Modeling Soil Water–Heat Dynamic Changes in Seed-Maize Fields under Film Mulching and Deficit Irrigation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.1.1. Experimental Site Description
2.1.2. Experimental Design
2.1.3. Sampling and Measurement
2.2. The SWAP Model
2.2.1. Introduction of SWAP
2.2.2. SWAP for Adaption of Film Mulching
- Crop Evapotranspiration and Soil Evaporation Modules
- Soil Temperature Module
- Crop Module
2.2.3. Parameter Sensitivity Analysis and Calibration of SWAP
2.3. Statistical Analyses
3. Results and Discussion
3.1. Sensitivity Analysis and Model Calibration
3.2. Soil Moisture
3.3. Soil Temperature
3.4. Leaf Area Index (LAI)
3.5. Aboveground Dry Biomass (ADB)
3.6. Yield, ET, and WUE
4. Scenario Analysis under the Future Climate Change
4.1. Future Climate Scenarios
4.2. Seed-Maize Growth and ET under Future Climate Scenarios
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, W.T.H.; Botner, D.M.; Sakamoto, C.M. Application of CERES-Maize model to yield prediction of a Brazilian mazie hybrid. Agric. For. Meteorol. 1989, 45, 299–312. [Google Scholar] [CrossRef]
- Jiang, X.L.; Kang, S.Z.; Tong, L.; Li, F.S.; Li, D.H.; Ding, R.S.; Qiu, R.J. Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. Agric. Water Manag. 2014, 142, 135–143. [Google Scholar] [CrossRef]
- Ran, H.; Kang, S.Z.; Li, F.S.; Du, T.S.; Ding, R.S.; Li, S.E. Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China. J. Arid Land 2017, 9, 504–514. [Google Scholar] [CrossRef]
- Musundire, L.; Dari, S.; MacRoberts, J.; Yang, H.S.; Derera, J.; Tongoona, P. Effect of Male Planting Date and Female Plant Population on Hybrid Maize Yield and Evaluation of Use of Hybrid-Maize Simulation Model for Grain Yield Estimation in Hybrid Maize Seed Production. J. Agric. Sci. 2018, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Issa, A.R.B.; Rahut, D.B. Adoption and Impact of the Maize Hybrid on the Livelihood of the Maize Growers: Some Policy Insights from Pakistan. Scientifica 2020, 8. [Google Scholar] [CrossRef]
- Yang, J.; Mao, X.M.; Wang, K.; Yang, W.C. The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China. Agric. Water Manag. 2018, 201, 232–245. [Google Scholar] [CrossRef]
- Shi, X.R.; Xu, Q.; Hu, K.L.; Li, S.E. Effect of irrigation times on nitrogen loss, water and nitrogen use efficiencies in oasis spring maize farmland. Trans. Chin. Soc. Agric. Eng. 2018, 34, 118–126. [Google Scholar] [CrossRef]
- Burrows, W.C.; Larson, W.E. Effect of amount of mulch on soil temperature and early growth of corn1. Agron. J. 1962, 54, 19–23. [Google Scholar] [CrossRef]
- Goldberger, J.R.; Jones, R.E.; Miles, C.A.; Wallace, R.W.; Inglis, D.A. Barriers and Bridges to the Adoption of Biodegradable Plastic Mulches for US Specialty Crop Production. Renew. Agric. Food Syst. 2015, 30, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.D.; Zuo, H.C.; Xiao, X.; Wang, S.J.; Chen, B.L.; Chen, J.W. Modelling the effects of plastic mulch on water, heat and CO2 fluxes over cropland in an arid region. J. Hydrol. 2012, 452, 102–118. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, F.Y.; Jia, Z.K.; Ren, X.L.; Cai, T. Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Tillage Res. 2017, 166, 113–121. [Google Scholar] [CrossRef]
