CHNS Modeling for Study and Management of Human–Water Interactions at Multiple Scales
Abstract
:1. Introduction
“By the continuance of rain the world is preserved in existence; it is therefore worthy to be called ambrosia”, Thirukkural [1]—Couplet 11 and “Even the wealth of the wide sea will be diminished, if the cloud that has drawn (its waters) up gives them not back again (in rain)”, Thirukkural [1]— Couplet 17, (From about 2000 years ago).
2. Materials and Methods
2.1. IWRM and Sociohydrology (SH)
2.2. CHNS Modeling: Challenges and Opportunities
2.2.1. Mismatch in Temporal Scale and Time Resolution
2.2.2. Mismatch in Type of Models and Modeling Approaches
2.2.3. Mismatch in Spatial Scales and Resolutions of Models
2.2.4. Institutional and Governance-Related Challenges
3. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thirukkural. Chapter 2: The Blessing of Rain. Available online: https://www.ytamizh.com/thirukural/chapter-2 (accessed on 12 June 2020).
- UNESCO. Intergovernmental Meeting of Experts for the IHD, Paris. 1964. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000153976 (accessed on 12 June 2020).
- Global Water Partnership Program. 2000. Available online: https://www.gwp.org/ (accessed on 12 June 2020).
- Choi, B.C.; Pak, A.W. Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clin. Investig. Med. 2006, 29, 351–364. [Google Scholar]
- Falkenmark, M. Main problems of water use and transfer of technology. GeoJournal 1979, 3, 435–443. [Google Scholar] [CrossRef]
- Sivapalan, M.; Savenije, H.H.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Simonovic, S.P. World water dynamics: Global modeling of water resources. J. Environ. Manag. 2002, 66, 249–267. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Salinas, J.; Blöschl, G. Socio-hydrology: Conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 2013, 17, 3295–3303. [Google Scholar] [CrossRef] [Green Version]
- Sivapalan, M.; Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 2015, 51, 6988–7022. [Google Scholar] [CrossRef] [Green Version]
- Blair, P.; Buytaert, W. Socio-hydrological modelling: A review asking“why, what and how?”. Hydrol. Earth Syst. Sci. 2016, 20, 443–478. [Google Scholar] [CrossRef] [Green Version]
- Sivapalan, M.; Blöschl, G. The growth of hydrological understanding: Technologies, ideas, and societal needs shape the field. Water Resour. Res. 2017, 53, 8137–8146. [Google Scholar] [CrossRef] [Green Version]
- Di Baldassarre, G.; Nohrstedt, D.; Mård, J.; Burchardt, S.; Albin, C.; Bondesson, S.; Breinl, K.; Deegan, F.M.; Fuentes, D.; Lopez, M.G. An integrative research framework to unravel the interplay of natural hazards and vulnerabilities. Earth’s Future 2018, 6, 305–310. [Google Scholar] [CrossRef]
- Yue, X.-L.; Gao, Q.-X. Contributions of natural systems and human activity to greenhouse gas emissions. Adv. Clim. Chang. Res. 2018, 9, 243–252. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Sivapalan, M.; Rusca, M.; Cudennec, C.; Garcia, M.; Kreibich, H.; Konar, M.; Mondino, E.; Mård, J.; Pande, S. Socio-hydrology: Scientific challenges in addressing a societal grand challenge. Water Resour. Res. 2019, 55, 6327–6355. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Gober, P.; Wheater, H.S.; Kajikawa, Y. Reframing socio-hydrological research to include a social science perspective. J. Hydrol. 2018, 563, 76–83. [Google Scholar] [CrossRef]
- Wesselink, A.; Kooy, M.; Warner, J. Socio-hydrology and hydrosocial analysis: Toward dialogues across disciplines. Wiley Interdiscip. Rev. Water 2017, 4, e1196. [Google Scholar] [CrossRef]
- Srinivasan, V.; Lambin, E.F.; Gorelick, S.M.; Thompson, B.H.; Rozelle, S. The nature and causes of the global water crisis: Syndromes from a meta-analysis of coupled human-water studies. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Sivakumar, B. Socio-hydrology: Not a new science, but a recycled and re-worded Hydrosociology. Hydrol. Process. 2012, 26, 3788–3790. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Review of the first SH Paper Published in J. of Hydrological Processes by Sivapalan et al. in 2012. In Reviewer’s Ref.: DK-291, Made Publicly Open by the Reviewer. Available online: http://www.itia.ntua.gr/en/docinfo/1991/ (accessed on 12 June 2020).
