Pasts and Presents of Urban Socio-Hydrogeology: Groundwater Levels in Berlin, 1870–2020
Abstract
:1. Introduction
2. Connecting Pasts and Presents of Socio-Hydrogeology
2.1. (Socio-) Hydrogeology and Its Treatment of the Past
2.2. Urban Water History and Its Treatment of Groundwater
2.3. A Framework for Analysing Pasts and Presents of Socio-Hydrogeology
2.3.1. Socio-Material Temporalities of Groundwater
2.3.2. Histories of Co-Constitution between a City and Its Groundwater
2.3.3. Historical Knowledge about Groundwater
3. The Berlin Case: Tracing a 150-Year Relationship between City and Groundwater
3.1. Monitoring Groundwater Depletion as a Consequence of Urbanisation, 1870–1920
3.2. Observing and Explaining Groundwater Fluctuations as an Indicator of Urban Change, 1920–1950
“The damage today that is not only unpleasant but also the source of serious concern and great suffering could have been avoided if every building and development plan had been based on the highest natural groundwater levels rather than, as was often the case, the levels prevalent at the time of building” [77] (p. 181).
“The groundwater levels and economic circumstances presented here demonstrate a striking correlation over a long period. They clearly reveal groundwater levels to be a mirror image of the development and economic performance of Berlin” [73] (p. 65).
3.3. Perceiving Low Groundwater Levels as a Permanent Feature of the Post-War City, 1950–1989
3.4. Experiencing Sharp Rises in Groundwater Levels in the Reunified, Post-Industrial City, 1990–2020
“People lack the imagination of what groundwater is like, how groundwater works and how dangerous it can be and that groundwater levels fluctuate. They just don’t want to, or can’t, accept that. For example, in the Blumenviertel, that’s such a typical example […] where groundwater levels have been low since living memory, and living memory means 40 years, yeah” (Interviewee 2, 19 January 2021).
“Unfortunately, the term “settlement-compatible groundwater levels” has become somewhat established. If you look at it closely, this is of course a completely hollow term that cannot say anything at all. Because today, in the 21st century, we have all the technical possibilities to erect buildings in practically all situations. […] It’s all about the question is that accepted or is it […] up to the state to intervene to provide for certain conditions. That’s one of the big conflicts.” (Interviewee 1, 3 December 2020).
“And we realise, also in our direct contacts, that there is this small minority that is completely resistant to advice and facts. But with, I don’t know, 95%, 99% of the people you can really get through and explain the contexts to them, and these are usually also understood and more or less grudgingly accepted.” (Interviewee 1, 3 December 2020).
“It is more an attempt to manage, to steer the whole thing, in order to keep an eye on […] these highly varied effects and their interdependencies. So, a large part of it, I would say, is more about observation, monitoring, management and less about active control. That is only possible to a limited extent in a system like this.” (Interviewee 1, 3 December 2020).
4. Discussing the Implications for Research and Practice
4.1. Socio-Material Temporalities of Groundwater
4.1.1. Mapping Groundwater Volatility
4.1.2. Visibility of Groundwater
4.1.3. Discourses about Groundwater
4.2. Histories of Co-Constitution between a City and Its Groundwater
4.2.1. Access to Water
4.2.2. Water and Public Hygiene
4.2.3. Urban Structures under Threat
4.2.4. Ecological Concerns
4.3. Historical Knowledge about Groundwater
4.3.1. Hydrogeologists as Curators of Groundwater Pasts