- Dong, B.D.; Liu, M.Y.; Jiang, J.W.; Shi, C.H.; Wang, X.M.; Qiao, Y.Z.; Liu, Y.Y.; Zhao, Z.H.; Li, D.X.; Si, F.Y. Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and un mulched fields. Agric. Water Manag. 2014, 143, 93–101. [Google Scholar] [CrossRef]
- Deng, X.P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Zhao, H.; Xiong, Y.C.; Li, F.M.; Wang, R.Y.; Qiang, S.C.; Yao, T.F.; Mo, F. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric. Water Manag. 2012, 104, 68–78. [Google Scholar] [CrossRef]
- Yu, A.Z.; Chai, Q. Effects of plastic film mulching and irrigation quota on yield of corn in arid oasis irrigation area. Acta Agron. Sin. 2015, 41, 778–786. [Google Scholar] [CrossRef]
- Ma, W.W.; Shi, J.C.; Jin, X.X.; Ning, S.R.; Li, S.; Tao, Y.Y.; Zhang, Y.N.; Liu, Y.; Lin, S.; Hu, P.C.; et al. Rice growth simulation under film mulching in dryland through improving CERES-Rice model. Trans. Chin. Soc. Agric. Mach. 2017, 33, 115–123. [Google Scholar] [CrossRef]
- Kroes, J.G.; van Dam, J.C.; Barthoiomeus, R.P.; Groenendijk, P.; Heinen, M.; Hendriks, R.F.A.; Mulder, H.M.; Supit, I.; van Walsum, P.E.V. SWAP Version 4: Theory Description and User Manual; Wageningen Environmental Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Todorovic, M.; Albrizio, R.; Zivotic, L.; Saab, M.T.A.; Stöckle, C.; Steduto, P. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agron. J. 2009, 101, 509–521. [Google Scholar] [CrossRef]
- Huang, J.X.; Jia, S.L.; Ma, H.Y.; Hou, Y.Y.; He, L. Dynamic simulation of growth process of 33winter wheat in main production areas of China based on WOFOST model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 222–228. [Google Scholar]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield; Pudoc: Wageningen, The Netherlands, 1978. [Google Scholar]
- Smets, S.M.P.; Kuper, M.; Dam, J.C.V.; Feddes, R.A. Salinization and crop transpiration of irrigated fields in Pakistan’s Punjab. Agric. Water Manag. 1997, 35, 43–60. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, S.Y.; Huo, Z.L.; Zhao, Z.C.; Jia, B. Application of the SWAP model to simulate water–salt transport under deficit irrigation with saline water. Math. Comput. Model. 2011, 54, 902–911. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.H.; Zhan, H.B.; Qu, Z.Y.; Huang, Q.Z. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. J. Hydrol. 2012, 412, 170–181. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.H.; Qu, Z.Y.; Huang, Q.Z. Regional scale model for simulating soil water flow and solute transport processes-GSWAP. Trans. Chin. Soc. Agric. Eng. 2011, 27, 58–63. [Google Scholar] [CrossRef]