- Turner, B.L.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Hovelsrud-Broda, G.K.; Kasperson, J.X.; Kasperson, R.E.; Luers, A. Illustrating the coupled human–environment system for vulnerability analysis: Three case studies. Proc. Natl. Acad. Sci. USA 2003, 100, 8080–8085. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Folke, C.; Alberti, M.; Redman, C.L.; Schneider, S.H.; Ostrom, E.; Pell, A.N.; Lubchenco, J. Coupled human and natural systems. AMBIO J. Hum. Environ. 2007, 36, 639–649. [Google Scholar] [CrossRef]
- Fu, B.; Wei, Y. Editorial overview: Keeping fit in the dynamics of coupled natural and human systems. Curr. Opin. Environ. Sustain. 2018, 33, A1–A4. [Google Scholar] [CrossRef]
- Blöschl, G.; Bierkens, M.F.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.; Sivapalan, M. Twenty-three unsolved problems in hydrology (UPH)—A community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Hejazi, M.I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol. Earth Syst. Sci. 2014, 18, 2859–2883. [Google Scholar] [CrossRef] [Green Version]
- Cook, C.; Bakker, K. Water security: Debating an emerging paradigm. Glob. Environ. Chang. 2012, 22, 94–102. [Google Scholar] [CrossRef]
- Ponnambalam, K.; Mousavi, S.J.; Fletcher, S.G.; Hipel, K.W.; Parker, D. Socio-Hydrology: Opportunities and Challenges—A Department of Systems Design Engineering Workshop. 2019. Available online: http://epoch.uwaterloo.ca (accessed on 12 June 2020).
- Nikolic, V.V.; Simonovic, S.P. Multi-method modeling framework for support of integrated water resources management. Environ. Process. 2015, 2, 461–483. [Google Scholar] [CrossRef]
- Loucks, D.P. Managing water as a critical component of a changing world. Water Resour. Manag. 2017, 31, 2905–2916. [Google Scholar] [CrossRef]
- Stevenson, R.J. A revised framework for coupled human and natural systems, propagating thresholds, and managing environmental problems. Phys. Chem. Earthparts A/B/C 2011, 36, 342–351. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Hostert, P.; Seidl, R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 2017, 130, 453–463. [Google Scholar] [CrossRef]
- Kim, S.H.; Hejazi, M.; Liu, L.; Calvin, K.; Clarke, L.; Edmonds, J.; Kyle, P.; Patel, P.; Wise, M.; Davies, E. Balancing global water availability and use at basin scale in an integrated assessment model. Clim. Chang. 2016, 136, 217–231. [Google Scholar] [CrossRef]
- Ausseil, A.; Daigneault, A.; Frame, B.; Teixeira, E. Towards an integrated assessment of climate and socio-economic change impacts and implications in New Zealand. Environ. Model. Softw. 2019, 119, 1–20. [Google Scholar] [CrossRef]
- Edmonds, J.; Reilly, J. Global Energy and CO2 to the Year 2050. Energy J. 1983, 4. [Google Scholar] [CrossRef]
- Collins, W.D.; Craig, A.P.; Truesdale, J.E.; Di Vittorio, A.; Jones, A.D.; Bond-Lamberty, B.; Calvin, K.V.; Edmonds, J.A.; Kim, S.H.; Thomson, A.M. The integrated Earth system model version 1: Formulation and functionality. Geosci. Model Dev. 2015, 8, 2203–2219. [Google Scholar] [CrossRef] [Green Version]
- Sood, A.; Smakhtin, V. Global hydrological models: A review. Hydrol. Sci. J. 2015, 60, 549–565. [Google Scholar] [CrossRef]
- Brêda, J.P.L.F.; de Paiva, R.C.D.; Collischon, W.; Bravo, J.M.; Siqueira, V.A.; Steinke, E.B. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim. Chang. 2020, 1–20. [Google Scholar] [CrossRef]
- Wada, Y.; Wisser, D.; Bierkens, M. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 2014, 5, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; McKinney, D.C.; Lasdon, L.S. Integrated hydrologic-agronomic-economic model for river basin management. J. Water Resour. Plan. Manag. 2003, 129, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Simonovic, S.P.; Davies, E.G. Are we modelling impacts of climatic change properly? Hydrol. Process. 2006, 20, 431–433. [Google Scholar] [CrossRef]
