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Abstract: Based on three IPCC (Intergovernmental Panel on Climate Change) Representative
Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, and RCP8.5), observed meteorological
data, ERA-40 reanalysis data, and five preferred GCM (general circulation model) outputs selected
from 23 GCMs of CMIP5 (Phase 5 of the Coupled Model Intercomparison Project), climate change
scenarios including daily precipitation, maximum air temperature, and minimum air temperature
from 2021 to 2050 in the Heihe River basin, which is the second largest inland river basin in Northwest
China, were generated by constructing a statistical downscaling model (SDSM). Results showed
that the SDSM had a good prediction capacity for the air temperature in the Heihe River basin.
During the calibration and validation periods from 1961 to 1990 and from 1991 to 2000, respectively,
the coefficient of determination (R?) and the Nash-Sutcliffe efficiency coefficient (NSE) were both
larger than 0.9, while the root mean square error (RMSE) was within 20%. However, the SDSM showed
a relative lower simulation efficiency for precipitation, with R? and NSE values of most meteorological
stations reaching 0.5, except for stations located in the downstream desert areas. Compared with the
baseline period (1976-2005), changes in the annual mean precipitation simulated by different GCMs
during 2021-2050 showed great difference in the three RCP scenarios, fluctuating from —10 to +10%,
which became much more significant at seasonal and monthly time scales, except for the consistent
decreasing trend in summer and increasing trend in spring. However, the maximum and minimum
air temperature exhibited a similar increasing tendency during 2021-2050 in all RCP scenarios,
with a higher increase in maximum air temperature, which increased as the CO, concentration of the
RCP scenarios increased. The results could provide scientific reference for sustainable agricultural
production and water resources management in arid inland areas subject to climate change.

Keywords: climate change; downscaling; ensemble projection; elevated CO,; uncertainty; Hexi Corridor

1. Introduction

China is one of the countries with the most significant impacts on climate change. The frequency
and intensity of extreme climate events are increasing, and the regional features of climate are
remarkable, while the impact of regional climate change on human life is more direct. Hence,
research on the spatio-temporal characteristics of regional climate change and its impact adaptivity has
become a key scientific issue to address the impact of global climate change at the regional level [1].
The Heihe River basin is located in the northwestern inland arid region of China and is one of the three
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rivers of the Hexi corridor, which has a very important strategic position. The midstream Zhangye
is in the ancient “Silk Road” and the current Asia-Europe Continental Bridge, with a long history of
agriculture and animal husbandry, which has become one of the top ten commodity grain bases in
China; the Ejina Oasis in the downstream extends to the Delta zone of the Juyan Lake that is not only
anatural barrier to protect the ecology but also an important support for the research and development
of national defense and frontier construction [2]. However, due to the complex topography, arid climate,
low vegetation coverage, and strong evaporation capacity in Northwest China, the vulnerability in
this area is more significant in the face of climate change and other environmental fluctuations [3-5].
It has been shown [6-9] that since the late 1980s, climate change has exacerbated the instability
of the hydro-meteorological system in Northwest China. The frequency and intensity of extreme
hydrological-meteorological events have increased, which has caused serious adverse effects on
local livelihood problems, such as agricultural production, water resources sustainable management,
and food security, and has restricted the regional socio-economic development. Zhao et al. and Wang
et al. [10,11] pointed out that the change in extreme, high-temperature events in the Heihe River
basin is consistent with the changes in extreme, high-temperature events in inland river basins of
the Hexi Corridor and the northwestern region of China, while the trend of temperature increases is
obviously surpassing the national overall level. Therefore, it is of great importance to find a reasonable
and efficient way to project future climate change facing water-agriculture-ecology security in the
Heihe River basin, which is also of remarkable theoretical and practical significance for the sustainable
development of agriculture in the inland areas of Northwest China, and promoting the construction of
“the Belt and Road.”