- Droogers, P. Adaptation to climate change to enhance food security and preserve environmental quality: Example for southern Sri Lanka. Agric. Water Manag. 2004, 66, 15–33. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.H.; Huang, Q.Z. Coupled simulation of soil water flow, solute transport and crop growth processes at field scale and its validation. Trans. Chin. Soc. Agric. Eng. 2013, 29, 110–117. [Google Scholar] [CrossRef]
- Ben-Asher, J.; Dam, J.V.; Feddes, R.A.; Jhorar, R.K. Irrigation of grapevines with saline water: II. Mathematical simulation of vine growth and yield. Agric. Water Manag. 2006, 83, 22–29. [Google Scholar] [CrossRef]
- Pratiksha, S.; Ram, K.R.; Prakash, S.A. Climate change and maize agriculture among Chepang communities of Nepal: A review. J. Maize Res. Dev. 2018, 3, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Muchow, R.C. Effect of high temperature on grain-growth in field-grown maize. Field Crops Res. 1990, 23, 145–158. [Google Scholar] [CrossRef]
- Petersen, L.K. Impact of Climate Change on Twenty-First Century Crop Yields in the US. Climate 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Field, C.B. Global scale climate-crop yield relationships and the impact of recent warming. Environ. Res. 2007, 2, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Wang, C.; Chen, S.N. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties. Theor. Appl. Clim. 2017, 130, 1065–1071. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Li, M.; Zhang, Y.; Li, F.M.; Li, C.B. Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change. Agric. Syst. 2017, 150, 67–77. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. guide-lines for computing crop water requirements. In FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of United Nations: Rome, Italy, 1998. [Google Scholar]
- Ryżak, M.; Bieganowski, A. Methodological aspects of determining soil particle size distribution using the laser diffraction method. J. Plant Nutr. Soil Sci. 2011, 174, 624–633. [Google Scholar] [CrossRef]
- Lin, D.J.; Zheng, Z.C.; Zhang, X.Z.; Li, T.X.; Wang, Y.D. Study on the effect of maize plants on rainfall redistribution processes. Sci. Agric. Sin. 2011, 244, 2608–2615. [Google Scholar] [CrossRef]
- Haraguchi, T.; Marui, A.; Mori, K.; Nakano, Y. Movement of water collected by vegetables in plastic-mulching field. J. Fac. Agric. Kyushu. Univ. 2003, 48, 237–245. [Google Scholar]
- Qin, S.J.; Li, S.E.; Kang, S.Z.; Du, T.S.; Tong, L.; Ding, R.S. Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition? Agric. Water Manag. 2016, 177, 128–137. [Google Scholar] [CrossRef]
- Fan, Y.Q.; Ding, R.S.; Kang, S.Z.; Hao, X.M.; Du, T.S.; Tong, L.; Li, S.E. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agric. Water Manag. 2016, 179, 122–131. [Google Scholar] [CrossRef]
- Stone, P.J.; Sorensen, I.B.; Jamieson, P.D. Effect of soil temperature on phenology, canopy development, biomass and yield of maize in a cool-temperate climate. Field Crop Res. 1999, 63, 169–178. [Google Scholar] [CrossRef]