- Prodanovic, P.; Simonovic, S.P. An operational model for support of integrated watershed management. Water Resour. Manag. 2010, 24, 1161–1194. [Google Scholar] [CrossRef]
- Davies, E.G.; Simonovic, S.P. Global water resources modeling with an integrated model of the social–economic–environmental system. Adv. Water Resour. 2011, 34, 684–700. [Google Scholar] [CrossRef]
- Lam, N.S.-N.; Xu, Y.J.; Liu, K.-B.; Dismukes, D.E.; Reams, M.; Pace, R.K.; Qiang, Y.; Narra, S.; Li, K.; Bianchette, T.A. Understanding the Mississippi River Delta as a coupled natural-human system: Research methods, challenges, and prospects. Water 2018, 10, 1054. [Google Scholar] [CrossRef] [Green Version]
- Mashaly, A.F.; Fernald, A.G. Identifying Capabilities and Potentials of System Dynamics in Hydrology and Water Resources as a Promising Modeling Approach for Water Management. Water 2020, 12, 1432. [Google Scholar] [CrossRef]
- Jeong, H.; Adamowski, J. A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale. Agric. Water Manag. 2016, 171, 89–107. [Google Scholar] [CrossRef]
- An, L. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol. Model. 2012, 229, 25–36. [Google Scholar] [CrossRef]
- Walker, W.E.; Loucks, D.P.; Carr, G. Social responses to water management decisions. Environ. Process. 2015, 2, 485–509. [Google Scholar] [CrossRef] [Green Version]
- Dziubanski, D.; Franz, K.J.; Gutowski, W. Linking economic and social factors to peak flows in an agricultural watershed using socio-hydrologic modeling. Hydrol. Earth Syst. Sci. Discuss. 2019, 1–55. [Google Scholar] [CrossRef]
- Noël, P.H.; Cai, X. On the role of individuals in models of coupled human and natural systems: Lessons from a case study in the Republican River Basin. Environ. Model. Softw. 2017, 92, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tesfatsion, L.; Rehmann, C.R.; Cardoso, D.S.; Jie, Y.; Gutowski, W.J. An agent-based platform for the study of watersheds as coupled natural and human systems. Environ. Model. Softw. 2017, 89, 40–60. [Google Scholar] [CrossRef] [Green Version]
- Rammer, W.; Seidl, R. Coupling human and natural systems: Simulating adaptive management agents in dynamically changing forest landscapes. Glob. Environ. Chang. 2015, 35, 475–485. [Google Scholar] [CrossRef]
- Pouladi, P.; Afshar, A.; Afshar, M.H.; Molajou, A.; Farahmand, H. Agent-based socio-hydrological modeling for restoration of Urmia Lake: Application of theory of planned behavior. J. Hydrol. 2019, 576, 736–748. [Google Scholar] [CrossRef]
- Pouladi, P.; Afshar, A.; Molajou, A.; Afshar, M.H. Socio-hydrological framework for investigating farmers’ activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling. Hydrol. Sci. J. 2020, 65, 1249–1261. [Google Scholar] [CrossRef]
- Aghaie, V.; Alizadeh, H.; Afshar, A. Agent-Based hydro-economic modelling for analysis of groundwater-based irrigation Water Market mechanisms. Agric. Water Manag. 2020, 234, 106140. [Google Scholar] [CrossRef]
- Savenije, H.H.; Van der Zaag, P. Integrated water resources management: Concepts and issues. Phys. Chem. Earthparts A/B/C 2008, 33, 290–297. [Google Scholar] [CrossRef]
- Brown, C.M.; Lund, J.R.; Cai, X.; Reed, P.M.; Zagona, E.A.; Ostfeld, A.; Hall, J.; Characklis, G.W.; Yu, W.; Brekke, L. The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resour. Res. 2015, 51, 6110–6124. [Google Scholar] [CrossRef]
- Castro, J.E. Water governance in the twentieth-first century. Ambiente Soc. 2007, 10, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.R.; Bergtold, J.S.; Heier Stamm, J.L.; Caldas, M.M.; Ramsey, S.M. Bringing the “social” into sociohydrology: Conservation policy support in the C entral G reat P lains of K ansas, USA. Water Resour. Res. 2017, 53, 6725–6743. [Google Scholar] [CrossRef]