4.3.2. The Selectivity of Groundwater Histories
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Re, V. Incorporating the social dimension into hydrogeochemical investigations for rural development: The Bir Al-Nas approach for socio-hydrogeology. Hydrogeol. J. 2015, 23, 1293–1304. [Google Scholar] [CrossRef] [Green Version]
- Di Pelino, S.; Schuster-Wallace, C.; Hynds, P.D.; Dickson-Anderson, S.E.; Majury, A. A coupled-systems framework for reducing health risks associated with private drinking water wells. Can. Water Resour. J. Rev. Can. Des. Ressour. Hydr. 2019, 44, 280–290. [Google Scholar] [CrossRef]
- Hynds, P.; Regan, S.; Andrade, L.; Mooney, S.; O’Malley, K.; Di Pelino, S.; O’Dwyer, J. Muddy Waters: Refining the Way forward for the “Sustainability Science” of Socio-Hydrogeology. Water 2018, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Musacchio, A.; Re, V.; Mas-Pla, J.; Sacchi, E. EU Nitrates Directive, from theory to practice: Environmental effectiveness and influence of regional governance on its performance. Ambio 2020, 49, 504–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frommen, T.; Ambrus, K. Pani Check & Pani Doctors—A Documentary Film Project about an Interdisciplinary Hydrogeological Project in Jaipur, India; Andrea von Braun Stiftung: München, Germany, 2019. [Google Scholar]
- Walker, D.; Haile, A.T.; Gowing, J.; Forsythe, N.; Parkin, G. Guideline: Selection, Training and Managing Para-Hydrologists; REACH: Oxford, UK, 2019. [Google Scholar]
- Re, V. Socio-hydrogeology and geoethics. State of the art and future challenges. In Advances in Geoethics and Groundwater Management: Theory and Practice for a Sustainable Development; Abrunhosa, M., Chambel, A., Peppoloni, S., Chaminé, H., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 373–376. [Google Scholar]
- SenStadtWohn—Senatsverwaltung für Stadtentwicklung und Wohnen. Berliner Umweltatlas: Grundwasserhöhen des Hauptgrundwasserleiters und des Panketalgrundwasserleiters (Ausgabe 2019); Senatsverwaltung für Stadtentwicklung und Wohnen: Berlin, Germany, 2019; p. 18. [Google Scholar]
- Re, V.; Misstear, B. Education and Capacity Development for Groundwater Resources Management. In Advances in Groundwater Governance; CRC Press: Leiden, The Netherlands, 2017; pp. 215–230. [Google Scholar]
- Leduc, C.; Pulido-Bosch, A.; Remini, B. Anthropization of groundwater resources in the Mediterranean region: Processes and challenges. Hydrogeol. J. 2017, 25, 1529–1547. [Google Scholar] [CrossRef]
- Böhlke, J.-K. Groundwater recharge and agricultural contamination. Hydrogeol. J. 2002, 10, 153–179. [Google Scholar] [CrossRef]
- Vroblesky, D.A.; Yanosky, T.M. Use of Tree-Ring Chemistry to Document Historical Ground-Water Contamination Events. Groundwater 1990, 28, 677–684. [Google Scholar] [CrossRef]
- Beaumont, P. Qanat systems in Iran. Hydrol. Sci. J. 1971, 16, 39–50. [Google Scholar] [CrossRef]
- Llamas, M.R.; Custodio, E.; de la Hera, A.; Fornés, J.M. Groundwater in Spain: Increasing role, evolution, present and future. Environ. Earth Sci. 2015, 73, 2567–2578. [Google Scholar] [CrossRef]
- Powell, O.; Fensham, R. The history and fate of the Nubian Sandstone Aquifer springs in the oasis depressions of the Western Desert, Egypt. Hydrogeol. J. 2016, 24, 395–406. [Google Scholar] [CrossRef]
- Robertson, J. Challenges in sustainably managing groundwater in the Australian Great Artesian Basin: Lessons from current and historic legislative regimes. Hydrogeol. J. 2020, 28, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Vandenbohede, A. The hydrogeology of the military inundation at the 1914–1918 Yser front (Belgium). Hydrogeol. J. 2016, 24, 521–534. [Google Scholar] [CrossRef]