- Yang, N.; Sun, Z.X.; Zhang, L.Z.; Zheng, J.M.; Feng, L.S.; Li, K.Y.; Zhang, Z.; Feng, C. Simulation of water use process by film mulched cultivated maize based on improved AquaCrop model and its verification. Trans. CSAE 2015, 31, 122–132. [Google Scholar] [CrossRef]
- Mi, N.; Zhang, Y.S.; Cai, F.; Ji, R.P.; Zhang, S.J.; Yu, H.B.; Yu, X.J. Modelling the impacts of future climate change on maize productivity in north-east China. J. Arid Land Resour. Environ. 2012, 26, 117–123. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, J.; He, Y.K.; Chen, Y.Y. Evaluation of regional drought disaster to maize using WOFOST crop growth model. Chin. J. Eco Agric. 2017, 25, 451–459. [Google Scholar] [CrossRef]
- Morales-Ruiz, A.; Loeza-Corte, J.M.; Díaz-López, E.; Franco-Mora, O.; Mariezurrena-Berasain, M.D.; Estrada-Campuzano, G. Efficiency on the use of radiation and corn yield under three densities of sowing. Inter. J. Agron. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Šejna, M.; van Genuchten, M. The Hydrus-2D Software Package for Simulating Two-Dimensional Movement of Water, Heat and Multiple Solutes in Variably Saturated Media. Version 2.0, IGWMC-TPS-53; International Groundwater Modeling Center, Colorado School of Mines: Golden, CO, USA, 1999. [Google Scholar]
- Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, L.W.; KC, A. Soil nitrogen balance under wastewater management: Field measurements and simulation results. J. Environ. Qual. 2009, 38, 1286–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Sarangi, A.; Singh, D.K.; Parihar, S.S.; Sahoo, R.N. Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agric. Water Manag. 2015, 148, 72–83. [Google Scholar] [CrossRef]
- Ma, G.N.; Huang, J.X.; Wu, W.B.; Fan, J.L.; Zou, J.Q.; Wu, S.J. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Math. Comput. Model 2013, 58, 634–643. [Google Scholar] [CrossRef]
- Wilkerson, G.G.; Jones, J.W.; Boote, K.J.; Ingram, K.T.; Mishoe, J.W. Modeling soybean growth for crop management. Trans. ASAE 1983, 26, 63–73. [Google Scholar] [CrossRef]
- Jamieson, P.D.; Porter, J.R.; Wilson, D.R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crop Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Yuan, C.F.; Feng, S.Y.; Huo, Z.L.; Ji, Q.Y. Simulation of saline water irrigation for seed maize in arid northwest China based on SWAP model. Sustainability 2019, 11, 4264. [Google Scholar] [CrossRef] [Green Version]
- Vosselen, A.V.; Verplancke, H.; Ranst, E.V. Assessing water consumption of banana: Traditional versus modelling approach. Agric. Water Manag. 2005, 74, 201–218. [Google Scholar] [CrossRef]
- He, Q.S.; Li, S.E.; Kang, S.Z.; Yang, H.B.; Qin, S.J. Simulation of water balance in a maize field under film-mulching drip irrigation. Agric. Water Manag. 2018, 210, 252–260. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Feng, S.Y.; Wang, F.X.; Binley, A. Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area. Agric. Water Manag. 2018, 209, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Balashov, E.; Buchkina, N.; Rizhiya, E.; Farkas, C. Field validation of DNDC and SWAP models for temperature and water content of loamy and sandy loam Spodosols. Int. Agrophys. 2014, 28, 133–142. [Google Scholar] [CrossRef]
