The First Video Witness of Coastal Boulder Displacements Recorded during the Impact of Medicane “Zorbas” on Southeastern Sicily
Abstract
:1. Introduction
2. Geological Settings
3. Material and Methods
3.1. UAV Data and GIS Analyses
3.2. Boulders Survey
3.3. Video Editing
3.4. Hydrodynamic Models
- u is the flow velocity needed to start the boulder movement;
- is the density of the boulder;
- is the density of the water (equal to 1025 kg/m3);
- is the gravity acceleration;
- is the coefficient of static friction;
- is the angle of the bed slope at the pre-transport location in degrees;
- is the drag coefficient (equal to 1.5);
- are the axis of the boulder, with the convention a > b > c;
- is the lift coefficient (equal to 0.178).
4. Results
5. Discussions
6. Conclusions
- (1)
- Boulder displacements occur mainly in submerged scenario, as consequence of flooding generated by the impact of a series of waves. Although some hydrodynamic models equal the flow velocity necessary to move a boulder in sub-aerial and submerged scenario, our evidence suggest they should probably be described with different specific equations.
- (2)
- Movements occur for the impact of multiple small waves rather than of a singular big one; in any case, the possibility that a singular big wave could displace a boulder is not excluded at all, but it is probably more attributable to tsunami events. Multiple waves generate a continuous flow that nullifies friction forces, triggering the boulder displacements. Modelling through the Engel and May [36] approach results in wave height values (11.56 m) much higher than those recorded by satellite data in off-shore (Hs of about 4.1 m) and by video analysis on the shore platform (0.22–1.3 m). This confirms that single impact models provide values of wave heights strongly overestimated, respect to the natural process.
- (3)
- Analyses performed for five displacements, in particular, let us compare values of flow velocity estimated from videos with those calculated through Nandasena et al. [32] model for the same boulders. Comparison shows a strong overestimation of the model, enforcing the thesis that sub-aerial and submerged scenarios have to be treated with different equations and suggesting that the values of flow density and lift coefficient used in literature are underestimated. For the case of the boulders movements occurred in the Maddalena Peninsula, we estimated a value of flow density of about 1140 kg/m3, according to Terry and Malik [77] and a different value of lift coefficient according to Rovere et al. [37] and Cox et al. [34].
- (4)
- Considerations on a big boulder not displaced by the impact of the storm in 2009 or by the impact of the two medicanes—Qendresa (2014) and Zorbas (2018)—suggest that a tsunami could be reasonably responsible for the deposition of the boulders [15,16]. This seems to confirm that, although some authors considered overestimated the number of tsunami reconstructed for Mediterranean Sea [25], it is possible to define field evidence and methodological analyses to discern tsunami and storm events [26].
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ernst, J.A.; Matson, M. A Mediterranean Tropical Storm? Weather 1983, 38, 332–337. [Google Scholar] [CrossRef]
- Reale, O.; Atlas, R. Tropical Cyclone—Like Vortices in the Extratropics: Observational Evidence and Synoptic Analysis. Weather Forecast. 2001, 16, 7–34. [Google Scholar] [CrossRef]
- Jansà, A. Miniciclons a la Mediterrània. IX Jornades Meteorol. Eduard Fontserè Assoc. Catalana Meteorol. (ACAM) Barc. 2003, 9, 75–85. [Google Scholar]