- Vandenbohede, A.; Vandevyvere, E. Potable water for a city: A historic perspective from Bruges, Belgium. Hydrogeol. J. 2014, 22, 1669–1680. [Google Scholar] [CrossRef]
- Vasconcelos, V.V. What maintains the waters flowing in our rivers? Appl. Water Sci. 2017, 7, 1579–1593. [Google Scholar] [CrossRef] [Green Version]
- Back, W.T.C. Chamberlin, early American hydrogeologist. Hydrogeol. J. 1996, 4, 94–95. [Google Scholar] [CrossRef]
- Mather, J. Joseph Lucas and the term hydrogeology. Hydrogeol. J. 2001, 9, 413–415. [Google Scholar] [CrossRef]
- Baker, M.N.; Horton, R.E. Historical development of ideas regarding the origin of springs and ground-water. Eos Trans. Am. Geophys. Union 1936, 17, 395–400. [Google Scholar] [CrossRef]
- Fetter, C.W. Hydrogeology: A Short History, Part 1. Groundwater 2004, 42, 790–792. [Google Scholar] [CrossRef]
- Fetter, C.W. Hydrogeology: A Short History, Part 2. Groundwater 2004, 42, 949–953. [Google Scholar] [CrossRef]
- Houben, G.J. Die Rolle des Grundwassers bei der Entwicklung der Wasserversorgung im Deutschsprachigen Raum bis zum Beginn des Jahrhunderts; Fachsektion Hydrogeologie e.V. in der DGGV e.V. (FH-DGGV): Neustadt, Germany, 2019. [Google Scholar]
- Robins, N.S.; Rose, E.P.F. Military uses of groundwater: A driver of innovation? Hydrogeol. J. 2009, 17, 1275–1287. [Google Scholar] [CrossRef]
- Struckmeier, W.; Howard, K.; Chilton, J. The International Association of Hydrogeologists (IAH): Reflecting on 60 years of contributions to groundwater science and water management. Hydrogeol. J. 2016, 24, 1069–1086. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, A.N.; Voudouris, K.S.; Mariolakos, I. Groundwater utilization through the centuries focusing οn the Hellenic civilizations. Hydrogeol. J. 2016, 24, 1311–1324. [Google Scholar] [CrossRef]
- Back, W. Hydrogeology: History in USA. In Encyclopedia of Hydrology and Lakes; Herschy, R.W., Fairbridge, R.W., Eds.; Springer: Dordrecht, Germany, 1998; pp. 366–367. [Google Scholar]
- de Vries, J.J. The Historical Base of Ground-Water Hydrology in The Netherlands. Groundwater 1989, 27, 92–95. [Google Scholar] [CrossRef]
- Rosenshein, J.S.; Moore, J.E.; Lohman, S.W.; Chase, E.B. Two-Hundred Years of Hydrogeology in the United States; U.S. Geological Survey: Washington, DC, USA, 1986. [Google Scholar]
- Tóth, J. The Canadian School of Hydrogeology: History and Legacy. Groundwater 2005, 43, 640–644. [Google Scholar] [CrossRef]
- Zhou, Y.; Zwahlen, F.; Wang, Y. The ancient Chinese notes on hydrogeology. Hydrogeol. J. 2011, 19, 1103–1114. [Google Scholar] [CrossRef]
- Howden, N.; Mather, J. History of Hydrogeology; CRC Press Taylor & Francis Group: Leiden, The Netherlands, 2013; Volume 28. [Google Scholar]
- Narasimhan, T.N. Hydrogeology in North America: Past and future. Hydrogeol. J. 2005, 13, 7–24. [Google Scholar] [CrossRef]
- Stephens, D.B.; Ankeny, M.D. A Missing Link in the Historical Development of Hydrogeology. Groundwater 2004, 42, 304–309. [Google Scholar] [CrossRef]
- Davies, P.; Lawrence, S.; Turnbull, J.; Rutherfurd, I.; Silvester, E.; Grove, J.; Macklin, M.G. Groundwater extraction on the goldfields of Victoria, Australia. Hydrogeol. J. 2020, 28, 2587–2600. [Google Scholar] [CrossRef]
- Deming, D. Water Witching and Dowsing. Groundwater 2002, 40, 450–452. [Google Scholar] [CrossRef]
- Ha, K.; Lee, Y. Wells in the Historical Records of the Joseon Dynasty, Korea. Groundwater 2011, 49, 295–299. [Google Scholar] [CrossRef]
- Brosnan, T.; Becker, M.W.; Lipo, C.P. Coastal groundwater discharge and the ancient inhabitants of Rapa Nui (Easter Island), Chile. Hydrogeol. J. 2019, 27, 519–534. [Google Scholar] [CrossRef]