- Valentinuz, O.R.; Tollenaar, M. Vertical profile of leaf senescence during the grain-Filling period in older and newer maize hybrids. Crop Sci. 2004, 44, 827–834. [Google Scholar] [CrossRef]
- Cheng, Z.Q.; Meng, J.H.; Wang, Y.M. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD Data into the WOFOST model using a new method with fast algorithms. Remote Sens. 2016, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.L.; Hou, Q.; Ma, Y.P.; Zhao, H.Y.; Zhao, F.; Zhang, F.C. Adaptability of WOFOST model to simulate the whole growth period of maize in Hetao irrigation region of Inner Mongolia. Chin. J. Ecol. 2016, 35, 800–807. [Google Scholar] [CrossRef]
- Li, F.M.; Guo, A.H.; Wei, H. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Res. 1999, 63, 79–86. [Google Scholar] [CrossRef]
- Bu, L.D.; Liu, J.L.; Zhu, L.; Luo, S.; Chen, X.P.; Li, S.; Hill, R.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.L.; Qin, W.; Zuo, Q.; Zhang, Y.N. Modelling the effect of mulching on soil heat transfer, water movement and crop growth for ground cover rice production system. Field Crops Res. 2017, 201, 97–107. [Google Scholar] [CrossRef]
- Shen, Q.X.; Ding, R.S.; Du, T.S.; Tong, L.; Li, S.E. Water use effectiveness is enhanced using film mulch through increasing transpiration and decreasing evapotranspiration. Water 2019, 11, 1153. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.K.; Gupta, S.K.; Isaac, R.K. Long-term cyclic irrigation in subsurface drained lands: Simulation studies with SWAP. J. Agric. Sci. 2013, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Ceglar, A.; van der Wijngaart, R.; de Wit, A.; Lecerf, R.; Boogaard, H.; Seguini, L.; van den Berg, M.; Toreti, A.; Zampieri, M.; Fumagalli, D.; et al. Improving WOFOST model to simulate winter wheat phenology in Europe: Evaluation and effects on yield. Agric. Syst. 2019, 168, 168–180. [Google Scholar] [CrossRef]
- Bai, T.C.; Zhang, N.N.; Chen, Y.Q.; Mercatoris, B. Assessing the performance of the WOFOST model in simulating Jujube fruit tree growth under different irrigation regimes. Sustainability 2019, 11, 1466. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Guo, Z.Z.; Huang, G.H.; Wang, R.T. Water productivity evaluation under multi-GCM projections of climate change in Oases of the Heihe River Basin, Northwest China. Inter. J. Environ. Res. Public Health 2019, 16, 1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.T.; Cheng, Q.Y.; Liu, L.; Yan, C.R.; Huang, G. Multi-model projections of climate change in different RCP scenarios in an arid inland region, Northwest China. Water 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Soddu, A.; Deidda, R.; Marrocu, M.; Meloni, R.; Paniconi, C.; Ludwig, R.; Sodde, M.; Mascaro, G.; Perra, E. Climate variability and durum wheat adaptation using the AquaCrop model in southern Sardinia. Procedia Environ. Sci. 2013, 19, 830–835. [Google Scholar] [CrossRef]