- Fita, L.; Romero, R.; Luque, A.; Emanuel, K.; Ramis, C. Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat. Hazards Earth Syst. Sci. 2007, 7, 41–56. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Laviola, S.; Malvaldi, A.; Conte, D.; Levizzani, V.; Price, C. Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach. Geophys. Res. Lett. 2013, 40, 2400–2405. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. Mediterranean Tropical-Like Cyclones in Present and Future Climate. J. Clim. 2014, 27, 7493–7501. [Google Scholar] [CrossRef] [Green Version]
- Nastos, P.T.; Karavana-Papadimou, K.; Matsangouras, I.T. Tropical-like cyclones in the Mediterranean: Impacts and composite daily means and anomalies of synoptic conditions. In Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3–5 September 2015. [Google Scholar]
- Cioni, G.; Malguzzi, P.; Buzzi, A. Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone. Q. J. R. Meteorol. Soc. 2016, 142, 1757–1766. [Google Scholar] [CrossRef]
- Moscatello, A.; Miglietta, M.M.; Rotunno, R. Observational analysis of a Mediterranean “hurricane” over south-eastern Italy. Weather 2008, 63, 306–311. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Craig, G.C.; Ballard, S.P. The hurricane-like Mediterranean cyclone of January 1995. Meteorol. Appl. 2000, 7, 261–279. [Google Scholar] [CrossRef]
- Bakkensen, L.A. Mediterranean Hurricanes and Associated Damage Estimates. J. Extrem. Events 2017, 4, 1750008. [Google Scholar] [CrossRef]
- Lionello, P.; Giorgi, F. Winter precipitation and cyclones in the Mediterranean region: Future climate scenarios in a regional simulation. Adv. Geosci. 2007, 12, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Conte, D.; Marzo, L.; Scarascia, L. The contrasting effect of increasing mean sea level and decreasing storminess on the maximum water level during storms along the coast of the Mediterranean Sea in the mid 21st century. Glob. Planet. Chang. 2017, 151, 80–91. [Google Scholar] [CrossRef]
- Portmann, R.; González-Alemán, J.J.; Sprenger, M.; Wernli, H. Medicane Zorbas: Origin and impact of an uncertain potential vorticity streamer. Weather Clim. Dyn. Discuss. 2019, 2019, 1–30. [Google Scholar]
- Scicchitano, G.; Monaco, C.; Tortorici, L. Large boulder deposits by tsunami waves along the Ionian coast of south-eastern Sicily (Italy). Mar. Geol. 2007, 238, 75–91. [Google Scholar] [CrossRef]
- Scicchitano, G.; Pignatelli, C.; Spampinato, C.R.; Piscitelli, A.; Milella, M.; Monaco, C.; Mastronuzzi, G. Terrestrial Laser Scanner techniques in the assessment of tsunami impact on the Maddalena peninsula (south-eastern Sicily, Italy). Earthplanets Space 2012, 64, 889–903. [Google Scholar] [CrossRef] [Green Version]
- Vacchi, M.; Rovere, A.; Zouros, N.; Firpo, M. Assessing enigmatic boulder deposits in NE Aegean Sea: Importance of historical sources as tool to support hydrodynamic equations. Nat. Hazards Earth Syst. Sci. 2012, 12, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Shah-Hosseini, M.; Morhange, C.; De Marco, A.; Wante, J.; Anthony, E.J.; Sabatier, F.; Mastronuzzi, G.; Pignatelli, C.; Piscitelli, A. Coastal boulders in Martigues, French Mediterranean: Evidence for extreme storm waves during the Little Ice Age. Z. Geomorphol. 2013, 57, 181–199. [Google Scholar] [CrossRef]
- Biolchi, S.; Furlani, S.; Antonioli, F.; Baldassini, N.; Causon Deguara, J.; Devoto, S.; Di Stefano, A.; Evans, J.; Gambin, T.; Gauci, R.; et al. Boulder accumulations related to extreme wave events on the eastern coast of Malta. Nat. Hazards Earth Syst. Sci. 2016, 16, 737–756. [Google Scholar] [CrossRef] [Green Version]
- Biolchi, S.; Furlani, S.; Devoto, S.; Scicchitano, G.; Korbar, T.; Vilibic, I.; Sepic, J. The origin and dynamics of coastal boulders in a semi-enclosed shallow basin: A northern Adriatic case study. Mar. Geol. 2019, 411, 62–77. [Google Scholar] [CrossRef]