- Dahlhaus, P.G.; Cox, J.W.; Simmons, C.T.; Smitt, C.M. Beyond hydrogeologic evidence: Challenging the current assumptions about salinity processes in the Corangamite region, Australia. Hydrogeol. J. 2008, 16, 1283. [Google Scholar] [CrossRef]
- ARCADIS Consult GmbH. Handbuch Altlasten: Untersuchung von Altlastverdächtigen Flächen und Schadensfällen, Band 3, Teil 2; Zublin: Stuttgart, Germany, 2014. [Google Scholar]
- Foster, K.E. The Winters Doctrine: Historical Perspective and Future Applications of Reserved Water Rights in Arizona. Groundwater 1978, 16, 186–191. [Google Scholar] [CrossRef]
- Melosi, M.V. The Sanitary City. Urban Infrastructure in America from Colonial Times to the Present; The John Hopkins University Press: Baltimore, MD, USA, 2000. [Google Scholar]
- Swyngedouw, E. Social Power and the Urbanization of Water: Flows of Power; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Kaika, M. City of Flows: Modernity, Nature, and the City, 1st ed.; Routledge: New York, NY, USA, 2005. [Google Scholar]
- Barles, S. Urban metabolism and river systems: An historical perspective–Paris and the Seine, 1790–1970. Hydrol. Earth Syst. Sci. 2007, 11, 1757–1769. [Google Scholar] [CrossRef] [Green Version]
- Castonguay, S.; Evenden, M. Urban. Rivers: Remaking Rivers, Cities, and Space in Europe and North. America; University of Pittsburgh Press: Pittsburgh, PA, USA, 2012. [Google Scholar]
- Oliver, S. Liquid materialities in the landscape of the Thames: Mills and weirs from the eighth century to the nineteenth century. Area 2013, 45, 223–229. [Google Scholar] [CrossRef]
- Gandy, M. The Fabric of Space: Water, Modernity, and the Urban Imagination; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Swyngedouw, E. Liquid Power: Contested Hydro-Modernities in Twentieth-Century Spain; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Kroepsch, A.C. Groundwater Modeling and Governance: Contesting and Building (Sub)Surface Worlds in Colorado’s Northern San Juan Basin. Engag. Sci. Technol. Soc. 2018, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Abell, D.; Bacha, E.; Brauman, K.; Calos, S.; Cohn, A.; Disla, C.; O’Brien, S.F.; Hodges, D.; Kaiser, S.; et al. Tapped out: How can cities secure their water future? Water Policy 2013, 15, 335–363. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.; Bousquet, A.; Furey, S. Urban groundwater use in Tropical Africa–a key factor in enhancing water security? Water Policy 2018, 20, 982–994. [Google Scholar] [CrossRef] [Green Version]
- Molle, F.; López-Gunn, E.; van Steenbergen, F. The local and national politics of groundwater overexploitation. Water Altern. 2018, 11, 445. [Google Scholar]
- Travis, A.S. Poisoned groundwater and contaminated soil: The tribulations and trial of the first major manufacturer of aniline dyes in Basel. Environ. Hist. 1997, 2, 343–365. [Google Scholar] [CrossRef]
- Thorsheim, P. The Paradox of Smokeless Fuels: Gas, Coke and the Environment in Britain, 1813–1949. Environ. Hist. 2002, 8, 381–401. [Google Scholar] [CrossRef] [Green Version]
- Cook, H.F. Groundwater development in England. Environ. Hist. 1999, 5, 75–96. [Google Scholar] [CrossRef] [PubMed]
- Glennon, R.J. Water Follies: Groundwater Pumping and the Fate of America’s Fresh Waters; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Hackenberger, B.; Miller, C. Watershed politics: Groundwater management and resource conservation in southern California’s Pomona Valley. J. Urban. Hist. 2020, 46, 50–62. [Google Scholar] [CrossRef]
- Haidvogl, G.; Winiwarter, V.; Dressel, G.; Gierlinger, S.; Hauer, F.; Hohensinner, S.; Pollack, G.; Spitzbart-Glasl, C.; Raith, E. Urban Waters and the Development of Vienna between 1683 and1910. Environ. Hist. 2018, 23, 721–747. [Google Scholar] [CrossRef] [Green Version]