General circulation models (GCMs) could provide global large-scale information for climate
change research, but they have a relatively coarse spatial resolution; consequently, it is difficult
to obtain climate change scenarios directly from outputs of GCMs, which agree well with the
regional characteristics. It is also unreasonable to input directly the climate elements provided
by GCMs into the responding models to estimate the impact of climate change on the river basin
water cycle and surrounding environmental elements. To solve this issue, dynamical and statistical
downscaling methods have been developed to convert larger-scale and lower-resolution GCMs outputs
into higher-resolution climate variables at a regional scale [12-15]. In this study, the statistical
downscaling model (SDSM) [16], which has been extensively used for the generation of climate
change scenarios [17-22], was adopted. However, most previous studies have neglected adaptive
assessment on GCM selection in terms of specific study areas. By comprehensively taking a GCM’s
initial conditions, downscaling techniques, hydrological model structures, and parameter uncertainties
into consideration, Chen et al. [23] implied that uncertainties in climate change impact on water
cycle mostly came from the GCM outputs, and significant differences among different GCMs were
found. Elguindi et al. [24] applied the modified Thorthwaite climate classification to a 32-member
ensemble of CMIP5 GCMs to evaluate model performance in both historical climate and projected
future climate. The results showed that the multi-model ensemble reproduced the main spatial features
of the global climate reasonably well; however, in many regions the climate types were too moist.
Hence, multi-model ensemble projection without consideration of specific performance assessment is
not appropriate to concisely depict the regional climate characteristics. To sum up, this study aims to
(1) reduce the uncertainty of multi-model selection by assessing the GCMs adaptability, (2) construct
the SDSM by ERA-40 reanalysis data and observed meteorological data based on multiple linear
regression and a weather generator, and (3) provide the variation ranges of different climate variables
simulated by multi-models in multiple scenarios to further eliminate the uncertainty based on a single
GCM or GCM ensembles to project future climate change scenarios. Hence, the top five GCMs of the
Heihe River basin were optimized based on sensitivity analysis of climate variables by the rank scoring
method [25-27], which were adopted to generate future climate change scenarios by driving the
SDSM in three Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, and RCP8.5),
respectively, in the Heihe River basin, providing variation ranges of different climate variables. Results
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obtained in this study will provide a scientific reference for sustainable development of water security
and agricultural production in arid inland regions subject to climate change.

2. Materials and Methods

2.1. Study Area

The Heihe River basin is the second largest inland river basin in China. It is located in the inland
arid region of Northwest China, in the middle of the Hexi Corridor, roughly between 98-101°30" E
and 38-42° N. The total length is 821 km with a total area of 14.29 x 10* km? and an annual runoff
of 15.8 x 10% m? [28]. Due to the complex terrain and landscape of the entire basin with significant
altitude differences, a regional and zonal climate is extremely apparent. The Heihe River basin is
divided by the Yingluo Gorge and the Zhengyi Gorge into the upper, middle, and lower reaches from
south to north [29,30]. It is the upstream area of the Heihe River basin from the Qilian Mountains to the
Yingluo Gorge, which is the mountainous area producing main runoff with an altitude between 1680
and 5280 m. It is a cold and humid climate zone with an annual average temperature of 2-3 °C, and the
average annual precipitation is 200-500 mm [31]. The midstream is between the Yingluo Gorge and
the Zhengyi Gorge. The terrain is a mix of mountains and plains with an altitude between 1300 and
1680 m. The average annual temperature and precipitation is 6-8 °C and 120-200 mm, respectively [31].
The midstream is the agricultural production base of the Heihe River basin due to abundant light and
heat resources, which concentrates more than 90% of the population and cultivated land in the whole
basin. However, according to historical records, the total amount of precipitation during the crop
growth period of the arid year is much lower than that of the non-arid year in the midstream, causing
substantial reduction of agriculture and animal husbandry production. Below the Zhengyi Gorge is
the downstream, with an altitude from 980 to 1300 m, characterized by the vast Gobi desert where the
runoff is greatly reduced or disappears through evaporation and where river leakage with the average
annual temperature and precipitation is 810 °C and less than 50 mm, respectively [29-31].

2.2. Data

(1) Observed meteorological data. In this study, the measured meteorological data, including
daily precipitation, mean air temperature, maximum air temperature, and minimum air temperature
from 17 meteorological stations evenly distributed in the Heihe River basin (as shown in Figure 1)
during 1961-2000 were obtained from China Meteorological Data Service Center (http://data.cma.cn/).
The monthly meteorological data from 1961 to 2000 were organized and generated for GCM rank
scoring, while the daily data from 1961 to 1990 were used for SDSM calibration, and the daily data
from 1991 to 2000 were used for model validation.
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Figure 1. Location of the Heihe River basin and hydro-meteorological stations.

(2) ERA-40 reanalysis data. Compared with other reanalysis data, the second generation 40-year
reanalysis data (ERA-40) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have
been proven by many studies [32-34] to be appropriate for characterizing the temporal and spatial
patterns of meteorological elements such as surface precipitation and air temperature and pressure in
most parts of China, especially in Western China. In this study, we downloaded and reproduced the
daily ERA-40 reanalysis data during 1961-2000 from the ECMWF (http://apps.ecmwf.int/datasets/
data/era40-daily /levtype=sfc/) at a spatial resolution of 2° x 2°.

