theor. Angew. Limnol. Verh. 2002, 28, 210–213. [Google Scholar] [CrossRef]
- Tibebe, D.; Kassa, Y.; Melaku, A.; Lakew, S. Investigation of spatial temporal variation of selected water quality parameters and trophic status of Lake Tana for susteinablemanagements, Ethiopia. Microchem. J. 2019, 148, 374–384. [Google Scholar] [CrossRef]
- Magesh, N.S.; Chandraseak, N.; Krishnakuman, S. Geospatial analysis of dissolved nutrient dataset in the surface water of Karayar reservoir, Southern India. Data Brief 2017, 13, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Mengis, M.; Gächter, R.; Wehrli, B. Nitrogen in two deep eutrophic lakes. Limnol. Oceanogr. 1997, 42, 1530–1543. [Google Scholar] [CrossRef] [Green Version]
- Batista, B.D.; Fonseca, B.M. Phytoplankton in the central region of Paranoá Lake, Federal District of Brazil: Na ecological and sanitary approach. Eng. Sanit. Ambient. 2018, 23, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Vollenweider, R.A. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. 1st Ital. Idrobiol. 1976, 33, 53–83. [Google Scholar]
- Filstrup, C.T.; Wagner, T.; Oliver, S.K.; Stow, C.A.; Webster, K.E.; Stanley, E.H.; Downing, J.A. Evidence for regional nitrogen stress on chlorophyll a in lakes across large landscape and climate gradients. Limnol. Oceanogr. 2018, 63, 324–339. [Google Scholar] [CrossRef]
- Downing, J.A.; McCauley, E. The Nitrogen:phosphorus relationship in lakes. Limnol. Oceanogr. 1992, 37, 936–945. [Google Scholar] [CrossRef] [Green Version]
- CAESB. Wastewater Treatment Plants. Available online: https://atlascaesb.maps.arcgis.com/apps/MapJournal/index.html?appid=9babae05a8a1444180cdf3df83f67fb72019 (accessed on 10 January 2019).
- National Council for the Environment -CONAMA n° 357/05 Resolution. Available online: http://pnqa.ana.gov.br/Publicacao/RESOLUCAO_CONAMA_n_357.pdf (accessed on 25 May 2019).
- Ferrante, J.E.T.; Rancan, L.; Braga Netto, P.; Meio, F. Olhares Sobre o Lago Paranoá, 1st ed.; Fonseca, F.O., Braga Netto, P., Cavalvante, C.V., Eds.; Secretaria de Meio Ambiente e Recursos Hídricos: Brasília, Brasil, 2001; Volume 1, pp. 45–79. [Google Scholar]
- Programa de despoluição do Lagoa Paranoá, Governo do Distrito Federal e Territórios. World Water Forum. Available online: https://www.agenciabrasilia.df.gov.br/2018/02/28/programa-de-despoluicao-do-lago-paranoa-sera-apresentado-no-forum-mundial-da-agua/ (accessed on 4 February 2019).
- Projeções e Estimativas da População do Brasil e das Unidades da Federação. Available online: https://www.ibge.gov.br/apps/populacao/projecao/index.html (accessed on 20 June 2021).
- Liporoni, L.M. Estudo Preliminar da Qualidade da Água do Lago Paranoá, Brasília-DF, Utilizando um Modelo de Qualidade de Água Bidimensional. Master’s Thesis, Universidade de Brasília, Brasília, Brazil, 2012. [Google Scholar]
- Vidal, T.F.; Campelo Neto, J. Dinâmica de Nitrogênio e fósforo em reservatório na região semiárida utilizando balanço de massa. Rev. Bras. Eng. Agrícola Ambient. 2014, 18, 402–407. [Google Scholar] [CrossRef]
- Cunha, D.G.F.; Ogura, A.P.; Calijuri, M.D.C. Nutrient reference concentration and trophic state boundaries in subtropical reservoir. Water Sci. Technol. 2012, 65, 1461–1467. [Google Scholar] [CrossRef]
Authors: Thomann and Mueller (1987) | |||
---|---|---|---|
Parameter | Trophic State (Classes) | ||
Oligotrophic | Mesotrophic | Eutrophic | |
TP (µg L−1) | TP ˂ 10 | 10 ˂ TP ˂ 20 | TP ˃ 20 |
Chl-a (µg L−1) | Chl-a ˂ 4 | 4 ˂ Chl-a ˂ 10 | Chl-a ˃ 10 |
DO saturation degree (%) | ˃80 | 10–80 | ˂10 |
Authors: Salas and Martino (1991) | |||
Parameter | Trophic State (classes) | ||