- Otter, C. Locating Matter: The place of materiality in urban history. In Material Powers: Cultural Studies, History and the Material Turn; Bennett, T., Joyce, P., Eds.; Routledge: New York, NY, USA; London, UK, 2010; pp. 38–59. [Google Scholar]
- Bakker, K.; Bridge, G. Material worlds? Resource geographies and the matter of nature. Prog. Hum. Geogr. 2006, 30, 5–27. [Google Scholar] [CrossRef]
- Gandy, M. Rethinking urban metabolism: Water, space and the modern city. City 2004, 8, 363–379. [Google Scholar] [CrossRef]
- Linton, J.; Budds, J. The hydrosocial cycle: Defining and mobilizing a relational-dialectical approach to water. Geoforum 2014, 57, 170–180. [Google Scholar] [CrossRef]
- Wesselink, A.; Kooy, M.; Warner, J. Socio-hydrology and hydrosocial analysis: Toward dialogues across disciplines: Socio-hydrology and hydrosocial analysis. WIREs Water 2017, 4, 1–14. [Google Scholar] [CrossRef]
- Hauer, F.; Hohensinner, S.; Spitzbart-Glasl, C. How water and its use shaped the spatial development of Vienna. Water Hist. 2016, 8, 301–328. [Google Scholar] [CrossRef] [Green Version]
- Lankford, B.; Hepworth, N. The Cathedral and the Bazaar: Monocentric and Polycentric River Basin Management. Water Altern. 2010, 3, 82–101. [Google Scholar]
- Linton, J. What is Water? The History of a Modern Abstraction; UBC Press: Vancouver, BC, Canada, 2010. [Google Scholar]
- Reuss, M. Introduction: Seeing like an Engineer: Water Projects and the Mediation of the Incommensurable. Technol. Cult. 2008, 49, 531–546. [Google Scholar] [CrossRef]
- Denner, J.; Mösenthin, F. Die Grundwasserverhältnisse in Berlin-Innenstadt seit 1870. Dtsch. Wasserwirtsch. 1938, 33, 9. [Google Scholar]
- Medon, G.H. Das Grundwasser von Groß-Berlin. Wasserwirtsch. Wassertech. 1952, 2, 39–44. [Google Scholar]
- Denner, J. Der Grundwasserstand als Spiegelbild der Entwicklung und Wirtschaftslage Berlins: Beitrag zur Untersuchung der Grundwasserverhältnisse Groß-Berlins. Die Tech. 1947, 2, 59–65. [Google Scholar]
- Denner, J. Die wasserwirtschaftliche Bedeutung der künstlichen Anreicherung des Grundwassers unter besonderer Berücksichtigung der Wasserwirtschaft Groß-Berlins. Das Gas- Und Wasserfach 1934, 77, 413–415, 429–433, 444–447, 462–467. [Google Scholar]
- Denner, J. Gutachten über die Grundwasser-Verhältnisse und den hohen Grundwasserstand in der Innenstadt Berlin im Jahre 1945/46; Magistrat Groß-Berlin: Berlin, Germany, 1947. [Google Scholar]
- Nöthlich, F. Ein Beitrag zur Schwankung des Grundwasserstandes in der Berliner Innenstadt auf Grund 65jähriger Beobachtungsreihen (1870–1935). Das Gas- Wasserfach 1948, 89, 111–115. [Google Scholar]
- Pfeil, J. Das Wiederansteigen des Grundwasserspiegels in Groß-Berlin und seine schädlichen Folgen. Haus Wohn. 1948, 3, 180–182. [Google Scholar]
- Redlich, J. Grundwassersenkung und Gebäude-Standsicherheit in Berlin. Zent. Der Bauverwalt. 1932, 52, 236–237. [Google Scholar]
- Limberg, A.; Hörmann, U.; Verleger, H. Modellentwicklung zur Berechnung des höchsten Grundwasserstandes im Land Berlin. Brandenburg. Geowiss. Beitr. 2010, 17, 23–37. [Google Scholar]
- Aßmann, P. Der Geologische Aufbau der Gegend von Berlin: Zugleich als Erläuterung der Geologischen Karte und Baugrundkarte von Berlin (West) im Maßstab 1: 10000; Senator für Bau- und Wohnungswesen: Berlin, Germany, 1957. [Google Scholar]
- Dorsemagen, D. Büro- und Geschäftshausfassaden der 50er Jahre—Konservatorische Probleme am Beispiel West-Berlin; Technische Universität Berlin: Berlin, Germany, 2004. [Google Scholar]