(3) GCMs data, both monthly and daily, were obtained from the Phase 5 of the Coupled Model
Intercomparison Project (CMIP5) archive (http://cmip-pcmdi.linl.gov/cmip5/) supplied by CEDA
(Centre for Environmental Data Analysis). The selection of 23 GCMs is due to the number of available
predictors and the length of the time series. The monthly data from 1961 to 2000 were used for GCM
performance evaluation and were uniformly interpolated to a 2° x 2° spatial resolution, corresponding
to the spatial resolution of ERA-40. The daily data were used for statistical downscaling to generate
climate change scenarios of the baseline period (1976-2005) and the future period (2018-2047) in three
RCP scenarios (RCP2.6, RCP4.5, and RCP8.5). The RCPs are named according to the radiative forcing
target level for 2100. RCP2.6 is defined as a peak in radiative forcing at 3 W/m? before 2100 that
declines to 2.6 W/m? (around 490 ppm CO, equiv) by 2100. The definitions of the RCP4.5 and RCP
8.5 are described as stabilization without an overshoot pathway to 4.5 W/m? (around 650 ppm CO,
equiv) after 2100 and as a rising radiative forcing pathway leading to 8.5 W/m? (around 1370 ppm
CO; equiv) by 2100 [35]. The selected 23 GCMs and their detailed information are shown in Table 1.

Table 1. Information of selected 23 general circulation models (GCMs) from Phase 5 of the Coupled
Model Intercomparison Project (CMIP5).

GCM Model Source Spatial Resolution
1 BCC-CSM 1-1 Beijing Climate Center, China Meteorological Administration, China 2.7906° x 2.8125°
2 BCC-CSM1-1-M Beijing Climate Center, China Meteorological Administration, China 1.125° x 1.125°
3 BNU-ESM Beijing Normal University, China 2.7906° x 2.8125°
4 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.7906° x 2.8125°
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GCM Model Source Spatial Resolution
5 CCSM4 National Center for Atmospheric Research (NCAR), USA 0.9424° x 1.25°
6 CNRM-CM5 Centre National de Recherches Meteorologiques, Meteo-France, France 1.4005° x 1.4065°
v CSIRO-MK3.6.0 Australian Commonweal'th SFientific anc% Industrial Research 1.8653° x 1.875°

Organization, Australia

8 FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.7906° x 2.8125°
9 FIO-ESM The First Institute of Oceanography, SOA, China 2.7906° x 2.8125°
10 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2° x 2.5°
11 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 2° x 2.5°
12 GISS-E2-H NASA Goddard Institute for Space Studies, USA 2° x 2.5°
13 GISS-E2-R NASA Goddard Institute for Space Studies, USA 2° x 2.5°
14 HadGEM2-ES Met Office Hadley Centre, UK 1.25° x 1.875°
15 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 1.8947° x 3.75°
16 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 1.2676° x 2.5°

Atmosphere and Ocean Research Institute (The University of Tokyo),
17 MIROC5 National Institute for Environmental Studies, and Japan Agency for 1.4005° x 1.4065°

Marine-Earth Science and Technology, Japan

Atmosphere and Ocean Research Institute (The University of Tokyo),

18 MIROC-ESM National Institute for Environmental Studies, and Japan Agency for 2.7906° x 2.8125°

Marine-Earth Science and Technology, Japan
Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology, Japan

19 MIROC-ESM-CHEM 2.7906° x 2.8125°

20 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.8653° x 1.875°
21 MPI-ESM-MR Max Planck Institute for Meteorology, Germamy 1.8653° x 1.875°
22 MRI-CGCM3 Meteorological Research Institute, Japan 2.2145° x 1.125°
23 NorESM1-M Norwegian Climate Centre, Norway 1.8947° x 2.5°

Note: Five GCMs in bold here are highlighted as the top 5 GCMs selected for climate change projections.

2.3. Methods

2.3.1. Multi-Model Adaptive Assessment

The GCM is currently the most feasible method for predicting large-scale climate changes.
However, due to the differences in resolution, initial conditions, and mechanisms of each GCM,
the results have significant uncertainty, and the accuracy of the simulated results is closely related to
the simulated region and the simulated climate variables [36—40]. Therefore, it is necessary to conduct
an adaptive assessment of each GCM in the study area before using GCM data to investigate regional
climate change, and then to select the GCMs with better regional adaptability.

The score-based method was proposed to assess the performance of the GCMs in simulating
precipitation and temperature, which has already been applied in research of multiple regions for
GCM adaptive assessment [25,41,42]. A multi-criteria rank score (RS) value was computed for each
individual assessment criterion as

Xmux - Xi

RS; =
! Xmax — Xmin

x 10 @
where X; is the relative error or relationship statistic between the GCM output and observed for the
ith GCM. High RS values indicate high GCM performance. The total RS for each GCM for a specific
climate variable was obtained by summing all RS for all criteria used. All assessment criteria used
have a 1.0 weight in this summation except for trend analysis, trend magnitude, the first two leading
modes of each EOF (EOF1 and EOF2), and two PDF criteria (BS and Score), which are each weighted
as 0.5. This total RS was then used to rank the GCMs for all climate variables. Eleven statistics used in
this study are shown in Table 2.
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Table 2. Statistics of climate variables used for GCM performance assessment.