- Zhang, X.W.; Wang, J.R.; Ji, M.F.; Milne, R.I.; Wang, M.H.; Liu, J.Q.; Shi, S.; Yang, S.L.; Zhao, C.M. Higher thermal acclimation potential of respiration but not photosynthesis in two alpine picea taxa in contrast to two lowland congeners. PLoS ONE 2015, 10, e0123248. [Google Scholar] [CrossRef]
Years | Treatments | Irrigation Date (Month/Day) and Irrigation Amounts (mm) | Total Irrigation Amounts | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 5/30 | 6/11 | 6/19 | 6/29 | 7/9 | 7/15 | 7/19 | 8/8 | 8/28 | ||
M1WF | 15.0 | 7.6 | 39.7 | 42.7 | 42.1 | 25.6 | 30.3 | 42.0 | 61.3 | 306.4 | |
M1WM | 10.5 | 5.3 | 27.8 | 29.9 | 29.4 | 17.9 | 21.2 | 29.4 | 42.9 | 214.5 | |
M1WL | 6.0 | 3.1 | 15.9 | 17.1 | 16.8 | 10.3 | 12.1 | 16.8 | 24.5 | 122.6 | |
M0WF | 15.0 | 7.6 | 24.8 | 42.7 | 42.1 | 25.6 | 25.7 | 42.0 | 65.9 | 291.4 | |
M0WM | 10.5 | 5.3 | 17.4 | 29.9 | 29.4 | 17.9 | 18.0 | 29.4 | 44.4 | 204.0 | |
M0WL | 6.0 | 3.1 | 9.9 | 17.1 | 16.8 | 10.3 | 10.3 | 16.8 | 25.4 | 116.6 | |
2018 | 6/1 | 6/11 | 6/20 | 7/2 | 7/12 | 7/22 | 8/1 | 8/20 | |||
M1WF | 14.5 | 22.2 | 40.2 | 40.5 | 37.9 | 40.6 | 50.2 | 32.8 | 279.0 | ||
M1WM | 10.2 | 15.6 | 28.2 | 28.4 | 26.5 | 28.4 | 35.2 | 23.0 | 195.3 | ||
M1WL | 5.8 | 8.9 | 16.1 | 16.2 | 15.1 | 16.2 | 20.1 | 13.1 | 111.6 | ||
M0WF | 14.5 | 14.3 | 40.2 | 40.5 | 32.3 | 42.5 | 50.2 | 35.4 | 270.1 | ||
M0WM | 10.2 | 10.0 | 28.2 | 28.4 | 22.6 | 29.8 | 35.2 | 24.8 | 189.1 | ||
M0WL | 5.8 | 5.7 | 16.1 | 16.2 | 12.9 | 17.0 | 20.1 | 14.1 | 108.0 |
Soil Layers (cm) | Particle Fraction (%) | Bulk Density (g cm−3) | Soil Texture | ||
---|---|---|---|---|---|
Sand (2–0.05 mm) | Silt (0.05–0.002 mm) | Clay (<0.002 mm) | |||
0–20 | 27.15 | 63.58 | 9.27 | 1.53 | Silt loam |
20–40 | 30.17 | 60.41 | 9.42 | 1.48 | Silt loam |
40–60 | 17.92 | 71.12 | 10.96 | 1.46 | Silt loam |
60–80 | 16.97 | 73.04 | 9.99 | 1.58 | Silt loam |
80–100 | 35.17 | 57.07 | 7.76 | 1.50 | Silt loam |
Output | SWS | LAI | ADM | Yield | Soil Temperature |
---|---|---|---|---|---|
Parameters | n (0.340) | Tsum1 (1.427) | LUE (0.952) | Tsum2 (1.457) | Soil texture (0.101) |
Ρ (0.332) | LUE (0.892) | EC-R (0.665) | LUE (0.989) | ||
θs (0.295) | SPAN (0.816) | EC-L (0.632) | SPAN (0.962) | ||
ksoil (0.244) | MRILAI (0.766) | MRILAI (0.575) | Tsum1 (0.931) | ||
Kc (0.223) | EC-L (0.709) | Amax (0.565) | EC-SO (0.695) | ||
β (0.204) | FTADM-R (0.589) | FTDM-R (0.557) | EC-S (0.317) | ||
α (0.104) | SLA (0.588) | EC-S (0.502) | SLA (0.302) | ||
EC-R (0.581) | ITCDW (0.475) | FTDM-S (0.292) | |||
ITCDW (0.548) | SLA (0.416) | Kdif (0.232) | |||
EC-S (0.499) | FTDM-L (0.309) | MRR-L (0.201) | |||
FTDM-L (0.426) | Kdif (0.252) | MRILAI (0.172) | |||
Amax (0.269) | Tsum1 (0.157) | Amax (0.156) | |||
Kdif (0.264) | MRR-L (0.120) | EC-L (0.154) |