- Biolchi, S.; Denamiel, C.; Devoto, S.; Korbar, T.; Macovaz, V.; Scicchitano, G.; Vilibić, I.; Furlani, S. Impact of the October 2018 Storm Vaia on Coastal Boulders in the Northern Adriatic Sea. Water 2019, 11, 2229. [Google Scholar] [CrossRef] [Green Version]
- Piscitelli, A.; Milella, M.; Hippolyte, J.-C.; Shah-Hosseini, M.; Morhange, C.; Mastronuzzi, G. Numerical approach to the study of coastal boulders: The case of Martigues, Marseille, France. Quat. Int. 2017, 439, 52–64. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Sansò, P. Large boulder accumulations by extreme waves along the Adriatic coast of southern Apulia (Italy). Quat. Int. 2004, 120, 173–184. [Google Scholar] [CrossRef]
- Barbano, M.S.; Pirrotta, C.; Gerardi, F. Large boulders along the south-eastern Ionian coast of Sicily: Storm or tsunami deposits? Mar. Geol. 2010, 275, 140–154. [Google Scholar] [CrossRef]
- Marriner, N.; Kaniewski, D.; Morhange, C.; Flaux, C.; Giaime, M.; Vacchi, M.; Goff, J. Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean. Sci. Adv. 2017, 3, e1700485. [Google Scholar] [CrossRef] [Green Version]
- Vött, A.; Bruins, H.J.; Gawehn, M.; Goodman-Tchernov, B.N.; De Martini, P.M.; Kelletat, D.; Mastronuzzi, G.; Reicherter, K.; Röbke, B.R.; Scheffers, A.; et al. Publicity waves based on manipulated geoscientific data suggesting climatic trigger for majority of tsunami findings in the mediterranean—Response to ‘tsunamis in the geological record: Making waves with a cautionary tale from the mediterranean’ by marriner et al. (2017). Z. Geomorphol. 2019, 62, 7–45. [Google Scholar]
- Mastronuzzi, G.; Pignatelli, C.; Sansò, P. Boulder fields: A valuable morphological indicator of palaeotsunami in the Mediterranean sea. Z. Geomorphol. NF 2006, 146, 173–194. [Google Scholar]
- Nott, J. Tsunami or Storm Waves? Determining the Origin of a Spectacular Field of Wave Emplaced Boulders Using Numerical Storm Surge and Wave Models and Hydrodynamic Transport Equations. J. Coast. Res. 2003, 19, 348–356. [Google Scholar]
- Nott, J. Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth Planet. Sci. Lett. 2003, 210, 269–276. [Google Scholar] [CrossRef]
- Pignatelli, C.; Sansò, P.; Mastronuzzi, G. Evaluation of tsunami flooding using geomorphologic evidence. Mar. Geol. 2009, 260, 6–18. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Paris, R.; Tanaka, N. Numerical assessment of boulder transport by the 2004 Indian ocean tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Comput. Geosci. 2011, 37, 1391–1399. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Paris, R.; Tanaka, N. Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol. 2011, 281, 70–84. [Google Scholar] [CrossRef]
- Milella, M.; Scardino, G.; Piscitelli, A.; De Giosa, F.; Locuratolo, G.; Barracane, G. Experimental determination of the friction coefficient for estimating sea storm induced megaboulders movements. Alp. Mediterr. Quat. 2018, 31, 27–30. [Google Scholar]
- Cox, R.; Ardhuin, F.; Dias, F.; Autret, R.; Beisiegel, N.; Earlie, C.S.; Herterich, J.G.; Kennedy, A.; Paris, R.; Raby, A.; et al. Systematic Review Shows That Work Done by Storm Waves Can Be Misinterpreted as Tsunami-Related Because Commonly Used Hydrodynamic Equations Are Flawed. Front. Mar. Sci. 2020, 7, 7. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Pignatelli, C. The boulder berm of Punta Saguerra (Taranto, Italy): A morphological imprint of the Rossano Calabro tsunami of April 24, 1836? Earthplanets Space 2012, 64, 829–842. [Google Scholar] [CrossRef] [Green Version]
- Engel, M.; May, S.M. Bonaire’s boulder fields revisited: Evidence for Holocene tsunami impact on the Leeward Antilles. Quat. Sci. Rev. 2012, 54, 126–141. [Google Scholar] [CrossRef]