Statistics of Climate Variables Methods
Mean Relative Error (%)
Standard deviation Relative Error (%)
Temporal variation NRMSE
Monthly distribution(Annual cycle) Correlation Coefficient
Spatial distribution Correlation Coefficient

Mann-Kendall test Z

Trend and its magnitude Mann-Kendall test

. s EOF1

Space-time variability EOF2
Probability density functions (PDFs) BS

Sscore

In this study, GCM evaluation was implemented based on observed monthly precipitation and air
temperatures (mean, maximum, minimum) from 1961 to 2000 at 17 meteorological stations, and on the
corresponding simulated monthly data from 23 GCMs for the same period. Furthermore, the selection
of climate variables and statistical criteria in the score-based method is of great importance for the
final RS values. Compared with the impact of statistical criteria, the impact of climate variables on RS
values are much more direct and significant. Hence, in order to better select the GCMs suitable for the
Heihe River basin, quantitative sensitivity analyses of RS values on different climate variables were
conducted to improve the credibility of the GCMs’ adaptive assessment.

2.3.2. The Statistical Downscaling Model

The SDSM is a statistical downscaling model based on the principle of coupling between the
weather generator and multiple linear regression. It is easy to operate, has been widely used in the
downscaling of regional climate changes, and overcomes the weakness of using only one method
to estimate future climate change [43]. An SDSM [44] screens the predictors closely related to the
predictands and builds an empirical statistical relationship between the predictands (climate variables
of the observed meteorological stations) and the predictors (ERA-40 reanalysis data) based on multiple
linear regression. An empirical relationship is applied to the weather generator, and the SDSM is
driven by GCM outputs to generate the future daily series of station climate elements [45]. In summary,
the SDSM assumes stable statistical relationships; that is, the empirical statistical relationship is
constant in the case of future changes in climatic conditions.

The relationship between the predictands and predictors is expressed as

R=F(L) &)

where R represents the predictands, L represents the predictors, and F represents the deterministic or
random function.

Screening downscaling predictors is key to the SDSM, and largely determines the results of
downscaling and future climate scenarios [16]. In the SDSM, the selection of predictors is an iterative
process, based on the results of seasonal correlation analysis, partial correlation analysis, and scatter
plots. Furthermore, seasonal correlation analysis is conducted by investigating the percentage of
variance explained by specific predictand—predictor pairs and by judiciously concerning the most
appropriate combination of predictors for a given season and predictand. Partial correlation analysis
was used to investigate inter-variable correlations. These statistics help to identify the amount of
explanatory power that is unique to each predictor. Drawing the scatter plot was used for exhibiting
the relationship between a single predictor and the predictand. The resultant scatterplot indicates the
nature of the association, whether or not data transformation may be needed, and the importance of
outliers [46,47].
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The empirical statistical relationship between predictands and selected predictors were established
by the SDSM, that is, model calibration [43]. During the calibration process, the model structure needs
to be determined. “Conditional” vs. “unconditional” is chosen by judging whether there is a direct
physical connection between the predictands and predictors. In this study, calibration processes
of temperature and precipitation were determined as unconditional and conditional processes,
respectively [16]. Daily precipitation amounts depend on an intermediate variable such as the
probability of wet-day occurrence. The SDSM is calibrated by artificially inflating the variance inflation
(VIF) and bias correction (BC) of downscaled series based on their change ranges to accord better
with daily observations. Furthermore, 0 < VIF < 10 indicates no correlation; 10 < VIF < 100 indicates
a moderate correlation; VIF > 100 indicates a high correlation. The VIF default value is 12. The value
of BC ranges from 0 to 2. The BC default value is 1.0, which indicates no bias correction [44,47].

In this study, the coefficient of determination (R?), the root mean square error (RMSE), and the
Nash-Sutcliffe efficiency coefficient (NSE) were used to evaluate the effect of model calibration and
validation, which can be expressed as follows:

=0, -0) (5~ P))°

R? = — — 3)
Y, (0, - 0)* 2N, (P~ P)
N 0= R)
RMSE = B a— 4)
N (0. _ p)2
NSE=1- M Q)
YN, (0;—0)

where N is the length of time, O; is the observed value, P; is the simulated value, and O is the mean of
the observed values.

The future climate change scenarios of each meteorological station generated by the validated
SDSM were then interpolated to the whole Heihe River basin to identify the temporal variation
characteristics at different time scales and spatial changing patterns in the upper, middle, and lower
reaches of this basin.