- Magistrat zu Berlin. Communal-Blatt der Haupt- und Residenz-Stadt Berlin: Organ für die gesamte Gemeinde-Verwaltung und communale Interessen; Verlag von J. Sittenfeld: Berlin, Germany, 1871. [Google Scholar]
- Jaeckel, O.; Förster, H. Bauordnung für Berlin in der Fassung vom November 1958: Mit Erläuterungen und einer Zusammenstellung der Wichtigsten Dazugehörigen Vorschriften; Ullstein Fachverlag: Berlin, Germany, 1959. [Google Scholar]
- Stadt Berlin. Bauordnung Für die Stadt Berlin vom November 1929; Stadt Berlin: Berlin, Germany, 1929. [Google Scholar]
- Förster, H.; Schmidt, R.; Grundei, A.; Willert, P.-F. Bauordnung Für Berlin vom Juli 1966. Kommentar mit Rechtsverordnungen und Ausführungsvorschriften; Ulstein Verlag: Berlin, Germany, 1968. [Google Scholar]
- Denner, J. Deutsche gewässerkundliche Tagung. Erdkunde 1959, XIII, 71–72. [Google Scholar] [CrossRef]
- Kletschke, T. Auswirkungen von Grundwasserabsenkung auf den Zustand von Berliner Seen. Geol. Rundsch. 1977, 66, 839–850. [Google Scholar] [CrossRef]
- Treter, U. Grundwassernutzung und Grundwassererneuerung in Berlin (West). In Berlin-Beiträge zur Geographie eines Großstadtraumes; Hofmeister, B., Pachur, H.-J., Pape, C., Reindke, G., Eds.; Dietrich Reimer Verlag: Berlin, Germany, 1985; pp. 111–135. [Google Scholar]
- Kloos, R. Das Grundwasser in Berlin: Bedeutung, Probleme, Sanierungskonzeptionen, 1st ed.; Senator für Stadtentwicklung u. Umweltschutz: Berlin, Germany, 1986. [Google Scholar]
- Schulze, D. Naturnahe Grundwasseranreicherung: Ein Beitrag zur Sicherung der Wasserversorgung des Grossraumes Berlin. Wasser Boden 1993, 45, 220–224. [Google Scholar]
- SenSUT—Senatsverwaltung für Stadtentwicklung Umweltschutz und Technologie. Stadtentwicklungsplan Ver- und Entsorgung; Senatsverwaltung für Stadtentwicklung Umweltschutz und Technologie: Berlin, Germany, 1998; p. 104. [Google Scholar]
- SenStadtUm—Senatsverwaltung für Stadtentwicklung und Umwelt. Grundwasserhöhen und Einzugsgebiete der Wasserwerke (Ausgabe 1993); Senatsverwaltung für Stadtentwicklung und Umwelt: Berlin, Germany, 1993; p. 12. [Google Scholar]
- SenStadt—Senatsverwaltung für Stadtentwicklung. Grundwasserhöhen (Ausgabe 2001); Senatsverwaltung für Stadtentwicklung: Berlin, Germany, 2001; p. 6. [Google Scholar]
- SenGUV—Senatsverwaltung für Gesundheit Umwelt und Verbraucherschutz. Grundwasser in Berlin—Vorkommen Nutzung Schutz Gefährdung; Senatsverwaltung für Gesundheit Umwelt und Verbraucherschutz: Berlin, Germany, 2007; p. 130. [Google Scholar]
- Hasselmann, J.; Berlin Säuft Ab—von Unten. Der Tagesspiegel. 19 February 2008. Available online: https://www.tagesspiegel.de/berlin/steigendes-grundwasser-berlin-saeuft-ab-von-unten/1169156.html (accessed on 24 June 2021).
- Rust, M.; Schulze, S.; Schaffhauser, M. Folgen Hoher Grundwasserstände in Berlin: Gutachten und Bewertung der IHK Berlin; Industrie- und Handelskammer Berlin: Berlin, Germany, 2014; p. 68. [Google Scholar]
- VDGN—Verband Deutscher Grundstücksnutzer. Grundwasser: Gefahr Größer als Bisher Bekannt. Available online: https://www.vdgn.de/ihr-problem/grundwasser/grundwasser-gefahr-berlin/ (accessed on 24 June 2021).
- Möller, K.; Burgschweiger, J. Wasserversorgungskonzept Für Berlin und für das von den BWB Versorgte Umland (Entwicklung bis 2040); Berliner Wasserbetriebe: Berlin, Germany, 2008. [Google Scholar]
- SenUVK—Senatsverwaltung für Umwelt Verkehr und Klimaschutz. Runder Tisch Grundwasser—Pilotprojekt Für Dezentrale Anlagen als Schutz von Kellergeschossen vor Hohen Grundwasserständen in Berlin. Available online: https://www.berlin.de/sen/uvk/umwelt/wasser-und-geologie/grundwasser/runder-tisch-grundwasser/ (accessed on 24 June 2021).