- Rovere, A.; Casella, E.; Harris, D.L.; Lorscheid, T.; Nandasena, N.A.K.; Dyer, B.; Sandstrom, M.R.; Stocchi, P.; D’Andrea, W.J.; Raymo, M.E. Giant boulders and Last Interglacial storm intensity in the North Atlantic. Proc. Natl. Acad. Sci. USA 2017, 114, 12144–12149. [Google Scholar] [CrossRef] [Green Version]
- Grasso, M.; Lentini, F. Sedimentary and tectonic evolution of the eastern Hyblean Plateau (southeastern Sicily) during late Cretaceous to Quaternary time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982, 39, 261–280. [Google Scholar] [CrossRef]
- Cultrera, F.; Barreca, G.; Scarfì, L.; Monaco, C. Fault reactivation by stress pattern reorganization in the Hyblean foreland domain of SE Sicily (Italy) and seismotectonic implications. Tectonophysics 2015, 661, 215–228. [Google Scholar] [CrossRef]
- Bianca, M.; Monaco, C.; Tortorici, L.; Cernobori, L. Quaternary normal faulting in southeastern Sicily (Italy): A seismic source for the 1693 large earthquake. Geophys. J. Int. 1999, 139, 370–394. [Google Scholar] [CrossRef] [Green Version]
- Scandone, P.; Patacca, E.; Radoicic, R.; Ryan, W.B.F.; Cita, M.B.; Rawson, M.; Chezar, H.; Miller, E.; McKenzie, J.; Rossi, S. Mesozoic and Cenozoic Rocks from Malta Escarpment (Central Mediterranean). AAPG Bull. 1981, 65, 1299–1319. [Google Scholar]
- Makris, J.; Nicolich, R.; Weigel, W. A seismic study in the Western Ionian Sea. Ann. Geophys. 1986, 4, 665–678. [Google Scholar]
- Catalano, R.; Doglioni, C.; Merlini, S. On the Mesozoic Ionian Basin. Geophys. J. Int. 2001, 144, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Baratta, M. I Terremoti d’Italia: Saggio di Storia, Geografia e Bibliografia Sismica Italiana; Fratelli Bocca: Torino, Italy, 1901; p. 984. [Google Scholar]
- Postpischl, D.C. Catalogo dei Terremoti Italiani Dall’Anno 1000 al 1980; Postpischl, D., Ed.; Consiglio Nazionale Delle Ricerche, Progetto Finalizzato Geodinamica, Sottoprogetto Rischio Sismico e Ingegneria Sismica: Bologna, Italy, 1985; p. 239. [Google Scholar]
- Boschi, E.; Guidoboni, E.; Ferrari, G.; Valensise, G.; Gasperini, P. Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990; ING-SGA: Bologna, Italy, 1997; p. 644. [Google Scholar]
- Tinti, S.; Maramai, A.; Graziani, L. The New Catalogue of Italian Tsunamis. Nat. Hazards 2004, 33, 439–465. [Google Scholar] [CrossRef]
- Scicchitano, G.; Costa, B.; Di Stefano, A.; Longhitano, S.G.; Monaco, C. Tsunami and storm deposits preserved within a ria-type rocky coastal setting (Siracusa, SE Sicily). Z. Geomorphol. Suppl. Issues 2010, 54, 51–77. [Google Scholar] [CrossRef] [Green Version]
- Gerardi, F.; Smedile, A.; Pirrotta, C.; Barbano, M.S.; Martini, P.M.D.; Pinzi, S.; Gueli, A.M.; Ristuccia, G.M.; Stella, G.; Troja, S.O. Geological record of tsunami inundations in Pantano Morghella (south-eastern Sicily) both from near and far-field sources. Nat. Hazards Earth Syst. Sci. 2012, 12, 1185–1200. [Google Scholar] [CrossRef] [Green Version]
- Di Grande, A.; Raimondo, W. Linee di costa pliopleistoceniche e schema litostratigrafico del Quaternario siracusano. Geol. Romana 1982, 21, 279–309. [Google Scholar]
- Ferranti, L.; Antonioli, F.; Mauz, B.; Amorosi, A.; Dai Pra, G.; Mastronuzzi, G.; Monaco, C.; Orrù, P.; Pappalardo, M.; Radtke, U.; et al. Markers of the last interglacial sea-level high stand along the coast of Italy: Tectonic implications. Quat. Int. 2006, 145, 30–54. [Google Scholar] [CrossRef]
- Ferranti, L.; Antonioli, F.; Anzidei, M.; Monaco, C.; Stocchi, P. The timescale and spatial extent of vertical tectonic motions in Italy: Insights from relative sea-level changes studies. J. Virtual Explor. 2010, 36, 36. [Google Scholar] [CrossRef]
- Dutton, A.; Scicchitano, G.; Monaco, C.; Desmarchelier, J.M.; Antonioli, F.; Lambeck, K.; Esat, T.M.; Fifield, L.K.; McCulloch, M.T.; Mortimer, G. Uplift rates defined by U-series and 14C ages of serpulid-encrusted speleothems from submerged caves near Siracusa, Sicily (Italy). Quat. Geochronol. 2009, 4, 2–10. [Google Scholar] [CrossRef]