3. Results and Discussion
3.1. CMIP5 Multi-Model Adaptive Assessment

3.1.1. Rank Scoring of Different Climate Variables

Figure 2 shows the evaluation results of the 23 GCMs, indicating their influences on the
precipitation, mean air temperature, maximum air temperature, and minimum air temperature.
The GCMs with the best simulation effects for the above four climate variables were CNRM-CM5
(7.15), CCSM4 (8.55), MPI-ESM-LR (6.94), and BCC-CSM1-1-M (8.75), respectively. Compared with the
significant differences of the precipitation simulation effects from the 23 GCMs, the RS values of all the
GCMs were above 5.0 in terms of mean air temperature simulation, implying good simulation effects,
while the RS values of the maximum air temperature and the minimum air temperature ranged from
3.43 to 6.33 and from 3.32 to 6.93, respectively.
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Figure 2. Results of performance evaluation from 23 GCMs by the score-based method for (a) precipitation;
(b) mean air temperature; (¢) maximum air temperature; and (d) minimum air temperature.

3.1.2. Sensitivity Analysis on Score-Based Evaluation Results

As shown in Figure 3, selection of climate variables has a significant impact on the rank
score results. For example, the RS value of BCC-CSM1-1-M is 6.66 when taking precipitation into
consideration, while the RS value comes up to 7.89 without consideration of precipitation, causing the
score ranking of the model to increase from 4th to 1st. Therefore, it is necessary to identify suitable
climate variables to evaluate GCM performance with respect to specific river basins for particular
research purposes, making the simulated results more accurate and convincing. According to the
sensitivity analysis results shown in Figure 3, RS value was most sensitive to precipitation in the
Heihe River basin, so the top five GCMs exhibiting the best performance of precipitation were selected
to use the SDSM to generate future climate change scenarios, and these GCMs were CNRM-CMS5,
MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, and CANESM2.
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Figure 3. Sensitivity analysis for climate variables.



Water 2019, 11, 347 9 of 20

3.2. Projection of Future Climate Change

3.2.1. Screen Predictors

Ideally, candidate predictor variables should be physically and conceptually sensible with respect
to the predictand, readily available from archives of ERA-40 reanalysis data and GCM output,
and accurately modeled by GCMs [45]. Additionally, seasonal correlation analysis, partial correlation
analysis, and scatter plots of the SDSM were used to analyze the daily observation data measured at
the meteorological stations and the ERA-40 reanalysis data to screen and select the predictors needed
for the various climate variables corresponding to the specific 17 meteorological stations surrounding
the Heihe River basin and to assure that the predictors strongly and consistently physically correlated
with the predictands. Table 3 shows the predictors of precipitation, mean air temperature, maximum
air temperature, and minimum air temperature selected for each station, respectively. For detailed
descriptions of the selected predictors, refer to Guo et al. [48] and Fan et al. [49].

Table 3. Selected predictors according to different predictands of the 17 meteorological stations.

Stations Tmax Tmin Tmean Precipitation
Jikede mslp, p5ta, mslp, p5tz;,h p7ta, I}:Sta, mslp, p5Sta, p7ta,  Ispr, mslp, I£>7ta, pSta,
p7ta, p8ta, ta2m ta2m, p7hu, p8hu p8ta, ta2m ta2m, p7hu, p8hu
Ejin Banner mslp, p7ta, mslp, p5ta, p7ta, p8ta, mslp, p5ta, p7ta, lspr, p7ta, p8ta, ta2m,
p8ta, ta2m ta2m, p7hu, p8hu p8ta, ta2m pShu, p7hu, p8hu
Guaizihu mslp, p7ta, mslp, p5ta, p7ta, mslp, p7ta, Ispr, p7ta, p8ta, ta2m,
p8ta, ta2m pSta, ta2m pSta, ta2m p5Shu, p7hu, p8hu
mslp, p7ta, mslp, p5ta, p7ta, p8ta, mslp, p7ta, Ispr, mslp, p7ta, pSta,
Yumen Town
p8ta, ta2m ta2m, p7hu pSta, ta2m ta2m, p7hu, p8hu
Jiuquan mslp, p7ta, mslp, p5ta, p7ta, p8ta, mslp, p7ta, Ispr, mslp, p7ta, pSta,
p8ta, ta2m ta2m, p7hu p8ta, ta2m ta2m, p7hu, p8hu
Jinta mslp, p7ta, mslp, p5ta, p7ta, p8Sta, mslp, p7ta, Ispr, mslp, p7ta, pSta,
p8ta, ta2m ta2m, p7hu, p8hu p8ta, ta2m ta2m, p7hu, p8hu
Dinexin mslp, p7ta, mslp, p5ta, p7ta, p8ta, mslp, p7ta, Ispr, mslp, p7ta, pSta,
& p8ta, ta2m ta2m, p7hu, p8hu p8ta, ta2m ta2m, p7hu, p8hu
Gaotai mslp, p7ta, p5ta7,k11:>8ta, EAZm, mslp, p7ta, Ispr, mslp7,k1137ta, 1}3\8ta,
p8ta, ta2m p7hu, p8hu p8ta, ta2m ta2m, p7hu, p8hu
. mslp, p7ta, mslp, p5ta, p7ta, mslp, p7ta, Ispr, mslp, p7ta, pSta,
Alxa Right Banner p8ta, ta2m pSta, ta2m pSta, ta2m ta2m, p7hu, pShu
mslp, p5ta, pb5ta, p7ta, Ispr, mslp, p7ta, pSta,
Tuole p5ta, ta2m, p8hu
p7ta, p8ta, ta2m p8ta, ta2m ta2m, pShu
Yeniugou mslp, p5ta, pSta, tt;iZm, EShu, pb5ta, p7ta, Ispr, mslp, }fﬁta, pSta,
p7ta, p8ta, ta2m p7hu, p8hu p8ta, ta2m ta2m, p7hu, p8hu
Zhangve mslp, p7ta, p5Sta, ta2m, p5hu, mslp, p5ta, p7ta, lspr, mslp, p7ta, p8ta,
&y p8ta, ta2m p7hu, p8hu p8ta, ta2m ta2m, p7hu, p8hu
Qilian mslp, p5ta, ta2m, p5hu, mslp, p5Sta, p7ta,  lspr, mslp, p7ta, p8ta,
p7ta, p8ta, ta2m p7hu, pShu pS8ta, ta2m ta2m, p7hu, pShu
Gangcha mslp, p5ta, p5ta, ta2m, pShu, pbSta, p7ta, Ispr, mslp, p7ta, pSta,
p7ta, p8ta, ta2m p7hu, pShu pSta, ta2m ta2m, p7hu, pShu
Shandan mslp, p7ta, pbta, p8ﬁ1, taZI’}I;I, pShu, mslp, p5ta, Ispr, mslp, ﬁ)7ta, I})\Sta,
p8ta, ta2m p7hu, p8hu p7ta, p8ta, ta2m ta2m, p7hu, p8hu
Yongchang mslp, p7ta, p5ta, p8ta, ta2m, p5hu, mslp, p7ta, Ispr, mslp, p7ta, pSta,
p8ta, ta2m p7hu, p8hu p8ta, ta2m ta2m, p7hu, p8hu
Menyuan mslp, p5ta, p5Sta, ta2m, p5hu, mslp, p5Sta, p7ta,  lspr, mslp, p7ta, p8ta,
p7ta, p8ta, ta2m p7hu, p8hu p8ta, ta2m ta2m, p7hu, p8hu