- Mayer, R.E.; Reischer, G.H.; Ixenmaier, S.K.; Derx, J.; Blaschke, A.P.; Ebdon, J.E.; Linke, R.; Egle, L.; Ahmed, W.; Blanch, A.R. Global distribution of human-associated fecal genetic markers in reference samples from six continents. Environ. Sci. Technol. 2018, 52, 5076–5084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingemans, M.M.; Baken, K.A.; van der Oost, R.; Schriks, M.; van Wezel, A.P. Risk-based approach in the revised European Union drinking water legislation: Opportunities for bioanalytical tools. Integr. Environ. Assess. Manag. 2019, 15, 126–134. [Google Scholar] [CrossRef]
- Cudennec, C.; Liu, J.; Qi, J.; Yang, H.; Zheng, C.; Gain, A.K.; Lawford, R.; de Strasser, L.; Yillia, P. Epistemological dimensions of the water–energy–food nexus approach: Reply to discussions of “Challenges in operationalizing the water–energy–food nexus”. Hydrol. Sci. J. 2018, 63, 1868–1871. [Google Scholar] [CrossRef]
- Metz, F.; Glaus, A. Integrated water resources management and policy integration: Lessons from 169 years of flood policies in Switzerland. Water 2019, 11, 1173. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.K. Integrated water resources management: Is it working? Int. J. Water Resour. Dev. 2008, 24, 5–22. [Google Scholar] [CrossRef]
- Loucks, D.P.; Van Beek, E. Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications. Available online: https://link.springer.com/book/10.1007%2F978-3-319-44234-1 (accessed on 12 June 2020).
- Davies, E.G.; Simonovic, S.P. ANEMI: A new model for integrated assessment of global change. Interdiscip. Environ. Rev. 2010, 11, 127–161. [Google Scholar] [CrossRef]
- Van der Ent, R.J.; Savenije, H.H.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Haimes, Y.Y. Modeling and Managing Interdependent Complex Systems of Systems; John Wiley & Sons: New York, NY, USA, 2018. [Google Scholar]
- Luo, X.; Li, J.; Zhu, S.; Xu, Z.; Huo, Z. Estimating the Impacts of Urbanization in the Next 100 years on Spatial Hydrological Response. Water Resour. Manag. 2020, 1–20. [Google Scholar] [CrossRef]
- Loucks, D.P. Model Complexity—What Is the Right Amount? Integration and Implementation Insights. Available online: https://i2insights.org/2016/11/03/model-complexity/ (accessed on 12 June 2020).
- Burger, M.; Caffarelli, L.; Markowich, P.A. Partial Differential Equation Models in the Socio-Economic Sciences; The Royal Society Publishing: London, U.K, 2014. [Google Scholar]
- Mousavi, S.J.; Shourian, M. Adaptive sequentially space-filling metamodeling applied in optimal water quantity allocation at basin scale. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Kamali, M.; Ponnambalam, K.; Soulis, E. Comparison of several heuristic approaches to calibration of WATCLASS hydrologic model. Can. Water Resour. J. 2013, 38, 40–46. [Google Scholar] [CrossRef]
- Mirfenderesgi, G.; Mousavi, S.J. Adaptive meta-modeling-based simulation optimization in basin-scale optimum water allocation: A comparative analysis of meta-models. J. Hydroinform. 2016, 18, 446–465. [Google Scholar] [CrossRef]
- Nassar, L.; Okwuchi, I.; Saad, M.; Karray, F.; Ponnambalam, K.; Agrawal, P. Prediction of Strawberry Yield and Farm Price Utilizing Deep Learning. Proceddings of the IEEE World Congress in Computational Intelligence, Glagow, UK, 19–24 July 2020. [Google Scholar]
- Zagona, E.A.; Fulp, T.J.; Shane, R.; Magee, T.; Goranflo, H.M. Riverware: A generalized tool for complex reservoir system modeling 1. J. Am. Water Resour. Assoc. 2001, 37, 913–929. [Google Scholar] [CrossRef]
- Water, D. Environment. In MIKE BASIN: A Versaztile Decision Support Tool for Integrated Water Resources Management and Planning; DHI: Hørshelm, Denmark, 2006. [Google Scholar]
- Triana, E.; Labadie, J.W. GIS-based decision support system for improved operations and efficiency conservation in large-scale irrigation systems. J. Irrig. Drain. Eng. 2012, 138, 857–867. [Google Scholar] [CrossRef]
- Sieber, J.; Purkey, D. WEAP (Water Evaluation and Planning System), User Guide; Stockholm Environment Institute (SEI): Stockholm, Sweden, 2016; p. 392. [Google Scholar]