Modules | Parameters | Initial Values | Values | |
---|---|---|---|---|
M1 | M0 | |||
Crop evapotranspiration module | ksoil | 0.5 | 0.65 | 1.1 |
β, cm day−1/2 | 0.35 | 0.17 | 0.50 | |
Crop module | Kc (0–0.5–1–1.4–2) | 0.5–1.0–1.0–1.0–1.0 | 0.5–0.8–1.4–1.2–0.8 | 0.6–1.1–1.5–1.2–0.8 |
Tsum1 (from emergence to anthesis), °C day | 850 | 770.00 | 850.00 | |
Tsum2 (from anthesis to maturity), °C day | 800 | 820.00 | 820.00 |
Soil Depth (cm) | Residual Water Content θr (cm3 cm−3) | Saturated Water Content θs (cm3 cm−3) | Saturated Hydraulic Conductivity ks (cm day−1) | Shape Factor for Soil Water Retention Curve α (cm−1) | Shape Factor for Soil Water Retention Curve n | Hydraulic Conductivity Shape Factor λ |
---|---|---|---|---|---|---|
0–20 | 0.04 | 0.41 | 20.84 | 0.0172 | 1.585 | 0.5 |
20–40 | 0.04 | 0.40 | 24.65 | 0.0169 | 1.497 | 0.5 |
40–60 | 0.08 | 0.43 | 25.77 | 0.0155 | 1.460 | 0.5 |
60–80 | 0.08 | 0.42 | 16.97 | 0.0169 | 1.594 | 0.5 |
80–100 | 0.03 | 0.42 | 25.41 | 0.0188 | 1.543 | 0.5 |
Parameters | Initial Values | Values |
---|---|---|
Initial total crop dry weight, kg ha−1 | 10 | 10 |
Maximum relative increase in LAI, m2 m−2 day−1 | 0.0294 | 0.02 |
Specific leaf area (0–0.5–0.8–1-2), ha kg−1 | 0.0026–0.0017–0.0012–0.0012–0.0012 | 0.0035–0.0012–0.0007–0.0005–0.0005 |
SPAN | 33 | 33 |
Extinction coefficient for diffuse visible light | 0.60 | 0.60 |
Max CO2 assimilation rate (0–1–1.5–2), kg ha−1 h−1 | 70–70–70–70 | 50–60–60–40 |
Efficiency of conversion into leaves, kg kg−1 | 0.68 | 0.75 |
Efficiency of conversion into storage organs, kg kg−1 | 0.671 | 0.60 |
Efficiency of conversion into roots, kg kg−1 | 0.69 | 0.70 |
Efficiency of conversion into stems, kg kg−1 | 0.658 | 0.80 |
Maintenance respiration rate of leaves, kg CH2O kg day−1 | 0.030 | 0.020 |
Fraction of ADB to the roots (0–0.2–0.4–1–2) | 0.40–0.34–0.27–0.00–0.00 | 0.55–0.44–0.33–0.00–0.00 |
Fraction of ADB to the leaves (0–0.33–0.88–0.95–1.1–1.2–2) | 0.62–0.62–0.15–0.15–0.40–0.00–0.00 | 0.60–0.60–0.60–0.60–0.00–0.00–0.00 |
Fraction of ADB to the stems (0–0.33–0.88–0.95–1.1–1.2–2) | 0.38–0.38–0.85–0.85–0.40–0.00–0.00 | 0.40–0.40–0.40–0.40–0.90–0.60–0.00 |
Years | Treatment | 10 cm | 20 cm | 40 cm | 80 cm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (°C) | NRMSE (%) | R2 | RMSE (°C) | NRMSE (%) | R2 | RMSE (°C) | NRMSE (%) | R2 | RMSE (°C) | NRMSE (%) | ||
2017 | M1WF | 0.98 | 2.1 | 9.9 | 0.80 | 1.7 | 8.7 | 0.88 | 1.1 | 5.8 | 0.98 | 0.6 | 3.3 |
M1WM | 0.79 | 1.2 | 6.0 | 0.85 | 1.2 | 6.0 | 0.91 | 1.1 | 5.3 | 0.98 | 0.7 | 4.1 | |
M1WL | 0.59 | 2.5 | 11.7 | 0.65 | 2.1 | 10.2 | 0.79 | 1.4 | 7.2 | 0.96 | 0.7 | 3.8 | |
M0WF | 0.80 | 1.8 | 9.7 | 0.87 | 1.2 | 6.4 | 0.91 | 1.1 | 5.9 | 0.98 | 0.6 | 3.4 | |
M0WM | 0.75 | 2.0 | 10.5 | 0.86 | 1.3 | 7.0 | 0.88 | 1.6 | 8.6 | 0.96 | 2.1 | 12.7 | |
M0WL | 0.75 | 2.0 | 10.5 | 0.78 | 1.8 | 9.4 | 0.83 | 1.8 | 9.8 | 0.96 | 2.6 | 15.1 | |
2018 | M1WF | 0.98 | 2.1 | 9.6 | 0.78 | 1.7 | 7.9 | 0.86 | 1.3 | 6.1 | 0.97 | 0.9 | 4.8 |