Oligotrophic | Mesotrophic | Eutrophic | |
TP (mgm−3) | TP ˂ 21.3 | 21.3 ˂ TP ˂ 39.6 | 39.7 ˂ TP ˂ 118.7 |
Author: Lamparelli (2004) | |||
Parameter | Trophic State (classes) | ||
Oligotrophic | Mesotrophic | Eutrophic | |
42 ˂ TSI ˂ 52 | 52 ˂ TSI ˂ 59 | 59 ˂ TSI ˂ 63 |
Parameters/ Unity | October/2016 | December/2016 | February/2017 | April/2017 | June/2017 | August/2017 |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
pH | 7.99 ± 0.604 | 7.77 ± 0.615 | 7.59 ± 0.497 | 7.64 ± 0.437 | 6.74 ± 0.726 | 8.33 ± 0.421 |
T (°C) | 25.3 ± 1.22 | 25.2 ± 0.591 | 22.1 ± 1.04 | UM | 198.3 ± 1.21 | 21.1 ± 0.706 |
TURB (NTU) | 0.657 ± 0.198 | 1.02 ± 0.501 | 5.63 ± 2.84 | UM | 7.70 ± 2.73 | 5.83 ± 2.21 |
DO | 5.49 ± 2.64 | 6.14 ± 1.90 | 4.66 ± 1.28 | UM | 6.36 ± 1.13 | 6.92 ± 1.26 |
DO saturation (%) | 68.2 ± 34.0 | 75.8 ± 23.5 | 53.1 ± 15.3 | UM | 68.2 ± 12.4 | 71.5 ± 18.0 |
Si | 0.826 ± 0.384 | 0.686 ± 0.563 | 0.619 ± 0.183 | 0.065 ± 0.025 | 0.052 ± 0.011 | 0.046 ± 0.006 |
Chl-a | 3.358 ± 1.01 | 2.57 ± 1.18 | 3.54 ± 1.49 | 1.73 ± 1.17 | 1.65 ± 0.927 | 0.043 ± 0.020 |
TSS | 1.78 ± 1.91 | 0.715 ± 1.29 | 4.57 ± 5.38 | 3.49 ± 3.79 | 2.52 ± 3.31 | 2.681 ± 3.78 |
BOD | 0.499 ± 0.325 | 0.282 ± 0.220 | 0.375 ± 0.214 | 0.321 ± 0.194 | 0.291 ± 0.042 | 0.424 ± 0.211 |
EC | 117 ± 4.23 | 115 ± 1.70 | 127 ± 2.25 | UM | 104 ± 6.10 | 105 ± 8.66 |
NH4+ | 0.033 ± 0.049 | 0.128 ± 0.161 | 0.123 ± 0.168 | 0.217 ± 0.192 | 0.433 ± 0.080 | 0.306 ± 0.063 |
NO2- | 0.030 ± 0.009 | 0.132 ± 0.197 | 0.035 ± 0.57 | 0.081 ± 0.122 | 0.094 ± 0.21 | 0.119 ± 0.149 |
NO3- | 0.363 ± 0.049 | 1.48 ± 0.78 | 0.949 ± 0.832 | 0.415 ± 0.341 | 0.211 ± 0.188 | 0.252 ± 0.337 |
DON | 2.25 ± 1.48 | 1.87 ± 0.847 | 2.13 ± 0.564 | 2.46 ± 0.943 | 1.85 ± 0.755 | 2.34 ± 0.958 |
PON | 0.669 ± 0.782 | 0.465 ± 0.329 | 0.795 ± 0.395 | 1.16 ± 0.847 | 0.945 ± 0.775 | 1.06 ± 0.900 |
TON | 2.92 ± 1.51 | 1.23 ± 0.845 | 2.91 ± 0.760 | 3.35 ± 0.325 | 2.63 ± 0.739 | 3.44 ± 0.446 |
TN | 3.04 ± 1.53 | 1.27 ± 0.981 | 3.16 ± 0.785 | 3.35 ± 0.98 | 3.95 ± 0.909 | 3.53 ± 0.973 |
PO43- | 0.006 ± 0.009 | 0.004 ± 0.006 | ˂LD | ˂LD | ˂LD | ˂LD |
DOP | 0.010 ± 0.017 | 0.004 ± 0.005 | 0.015 ± 0.017 | 0.002 ± 0.002 | 0.009 ± 0.010 | 0.010 ± 0.010 |
POP | 0.003 ± 0.005 | 0.013 ± 0.031 | 0.022 ± 0.020 | 0.007 ± 0.006 | 0.023 ± 0.037 | 0.028 ± 0.049 |
TOP | 0.003 ± 0.005 | 0.013 ± 0.031 | 0.035 ± 0.025 | 0.007 ± 0.025 | 0.031 ± 0.006 | 0.038 ± 0.049 |
TP | 0.017 ± 0.020 | 0.019 ± 0.031 | 0.038 ± 0.024 | 0.008 ± 0.006 | 0.032 ± 0.036 | 0.038 ± 0.049 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, D.B.; Bellotto, V.R.; Barbosa, J.d.S.B.; Lima, T.B. Spatiotemporal Variation on Water Quality and Trophic State of a Tropical Urban Reservoir: A Case Study of the Lake Paranoá-DF, Brazil. Water 2021, 13, 3314. https://doi.org/10.3390/w13223314
da Silva DB, Bellotto VR, Barbosa JdSB, Lima TB. Spatiotemporal Variation on Water Quality and Trophic State of a Tropical Urban Reservoir: A Case Study of the Lake Paranoá-DF, Brazil. Water. 2021; 13(22):3314. https://doi.org/10.3390/w13223314
Chicago/Turabian Styleda Silva, Damiana B., Valéria R. Bellotto, Jackeline do S. B. Barbosa, and Thiago B. Lima. 2021. "Spatiotemporal Variation on Water Quality and Trophic State of a Tropical Urban Reservoir: A Case Study of the Lake Paranoá-DF, Brazil" Water 13, no. 22: 3314. https://doi.org/10.3390/w13223314
APA Styleda Silva, D. B., Bellotto, V. R., Barbosa, J. d. S. B., & Lima, T. B. (2021). Spatiotemporal Variation on Water Quality and Trophic State of a Tropical Urban Reservoir: A Case Study of the Lake Paranoá-DF, Brazil. Water, 13(22), 3314. https://doi.org/10.3390/w13223314