3.2.2. SDSM Calibration and Validation

In this study, the period from 1961 to 1990 was selected as the calibration period, while the period
from 1991 to 2000 was used as the validation period. The optimal empirical statistical relationships
of each station were established between predictands and selected predictors by adjusting the two
parameters of VIF and BC [47]. As shown in Table 4, the R? values of the mean air temperature
from the 17 meteorological stations surrounding the Heihe River basin during the calibration
period (1961-1990) and validation period (1991-2000) were 0.954-0.983 and 0.957-0.987, respectively,
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indicating a significant correlation between the simulated and measured values. The RMSE during the
calibration period and validation period were 1.61-2.22 °C and 1.585-2.259 °C, respectively, most of
which were within 20% of the measured values (Table 5). The NSE values of the mean air temperature
during both the calibration period and validation period were all greater than 0.96 (Table 6), implying
that the simulation effect of this model was outstanding. To sum up, the SDSM was effective in
simulating the mean air temperature for the meteorological stations surrounding the Heihe River
basin, and could therefore be used for the projections of the mean air temperature in the next step.

Likewise, R? values of the maximum air temperature and the minimum air temperature for each station
during the calibration period and validation period were mostly above 0.9, indicating a good correlation
between the simulated value and the measured value. During the calibration period and validation
period, the RMSE of the maximum air temperature for most stations was smaller than 2 °C, while that of
the minimum air temperature was within 3 °C, implying a better simulation effect of the maximum air
temperature than that of the minimum air temperature. However, both of their NSEs were greater than
0.9, indicating that the model had good simulation efficiency. Due to the excellent simulation effect on the
maximum air temperature and good simulation effect on the minimum air temperature, the SDSM could be
used to downscale the maximum and minimum air temperature from GCM outputs.

