# Experimental Investigation of Erosion Characteristics of Fine-Grained Cohesive Sediments

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Material and Methods

#### 2.1. Rotating Annular Flume

#### 2.2. Methodology of Krone

^{2}s, h is the depth of water in the flume in metres and $dC/dt$ is the concentration gradient which can be evaluated from Equation (1). Substituting the expression of $dC/dt$ in Equation (3), the erosion rate function can be derived as:

#### 2.3. Mathematical Model of Cohesive Sediment Transport Developed by Krishnappan

#### 2.3.1. Settling Stage

#### 2.3.2. Flocculation Stage

## 3. Results and Discussion

_{0}and c

_{1}, have different values for each shear stress step and age of deposit (Table 1). The variability of these coefficients with each shear stress and age of deposit is shown in Figure 7 which shows that these coefficients vary as a function of both shear stress and age of the deposit.

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Horowitz, A.J.; Elrick, K.A. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl. Geochem.
**1987**, 2, 437–451. [Google Scholar] [CrossRef] - Luoma, S.N.; Rainbow, P.S. Metal Contamination in Aquatic Environments: Science and Lateral Management; Cambridge University Press: Cambridge, UK, 2008; 573p. [Google Scholar]
- Grabowski, R.C.; Droppo, I.C.; Wharton, G. Erodibility of cohesive sediment: The importance of sediment properties. Earth Sci. Rev.
**2011**, 105, 101–120. [Google Scholar] [CrossRef] - Amos, C.L.; Li, M.Z.; Sutherland, T.F. The contribution of ballistic momentum flux to the erosion of cohesive beds by flowing water. J. Coast. Res.
**1998**, 14, 564–569. [Google Scholar] - Lick, W.; McNeil, J. Effects of sediment bulk properties on erosion rates. Sci. Total Environ.
**2001**, 266, 41–48. [Google Scholar] [CrossRef] - Friend, P.L.; Ciavola, P.; Cappucci, S.; Santos, R. Bio-dependent bed parameters as a proxy tool for sediment stability in mixed habitat intertidal areas. Cont. Shelf Res.
**2003**, 23, 1899–1917. [Google Scholar] [CrossRef] - Lau, Y.L.; Droppo, I.G.; Krishnappan, B.G. Sequential erosion/deposition experiments demonstrating the effects of depositional history on sediment erosion. Water Res.
**2001**, 35, 2767–2773. [Google Scholar] [CrossRef] - Roberts, J.; Jepsen, R.; Gotthard, D.; Lick, W. Effects of particle size and bulk density on erosion of quartz particles. J. Hydraul. Eng. ASCE
**1998**, 124, 1261–1267. [Google Scholar] [CrossRef] - Zreik, D.A.; Krishnappan, B.G.; Germaine, J.T.; Masden, O.S.; Ladd, C.C. Erosional and mechanical strengths of deposited cohesive sediments. J. Hydraul. Eng. ASCE
**1998**, 124, 1076–1085. [Google Scholar] [CrossRef] - Krone, R.B. Effects of bed structure on erosion of cohesive sediments. J. Hydraul. Eng. ASCE
**1999**, 125, 1297–1301. [Google Scholar] [CrossRef] - Lambert, C.P.; Walling, D.E. Measurement of channel storage of suspended sediment in a gravel-bed river. Catena
**1988**, 15, 65–80. [Google Scholar] [CrossRef] - Duerdoth, C.P.; Arnold, A.; Murphy, J.F.; Naden, P.S.; Scarlett, P.; Collins, A.L.; Sear, D.A.; Jones, J.I. Assessment of a rapid method for quantitative reach-scale estimates of deposited fine sediment in rivers. Geomorphology
**2015**, 230, 37–50. [Google Scholar] [CrossRef] - Naden, P.S.; Murphy, J.S.; Old, G.H.; Newman, J.; Scarlett, P.; Harman, M.; Duerdoth, C.P.; Hawczak, A.; Pretty, J.L.; Arnold, A.; et al. Understanding the controls on deposited fine sediment in the streams of agricultural catchments. Sci. Total Environ.
**2016**, 347, 366–381. [Google Scholar] [CrossRef] [Green Version] - Krishnappan, B.G. Recent Advances in basic and applied research in cohesive sediment transport in aquatic systems. Can. J. Civ. Eng.
**2007**, 34, 731–743. [Google Scholar] [CrossRef] - Petersen, O.; Krishnappan, B.G. Measurement and analysis of flow characteristics in a circular flume. J. Hydraul. Res. IAHR
**1994**, 32, 483–494. [Google Scholar] [CrossRef] - Rosten, H.I.; Spalding, D.B. The PHOENICS Reference Manual; TR/200; CHAM Ltd.: Wimbledon, London, UK, 1984. [Google Scholar]
- Krishnappan, B.G.; Engel, P. Distribution of bed shear stress in Rotating Circular Flume. J. Hydraul. Eng.
**2004**, 130, 324–331. [Google Scholar] [CrossRef] - Krishnappan, B.G. Rotating Circular Flume. J. Hydraul. Eng. ASCE
**1993**, 119, 758–767. [Google Scholar] [CrossRef] - Partheniades, E. A Study of Erosion and Deposition of Cohesive Soils in Salt Water. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1962. [Google Scholar]
- Mehta, A.J.; Partheniades, E. An investigation of the depositional properties of flocculated fine sediments. J. Hydraul. Res. IAHR
**1975**, 13, 361–381. [Google Scholar] [CrossRef] - Parchure, T.M. Erosional Behaviour of Deposited Cohesive Sediments. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1984. [Google Scholar]
- Lick, W. Entrainment, deposition and transport of fine grained sediments in Lakes. Hydrobiologia
**1982**, 91, 31–40. [Google Scholar] [CrossRef] - Krishnappan, B.G. Erosion behaviour of fine sediment deposits. Can. J. Civ. Eng.
**2004**, 31, 759–766. [Google Scholar] [CrossRef] - Krone, R.B. Flume Studies of the Transport of Sediments in Estuarial Shoaling Processes; Report; Hydr. Engr. Lab. and Sanitary Engr. Lab. University of California: Berkeley, CA, USA, 1962. [Google Scholar]
- Fuchs, N.A. The Mechanics of Aerosols; Pergamon: New York, NY, USA, 1964; 408p. [Google Scholar]
- Lau, Y.L.; Krishnappan, B.G. Measurement of Size Distribution of Settling Flocs; Report No. 97–223; National Water Research Institute; Environment Canada; CCIW: Burlington, ON, Canada, 1997. [Google Scholar]
- Valioulis, I.A.; List, E.J. Numerical simulation of a sedimentation basin. 1 Model development. Environ. Sci. Technol.
**1984**, 18, 242–247. [Google Scholar] [CrossRef] - Tambo, N.; Watanabe, Y. Physical aspects of flocculation processes—I Fundamental Treatise. Water Res.
**1979**, 13, 429–439. [Google Scholar] [CrossRef] - Stone, M.; Krishnappan, B.G.; Emelko, M. The effect of bed age and shear stress on the particle morphology of eroded cohesive sediment in an annular flume. Water Res.
**2008**, 42, 4179–4187. [Google Scholar] [CrossRef]