- Scicchitano, G.; Antonioli, F.; Berlinghieri, E.F.C.; Dutton, A.; Monaco, C. Submerged archaeological sites along the Ionian coast of southeastern Sicily (Italy) and implications for the Holocene relative sea-level change. Quat. Res. 2008, 70, 26–39. [Google Scholar] [CrossRef]
- Scicchitano, G.; Spampinato, C.R.; Antonioli, F.; Anzidei, M.; Presti, V.L.; Monaco, C. Comparing ancient quarries in stable and slowly uplifting coastal area located in Eastern Sicily, Italy. Geogr. Fis. Din. Quat. 2018, 41, 81–92. [Google Scholar]
- Scicchitano, G.; Berlinghieri, E.F.C.; Antonioli, F.; Spampinato, C.R.; Monaco, C. Sacred Landscapes and Changing Sea Levels: New Interdisciplinary Data from the Early Neolithic to the Present in South-Eastern Sicily. In Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf; Bailey, G.N., Harff, J., Sakellariou, D., Eds.; Coastal Research Library, Springer International Publishing: Cham, Switzerland, 2017; pp. 233–253. ISBN 978-3-319-53160-1. [Google Scholar]
- Spampinato, C.R.; Costa, B.; Di Stefano, A.; Monaco, C.G.; Scicchitano, G. The contribution of tectonics to relative sea-level change during the Holocene in south-eastern Sicily coastal area: New data from boreholes. Quat. Int. 2011, 232, 214–227. [Google Scholar] [CrossRef]
- Anzidei, M.; Scicchitano, G.; Tarascio, S.; de Guidi, G.; Monaco, C.; Barreca, G.; Mazza, G.; Serpelloni, E.; Vecchio, A. Coastal retreat and marine flooding scenario for 2100: A case study along the coast of Maddalena peninsula (southeastern Sicily). Geogr. Fis. Din. Quat. 2018, 41, 5–16. [Google Scholar]
- Le Cozannet, G.; Nicholls, R.J.; Hinkel, J.; Sweet, W.V.; McInnes, K.L.; Van de Wal, R.S.W.; Slangen, A.B.A.; Lowe, J.A.; White, K.D. Sea Level Change and Coastal Climate Services: The Way Forward. J. Mar. Sci. Eng. 2017, 5, 49. [Google Scholar] [CrossRef] [Green Version]
- IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtnerd, H.-O.; Robertsv, C.; Masson-Delmottep, V.; Zhaim, P.; Tignore, M.; Poloczanskak, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Okem, A.; et al. (Eds.) 2019; in press. [Google Scholar]
- Vecchio, A.; Anzidei, M.; Serpelloni, E.; Florindo, F. Natural Variability and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records over the Last Two Centuries and Projections for 2100. Water 2019, 11, 1480. [Google Scholar] [CrossRef] [Green Version]
- Smedile, A.; De Martini, P.M.; Pantosti, D.; Bellucci, L.; Del Carlo, P.; Gasperini, L.; Pirrotta, C.; Polonia, A.; Boschi, E. Possible tsunami signatures from an integrated study in the Augusta Bay offshore. Mar. Geol. 2011, 281, 1–13. [Google Scholar] [CrossRef]
- De Martini, P.M.; Barbano, M.S.; Smedile, A.; Gerardi, F.; Pantosti, D.; Del Carlo, P.; Pirrotta, C. A unique 4000 year long geological record of multiple tsunami inundations in the Augusta Bay (eastern Sicily, Italy). Mar. Geol. 2010, 276, 42–57. [Google Scholar] [CrossRef] [Green Version]
- De Martini, P.M.; Barbano, M.S.; Pantosti, D.; Smedile, A.; Pirrotta, C.; Del Carlo, P.; Pinzi, S. Geological evidence for paleotsunamis along eastern Sicily (Italy): An overview. Nat. Hazards Earth Syst. Sci. 2012, 12, 2569–2580. [Google Scholar] [CrossRef]
- Scardino, G.; Piscitelli, A.; Milella, M.; Sansò, P.; Mastronuzzi, G. Tsunami fingerprints along the Mediterranean coasts. Rend. Lincei 2020, 1–17. [Google Scholar] [CrossRef]
- Fago, P.; Pignatelli, C.; Piscitelli, A.; Milella, M.; Venerito, M.; Sansò, P.; Mastronuzzi, G. WebGIS for Italian tsunami: A useful tool for coastal planners. Mar. Geol. 2014, 355, 369–376. [Google Scholar] [CrossRef]
- Available online: www.idromare.com (accessed on 1 April 2015).