The R? values of precipitation during the calibration period and validation period, compared
with those of the air temperature, were slightly lower, especially in the lower reaches of the desert
region, including Ejin Banner, Jikede, and Guaizihu, with values of R? lower than 0.5. Precipitation
is not only affected by atmospheric circulation factors but also by the underlying surface conditions
and human activities, and thus is difficult to accurately simulate with the SDSM [50]. Furthermore,
the arid region of Northwest China is one of the areas in the world that responds most sensitively to
global climate change [5], where its climate change is complex and diverse. Qi et al. [51] and Hao et
al. [52] both pointed out that the R? values of precipitation in the upper and middle reaches centered
around Zhangye and Gaotai stations were all less than 0.5. In this study, the empirical statistical
relationships between predictands and predictors were set to the optimal condition, deriving larger
R? values (>0.5) for all meteorological stations located in the upper and middle reaches, and much
larger R? values (>0.6) for the Gaotai and Zhangye stations, implying a relatively better simulation
effect of precipitation. However, the downstream area is characterized by the vast Gobi desert, where
the runoff is greatly reduced or disappears through evaporation and river leakage [31]. Some studies
have shown the increasingly apparent phenomenon that climate change modeling in arid zones is
extremely uncertain because of the extreme natural variability (both temporal and spatial) of the desert
climate [53]. Meanwhile, given the low precipitation frequency in arid areas, the amount of useful data
for the establishment of linear regression equations between predictands and predictors is limited.
Nevertheless, in this study, the R? values of almost all of the stations surrounding the whole Heihe
River basin were still larger than 0.5. The RMSE of each station was within 20% of the measured
precipitation, which was considered acceptable. The NSE of each station during the calibration period
and validation period were 0.333-0.838 and 0.450-0.873, respectively. The NSEs of all stations were all
above 0.55 with the exception of the Ejin Banner, Jikede, and Guaizihu stations in the lower reaches for
the reasons demonstrated above. To sum up, the overall effect achieved by the SDSM in simulating
precipitation and temperature was acceptable. Future precipitation scenarios can be projected using
the SDSM in the Heihe River basin.

Table 4. Deterministic coefficients of the statistical downscaling model (SDSM) during calibration and
validation periods.

Stati Tmax Tmin Tmin Precipitation
ations
Calibration  Validation  Calibration  Validation  Calibration  Validation  Calibration Validation
Ejin 0.985 0.989 0.952 0.959 0.983 0.987 0.379 0.626
Banner
Jikede 0.981 0.987 0.938 0.953 0.978 0.984 0.355 0.535

Guaizihu 0.972 0.984 0.933 0.939 0.980 0.982 0.449 0.510
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Table 4. Cont.

Stati Tmax Tmin Tmin Precipitation
ations Calibration  Validation  Calibration  Validation  Calibration  Validation  Calibration Validation
Yumenzhen 0.977 0.978 0.949 0.942 0.981 0.981 0.593 0.492
Jiuquan 0.980 0.983 0.953 0.956 0.981 0.983 0.559 0.629
Jinta 0.978 0.978 0.960 0.950 0.982 0.979 0.637 0.711
Dingxin 0.975 0.976 0.956 0.953 0.981 0.979 0.649 0.571
Gaotai 0.974 0.976 0.942 0.942 0.977 0.977 0.602 0.689
AlxaRight 0972 0.975 0.944 0.950 0.980 0.983 0.595 0.708
Banner
Tuole 0.959 0.966 0.940 0.945 0.965 0.972 0.791 0.798
Yeniugou 0.948 0.953 0.928 0.937 0.960 0.965 0.837 0.840
Zhangye 0.940 0.937 0.941 0.942 0.963 0.962 0.607 0.617
Qilian 0.956 0.958 0.878 0.884 0.970 0.972 0.811 0.812
Gangcha 0.959 0.960 0.948 0.956 0.975 0.977 0.633 0.775
Shandan 0.961 0.965 0.931 0.924 0.975 0.973 0.684 0.744
Yongchang 0.944 0.949 0.938 0.944 0.964 0.967 0.840 0.874
Menyuan 0.921 0.927 0.906 0.916 0.954 0.957 0.806 0.796

Table 5. Root mean square error (RMSE) results of the SDSM during calibration and validation periods.

Stations Tmax Tmin Tmin Precipitation
Calibration Valitation Calibration Valitation Calibration Valitation Calibration Valitation
Ejin Banner 1.755 1.474 3.013 2.764 1.841 1.607 4.807 4.053
Jikede 1.953 1.557 3.402 2.946 2.106 1.772 4.891 2.535
Guaizihu 2.388 1.797 3.540 3.504 1.991 1.920 5.473 5.509
Yumenzhen 1.829 1.818 2.492 2.614 1.633 1.654 5.579 5.294
Jiuquan 1.802 1.587 2.566 2.435 1.689 1.585 5.113 4984
Jinta 1.884 1.862 2.268 2.487 1.660 1.750 4.755 5.029
Dingxin 1.882 1.820 2.296 2.357 1.610 1.656 7.083 7.087
Gaotai 1.933 1.816 2.637 2.561 1.762 1.725 8.483 6.811
Abxa Right 2.061 1.891 2.874 2752 1.711 1.588 9.348 7.674
Banner
Tuole 1.903 1.790 2.760 2.662 1.953 1.773 14.057 14.814
Yeniugou 1.987 1.921 2.975 2.789 1.974 1.860 16.776 16.742
Zhangye 2.820 2.908 2.722 2.689 2.221 2.259 9.161 8.380
Qilian 1.938 1.900 2.866 2.566 1.675 1.637 16.701 18.339
Gangcha 2.275 2.221 2.590 2425 1.832 1.768 12.581 9.468
Shandan 2.039 1.945 2.638 2.764 1.644 1.681 11.571 11.940
Yongchang 1.947 1.873 2.368 2.311 1.687 1.637 14.761 13.258
Menyuan 2.393 2401 3.138 3.031 2.011 1.965 19.728 19.627