- Harvey, L.D. Upscaling in global change research. Clim. Chang. 2000, 44, 225–263. [Google Scholar] [CrossRef]
- Garcia Hernandez, J.A.; Ponnambalam, K. Developing Novel Relations between Differential Equations and Agent-Based Models. In Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, Toronto, ON, Canada, 11–14 October 2020. [Google Scholar]
- Najafi, M.R.; Moradkhani, H.; Wherry, S.A. Statistical downscaling of precipitation using machine learning with optimal predictor selection. J. Hydrol. Eng. 2011, 16, 650–664. [Google Scholar] [CrossRef]
- Gaur, A.; Simonovic, S.P. Introduction to physical scaling: A model aimed to bridge the gap between statistical and dynamic downscaling approaches. In Trends and Changes in Hydroclimatic Variables; Elsevier: Rotterdam, The Netherlands, 2019; pp. 199–273. [Google Scholar]
- Mianabadi, A.; Coenders-Gerrits, M.; Shirazi, P.; Ghahraman, B.; Alizadeh, A. A simple global Budyko model to partition evaporation into interception and transpiration. Hydrol. Earth Syst. Sci. Discuss. 2017, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Roy, T.; Martinez, J.A.; Herrera-Estrada, J.E.; Zhang, Y.; Dominguez, F.; Berg, A.; Ek, M.; Wood, E.F. Role of moisture transport and recycling in characterizing droughts: Perspectives from two recent US droughts and the CFSv2 system. J. Hydrometeorol. 2019, 20, 139–154. [Google Scholar] [CrossRef]
- Directive, W.F. Common Implementation Strategy for the Water Framework Directive (2000/60/EC) Guidance Document No 11 Planning Process; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Pellegrini, E.; Bortolini, L.; Defrancesco, E. Coordination and Participation Boards under the European Water Framework Directive: Different approaches used in some EU countries. Water 2019, 11, 833. [Google Scholar] [CrossRef] [Green Version]
- International Law Association. Helsinki Rules on the Uses of the Waters of International Rivers. 1966. Available online: https://www.internationalwaterlaw.org/documents/intldocs/ILA/ILA-HelsinkiRules1966-as_amended.pdf (accessed on 12 June 2020).
- Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1988. Available online: https://en.wikipedia.org/wiki/Kyoto_Protocol (accessed on 12 June 2020).
- Nations, U. The Future We Want: Outcome Document Adopted at Rio+ 20; United Nations: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Loucks, D.P. Moving from Models that Synthesize to Models That Innovate, Integration and Implementation Insights. 2016. Available online: https://i2insights.org/2016/03/24/models-that-innovate/ (accessed on 12 June 2020).
- Re, V.; Misstear, B. Education and Capacity Development for Groundwater Resources Management. In Advances in Groundwater Governance; CRC Press/Taylor & Francis: London, UK, 2018; pp. 212–229, Chapter 11. [Google Scholar]
- Fraser, C.; McIntyre, N.; Jackson, B.; Wheater, H. Upscaling hydrological processes and land management change impacts using a metamodeling procedure. Water Resour. Res. 2013, 49, 5817–5833. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.-M.; Pachepsky, Y.A.; Whelan, G.; Nicholson, T. Simpler models in environmental studies and predictions. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1669–1712. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponnambalam, K.; Mousavi, S.J. CHNS Modeling for Study and Management of Human–Water Interactions at Multiple Scales. Water 2020, 12, 1699. https://doi.org/10.3390/w12061699
Ponnambalam K, Mousavi SJ. CHNS Modeling for Study and Management of Human–Water Interactions at Multiple Scales. Water. 2020; 12(6):1699. https://doi.org/10.3390/w12061699
Chicago/Turabian StylePonnambalam, Kumaraswamy, and S. Jamshid Mousavi. 2020. "CHNS Modeling for Study and Management of Human–Water Interactions at Multiple Scales" Water 12, no. 6: 1699. https://doi.org/10.3390/w12061699