- Limberg, A. Runder Tisch Grundwassermanagement; Senatsverwaltung für Stadtentwicklung und Umwelt: Berlin, Germany, 2013; p. 184. [Google Scholar]
- SenUVK—Senatsverwaltung für Umwelt Verkehr und Klimaschutz. Zu Erwartender Höchster Grundwasserstand (zeHGW) (Umweltatlas). Available online: https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=showMap&mapId=wmsk02_19zeHGW2015@senstadt (accessed on 24 June 2021).
- BWB—Berliner Wasserbetriebe. Ressourcen fürs Leben—Nachhaltigkeitsbericht 2020; Berliner Wasserbetriebe: Berlin, Germany, 2020. [Google Scholar]
- SenUVK—Senatsverwaltung für Umwelt Verkehr und Klimaschutz. Ergänzender Länderbericht Berlins zur Aktualisierung des Bewirtschaftungsplans und des Maßnahmenprogramms der Flussgebietsgemeinschaft Elbe Für den Zeitraum 2022 bis 2027—Entwurf; Senatsverwaltung für Umwelt, Verkehr und Klimaschutz: Berlin, Germany, 2020; p. 85. [Google Scholar]
- BWB—Berliner Wasserbetriebe. Sorgsam Wässern—Die Vergangenen Jahre Waren Nicht nur in Berlin Sehr Trocken. Welche Auswirkungen die Heißen Sommer auf Unsere Grundwasserreserven Haben, Erklärt Dr. Gesche Grützmacher in Einem Interview. Available online: https://www.bwb.de/de/sorgsam-waessern.php (accessed on 24 June 2021).
- BWB—Berliner Wasserbetriebe. An 180 Orten Kann Berlin Sein Blaues Wunder Erleben. Available online: https://www.bwb.de/de/25866_26062.php (accessed on 3 August 2021).
- Winiwarter, V.; Haidvogl, G.; Bürkner, M. The rise and fall of Munich’s early modern water network: A tale of prowess and power. Water Hist. 2016, 8, 277–299. [Google Scholar] [CrossRef] [Green Version]
- Loehnert, E. The impact of groundwater and the role of hydrogeology on a city’s growth: Case study of Hamburg, Federal Republic of Germany. In Proceedings of the Hydrogeology in the Service of Man, Memoires of the 18th Congress of the International Association of Hydrogeologists, Cambridge, UK, 8–13 September 1985; pp. 178–186. [Google Scholar]
- Riemann, U. Impacts of Urban Growth on Surface Water and Groundwater Quality; Ellis, J.B., Ed.; IAHS Publication: Wallingford, UK, 1999; pp. 307–314. [Google Scholar]
- SenUVK—Senatsverwaltung für Umwelt Verkehr und Klimaschutz. Festkolloquium: 150 Jahre Grundwasserbeobachtung in Berlin von der ersten Messung zum Modernen Grundwassermanagement; Senatsverwaltung für Umwelt Verkehr und Klimaschutz: Berlin, Germany, 2019; p. 52. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frommen, T.; Moss, T. Pasts and Presents of Urban Socio-Hydrogeology: Groundwater Levels in Berlin, 1870–2020. Water 2021, 13, 2261. https://doi.org/10.3390/w13162261
Frommen T, Moss T. Pasts and Presents of Urban Socio-Hydrogeology: Groundwater Levels in Berlin, 1870–2020. Water. 2021; 13(16):2261. https://doi.org/10.3390/w13162261
Chicago/Turabian StyleFrommen, Theresa, and Timothy Moss. 2021. "Pasts and Presents of Urban Socio-Hydrogeology: Groundwater Levels in Berlin, 1870–2020" Water 13, no. 16: 2261. https://doi.org/10.3390/w13162261
APA StyleFrommen, T., & Moss, T. (2021). Pasts and Presents of Urban Socio-Hydrogeology: Groundwater Levels in Berlin, 1870–2020. Water, 13(16), 2261. https://doi.org/10.3390/w13162261