**Figure 1.**Map of the upper River Taw study catchment, showing location in south west England, channel bed cohesive sediment sampling locations and flow gauging stations.

**Figure 3.**Size distribution of eroded sediment at the shear stress step of 0.33 Pa and age of deposit equal to 160 h.

**Figure 4.**A photomicrograph of the eroded sediment for shear stress step of 0.33 Pa and age of deposit equal to 160 h.

**Figure 5.**Comparison between measured and fitted sediment concentrations using Equation (1) for shear stress step: 0.17 Pa; Age of deposit: 38 h (r

^{2}= 0.993).

**Figure 7.**The variability of the fitting constants as a function of shear stress and age of deposit (

**a**): 22 h; (

**b**): 38 h and (

**c**): 160 h.

Shear Stress Steps | Age of Deposit 22 h | Age of Deposit 38 h | Age of Deposit 160 h | |||
---|---|---|---|---|---|---|

${\mathit{c}}_{0}\text{}({\mathbf{m}}^{3}/\mathbf{gm})$ | ${\mathit{c}}_{1\text{}}({\mathbf{m}}^{3}\mathbf{sec}/\mathbf{gm})$ | ${\mathit{c}}_{0}\text{}({\mathbf{m}}^{3}/\mathbf{gm})$ | ${\mathit{c}}_{1\text{}}({\mathbf{m}}^{3}\mathbf{sec}/\mathbf{gm})$ | ${\mathit{c}}_{0}\text{}({\mathbf{m}}^{3}/\mathbf{gm})$ | ${\mathit{c}}_{1}\text{}({\mathbf{m}}^{3}\mathbf{sec}/\mathbf{gm})$ | |

0.09 Pa | 4.2 × 10^{−3} | 0.57 | 4.6 × 10^{−3} | 0.88 | 7.1 × 10^{−3} | 3.65 |

0.12 Pa | 1.7 × 10^{−3} | 0.15 | 2.1 × 10^{−3} | 0.57 | 3.2 × 10^{−3} | 1.95 |

0.17 Pa | 1.3 × 10^{−3} | 0.07 | 1.0 × 10^{−3} | 0.24 | 2.5 × 10^{−3} | 1.43 |

0.21 Pa | 5.1 × 10^{−3} | 0.87 | 4.4 × 10^{−3} | 0.18 | 1.0 × 10^{−3} | 0.14 |

0.27 Pa | 5.5 × 10^{−3} | 2.22 | 5.4 × 10^{−3} | 3.08 | 4.6 × 10^{−3} | 0.35 |

0.33 Pa | 4.0 × 10^{−3} | 2.03 | 4.4 × 10^{−3} | 3.05 | 6.6 × 10^{−3} | 8.57 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gounder Krishnappan, B.; Stone, M.; Granger, S.J.; Upadhayay, H.R.; Tang, Q.; Zhang, Y.; Collins, A.L.
Experimental Investigation of Erosion Characteristics of Fine-Grained Cohesive Sediments. *Water* **2020**, *12*, 1511.
https://doi.org/10.3390/w12051511

**AMA Style**

Gounder Krishnappan B, Stone M, Granger SJ, Upadhayay HR, Tang Q, Zhang Y, Collins AL.
Experimental Investigation of Erosion Characteristics of Fine-Grained Cohesive Sediments. *Water*. 2020; 12(5):1511.
https://doi.org/10.3390/w12051511

**Chicago/Turabian Style**

Gounder Krishnappan, Bommanna, Mike Stone, Steven J. Granger, Hari Ram Upadhayay, Qiang Tang, Yusheng Zhang, and Adrian L. Collins.
2020. "Experimental Investigation of Erosion Characteristics of Fine-Grained Cohesive Sediments" *Water* 12, no. 5: 1511.
https://doi.org/10.3390/w12051511