- Inglesi, R.; Corsini, S.; Guiducci, F.; Arseni, A. Statistical analysis of extreme waves on the Italian coasts from 1989 to 1999. Boll. Geofis. Teor. Appl. 2000, 41, 315–337. [Google Scholar]
- RON ISPRA. Available online: http://dati.isprambiente.it/dataset/ron-rete-ondametrica-nazionale/ (accessed on 4 May 2020).
- MSS: Aviso+. Available online: https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mss.html (accessed on 4 May 2020).
- RETE MAREOGRAFICA NAZIONALE—HOMEPAGE. Available online: https://mareografico.it/ (accessed on 4 April 2020).
- Tracker Video Analysis and Modeling Tool for Physics Education. Available online: https://physlets.org/tracker/ (accessed on 4 May 2020).
- Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P.; Casella, M.; Ferrari, M.; Firpo, M. Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Mar. Lett. 2016, 36, 151–163. [Google Scholar] [CrossRef]
- Pepe, F.; Corradino, M.; Parrino, N.; Besio, G.; Presti, V.L.; Renda, P.; Calcagnile, L.; Quarta, G.; Sulli, A.; Antonioli, F. Boulder coastal deposits at Favignana Island rocky coast (Sicily, Italy): Litho-structural and hydrodynamic control. Geomorphology 2018, 303, 191–209. [Google Scholar] [CrossRef]
- Imamura, F.; Goto, K.; Ohkubo, S. A numerical model for the transport of a boulder by tsunami. J. Geophys. Res. Ocean. 2008, 113, 113. [Google Scholar] [CrossRef]
- Terry, J.P.; Malik, S.A. Reconsidering the seawater-density parameter in hydrodynamic flow transport equations for coastal boulders. New Zealand J. Geol. Geophys. 2020, 1–8. [Google Scholar] [CrossRef]
- Marcos, M.; Jordà, G.; Gomis, D.; Pérez, B. Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob. Planet. Chang. 2011, 77, 116–128. [Google Scholar] [CrossRef]
ID | Volume (m3) | Density (kg/m3) | Masses (kg) | a-Axis (m) | b-Axis (m) | c-Axis (m) | a-Axis Direction |
---|---|---|---|---|---|---|---|
BN | 0.367 | 2080 | 763.36 | 1.8 | 0.95 | 0.3 | N110E |
B2 | 0.705 | 2080 | 1466.4 | 1.5 | 1.17 | 0.42 | N120E |
B3 | 0.828 | 2040 | 1689.12 | 1.9 | 0.96 | 0.45 | N210E |
B4 | 0.569 | 2070 | 1177.83 | 1.57 | 0.97 | 0.4 | N190E |
D | 2.283 | 2040 | 4657.32 | 2.4 | 1.95 | 1 | |
F | 1.461 | 2040 | 2980.44 | 2.1 | 1.9 | 0.6 | N354E |
H | 3.377 | 2040 | 6889.08 | 2.6 | 2.4 | 0.9 | |
L | 0.89 | 2040 | 1815.6 | 2.5 | 1.6 | 0.5 | N338E |
N | 4.031 | 2040 | 8223.24 | 3.2 | 2.2 | 1.15 | N281E |
J | 3.367 | 2040 | 6868.68 | 2.2 | 2.1 | 1.25 | |
X | 1.61 | 2040 | 3284.4 | 2.2 | 1.95 | 0.7 | |
K | 18.782 | 2200 | 41320.4 | 5.8 | 5.18 | 1.3 | N159E |
No. | Video Time Frame | Boulder | Movement Dynamics | Found in Field | Flow u (m/s) |
---|---|---|---|---|---|
1 | 14:21:37.221–14:21:50.945 | B1 | Sliding | NO | |
2 | 14:29:32.769–14:29:44.885 | B1 | Sliding/overturning | NO | 2.012 |
3 | 14:31:08.964–14:31:13.264 | B1 | Overturning | NO | 1.71 |
4 | 14:33:11.857–14:33:16.157 | B1 | Saltation | NO | 1.29 |