M1WM | 0.64 | 2.2 | 10.1 | 0.75 | 1.8 | 8.3 | 0.83 | 1.5 | 7.1 | 0.97 | 1.0 | 5.2 | |
M1WL | 0.73 | 2.0 | 8.9 | 0.78 | 1.6 | 7.2 | 0.86 | 1.1 | 5.3 | 0.98 | 0.6 | 3.4 | |
M0WF | 0.82 | 1.6 | 7.9 | 0.89 | 1.2 | 6.2 | 0.94 | 1.6 | 8.0 | 0.99 | 0.8 | 4.6 | |
M0WM | 0.84 | 1.6 | 8.1 | 0.91 | 1.2 | 6.0 | 0.79 | 1.6 | 8.4 | 0.98 | 0.8 | 4.3 | |
M0WL | 0.74 | 2.2 | 10.5 | 0.81 | 1.7 | 8.5 | 0.89 | 1.3 | 6.7 | 0.97 | 0.9 | 5.1 |
Treatments | Yield (t hm−2) | Total ET (mm) | WUE (kg m−3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Measured | Simulated | MRE (%) | Measured | Simulated | MRE (%) | Measured | Simulated | MRE (%) | ||
2017 | M1WF | 7.19 a | 7.36 | 2.4 | 423.0 b | 402.4 | 4.9 | 1.70 bc | 1.83 | 7.6 |
M1WM | 6.83 ab | 6.67 | 2.4 | 358.6 d | 390.3 | 8.8 | 1.90 ab | 1.71 | 10.3 | |
M1WL | 5.68 bcd | 5.74 | 1.1 | 258.4 f | 314.0 | 21.5 | 2.20 a | 1.83 | 16.8 | |
M0WF | 4.97 d | 6.69 | 34.6 | 448.7 a | 468.2 | 4.4 | 1.11 d | 1.43 | 28.9 | |
M0WM | 5.13 cd | 5.84 | 13.8 | 387.2 c | 453.2 | 17.0 | 1.32 cd | 1.29 | 2.8 | |
M0WL | 5.33 cd | 4.55 | 14.7 | 298.8 e | 375.7 | 25.7 | 1.78 bc | 1.2 | 32.1 | |
2018 | M1WF | 5.14 a | 5.22 | 1.5 | 411.9 b | 352.0 | 14.5 | 12.5 ab | 14.8 | 18.8 |
M1WM | 4.94 ab | 5.03 | 1.8 | 327.3 d | 344.6 | 5.3 | 15.1 a | 14.6 | 3.4 | |
M1WL | 3.91 bc | 3.98 | 1.8 | 241.2 f | 289.1 | 19.9 | 16.2 a | 13.8 | 15.1 | |
M0WF | 4.87 ab | 4.98 | 2.3 | 429.2 a | 389.1 | 9.3 | 11.4 c | 12.8 | 12.3 | |
M0WM | 3.89 bc | 4.67 | 20.0 | 358.1 c | 373.4 | 4.3 | 10.9 c | 12.5 | 15.1 | |
M0WL | 2.95 c | 3.84 | 29.8 | 270.8 e | 306.1 | 13.0 | 10.9 c | 12.5 | 14.8 |
Change | Precipitation (%) | Tmax (°C) | Tmin (°C) |
---|---|---|---|
RCP2.6 | −4.57 | +1.23 | +1.08 |
RCP4.5 | −5.22 | +1.35 | +1.18 |
RCP8.5 | −2.40 | +1.55 | +1.68 |
Scenarios | Yield (t hm−2) | ET (mm) | ||
---|---|---|---|---|
M1WF | M0WF | M1WF | M0WF | |
Actual | 7.36 | 6.69 | 402.4 | 468.2 |
RCP2.6 | 5.21 | 6.06 | 337.5 | 396.1 |
RCP4.5 | 5.14 | 6.52 | 345.0 | 409.2 |
RCP8.5 | 4.41 | 4.69 | 312.8 | 369.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Mao, X.; Shukla, M.K.; Li, S. Modeling Soil Water–Heat Dynamic Changes in Seed-Maize Fields under Film Mulching and Deficit Irrigation Conditions. Water 2020, 12, 1330. https://doi.org/10.3390/w12051330
Zhao Y, Mao X, Shukla MK, Li S. Modeling Soil Water–Heat Dynamic Changes in Seed-Maize Fields under Film Mulching and Deficit Irrigation Conditions. Water. 2020; 12(5):1330. https://doi.org/10.3390/w12051330
Chicago/Turabian StyleZhao, Yin, Xiaomin Mao, Manoj K. Shukla, and Sien Li. 2020. "Modeling Soil Water–Heat Dynamic Changes in Seed-Maize Fields under Film Mulching and Deficit Irrigation Conditions" Water 12, no. 5: 1330. https://doi.org/10.3390/w12051330
APA StyleZhao, Y., Mao, X., Shukla, M. K., & Li, S. (2020). Modeling Soil Water–Heat Dynamic Changes in Seed-Maize Fields under Film Mulching and Deficit Irrigation Conditions. Water, 12(5), 1330. https://doi.org/10.3390/w12051330