5 | 14:35:32.948–14:35:36.648 | B1_F | Overturning | NO | 1.588 |
6 | 14:41:13.447–14:41:15.147 | B1 | Overturning | NO | 2.113 |
7 | 15:01:18.471 | B1 | Saltation | NO | |
8 | 15:02:17.148–15:02:18.948 | B2 | Overturning | NO | 2.101 |
9 | 15:14:57.718-15:15:04.118 | B2 | Overturning | NO | 1.687 |
10 | 15:51:53.464 | B1_F | Saltation | NO | 1.783 |
11 | 15:52:46.083 | B2 | Saltation | YES | 2.101 |
12 | 15:57:57.546–15:58:02.145 | B3 | Sliding | YES | |
13 | 15:59:05.542–15:59:07.342 | B3 | Sliding | YES | 2.58 |
14 | 15:59:16.666 | B3 | Sliding | YES | |
15 | 16:05:17.440–16:05:24.040 | B3 | Overturning | YES | 1.663 |
16 | 16:08:04.024–16:08:34.941 | B3 | Overturning/Sliding | YES | 2.331 |
17 | 16:16:17.351–16:16:23.504 | B3 | Overturning | YES | 1.305 |
18 | 16:16:57.984–16:17:05.536 | BN | Overturning | YES | 1.981 |
19 | 16:18:08.880–16:18:13.080 | B3 | Overturning/Sliding | YES | |
20 | 16:26:28.971 | B3 | Overturning/Sliding | YES | |
21 | 16:28:04.317–16:28:14.854 | BT | Overturning | NO | 1.345 |
22 | 16:28:30.688–16:28:44.506 | BT | Overturning | NO | 2.269 |
23 | 16:31:27.882 | B3 | Overturning | YES | |
24 | 16:31:30 | K | Sliding | YES | 4 |
25 | 17:41:35.526 | B4 | Saltation | YES | |
26 | 17:42:45.483–17:42:52.613 | B4 | Saltation | YES | |
27 | 17:49:26.616–17:49:36.252 | B4 | Overturning | YES | |
28 | 18:16:30 | B4 | Sliding | YES | 2.525 |
Boulder | Instant Time (Hour UTC) | Maximum Flow Observed in the Videos (m/s) |
---|---|---|
B2 | 15:01:59 | 2.1 ± 0.42 |
B3 | 16:26:13 | 2.33 ± 0.5 |
BN | 18:16:27 | 1.98 ± 0.11 |
B4 | 16:17:49 | 2.53 ± 1.34 |
K* | 16:30:08 | 4 ± 2.25 |
fw | fs | |
---|---|---|
1 | 0 | 1025 |
0.9 | 0.1 | 1082.5 |
0.8 | 0.2 | 1140 |
0.7 | 0.3 | 1197.5 |
0.6 | 0.4 | 1255 |
0.5 | 0.5 | 1312.5 |
0.4 | 0.6 | 1370 |
0.3 | 0.7 | 1427.5 |
0.2 | 0.8 | 1485 |
0.1 | 0.9 | 1542.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scicchitano, G.; Scardino, G.; Tarascio, S.; Monaco, C.; Barracane, G.; Locuratolo, G.; Milella, M.; Piscitelli, A.; Mazza, G.; Mastronuzzi, G. The First Video Witness of Coastal Boulder Displacements Recorded during the Impact of Medicane “Zorbas” on Southeastern Sicily. Water 2020, 12, 1497. https://doi.org/10.3390/w12051497
Scicchitano G, Scardino G, Tarascio S, Monaco C, Barracane G, Locuratolo G, Milella M, Piscitelli A, Mazza G, Mastronuzzi G. The First Video Witness of Coastal Boulder Displacements Recorded during the Impact of Medicane “Zorbas” on Southeastern Sicily. Water. 2020; 12(5):1497. https://doi.org/10.3390/w12051497
Chicago/Turabian StyleScicchitano, Giovanni, Giovanni Scardino, Sebastiano Tarascio, Carmelo Monaco, Giovanni Barracane, Giuseppe Locuratolo, Maurilio Milella, Arcangelo Piscitelli, Gianfranco Mazza, and Giuseppe Mastronuzzi. 2020. "The First Video Witness of Coastal Boulder Displacements Recorded during the Impact of Medicane “Zorbas” on Southeastern Sicily" Water 12, no. 5: 1497. https://doi.org/10.3390/w12051497