Table 6. Nash-Sutcliffe efficiency coefficient (NSE) results of the SDSM during calibration and

validation periods.
. Tmax Tmin Tmin Precipitation
Stations
Calibration Valitation Calibration Valitation Calibration Valitation Calibration Valitation

Ejin Banner 0.985 0.988 0.952 0.955 0.983 0.986 0.333 0.623
Jikede 0.981 0.987 0.938 0.948 0.978 0.983 0.354 0.538
Guaizihu 0.972 0.983 0.933 0.932 0.980 0.981 0.411 0.450
Yumenzhen 0.977 0.977 0.949 0.942 0.981 0.980 0.592 0.487
Jiuquan 0.980 0.983 0.953 0.955 0.981 0.982 0.555 0.628
Jinta 0.978 0.977 0.960 0.950 0.982 0.979 0.611 0.709
Dingxin 0.975 0.975 0.956 0.953 0.981 0.979 0.647 0.521
Gaotai 0.974 0.975 0.942 0.942 0.977 0.976 0.584 0.676
AlxaRight 0972 0.975 0.944 0.946 0.980 0.982 0.593 0.707

Banner
Tuole 0.959 0.963 0.940 0.945 0.965 0.971 0.780 0.788
Yeniugou 0.948 0.951 0.928 0.936 0.960 0.964 0.824 0.825
Zhangye 0.940 0.933 0.941 0.941 0.963 0.961 0.572 0.614
Qilian 0.956 0.957 0.954 0.984 0.970 0.971 0.809 0.794
Gangcha 0.959 0.958 0.948 0.949 0.975 0.974 0.622 0.766
Shandan 0.961 0.963 0.931 0.923 0.975 0.973 0.674 0.740
Yongchang 0.944 0.949 0.938 0.942 0.964 0.967 0.838 0.873

Menyuan 0.921 0.925 0.906 0.910 0.954 0.956 0.799 0.779




Water 2019, 11, 347 12 of 20

3.2.3. Future Precipitation Scenarios

Based on the constructed SDSM, the selected top five GCMs were used to project the precipitation
scenarios for the baseline period (1976-2005) and future period (2018-2047) in three RCP scenarios
(RCP2.6, RCP4.5, and RCP8.5) for 17 meteorological stations surrounding the Heihe River basin.
Changes in precipitation between the baseline period and future period were calculated to analyze
the variation characteristics, which were both generated by GCM outputs, efficiently eliminating the
systematic error of the GCMs [54]. As shown in Figure 4a, projected changes in future mean annual
precipitation in the Heihe River basin varied at different meteorological stations. The CNRM-CM5
model, which showed the best performance in precipitation assessment, indicated a decreasing trend
in the next 30 years compared with the baseline period in all three RCP scenarios, with a reduction
within —20%. Changes in precipitation projected by the other four GCMs at the same meteorological
stations in different RCP scenarios showed similar patterns, the amplifications of which were mostly
within +10%. Consistent with adaptive assessment results of GCMs, the CANESM2 model that got the
lowest rank score value of the precipitation among the selected GCMs projected the greatest variation
range, from +32.4 to —41.2%.

W RCP26 MRCPYS M RCPSS 2t + 2ECNRM.CM5
G ® 2 ® 2 MPI-ESM-LR
- ZEMPLESM-MR
g m ::’n A : 1 i ¢ - 2AMRICGOMS
£ W s o} 1 H ;4 ; ’ ¥ 26CANESM2
5 o : 9 & L ¥ L s L4 n " * LICNRM-CM5
E 1w I W % K S A - ASMPLESN L B
g 0 _ ‘ﬂ"" Bl ¥ i £ o 5 P ; i« i & i AR sanmeMar
& o m : ! . £ R : o g & ¢ A 3 s 4 X « 4 3MRI-CGOMS
& -2 - F g * X ﬁ L] . $ cascanesm2
= Z a8 * e ? ] * B5CRRM-CM5
3 2 b4 é, B BSMPI-ESM-TR
Ew a0 b BSMPI-ESM-MR
50 - BAMRI-CGOMS
CHEACEMY: MELERCER. MELESVEMR MEECGEMS. CANTMR JAN FEB MAY ATRMAY JUN JUL AUG SEP OCTNOVDEC SPRSUMAUTWINALL o0 EoM2
(a) (b)

Figure 4. Multi-model projected changes in mean annual precipitation (a) in different Representative
Concentration Pathway (RCP) scenarios and (b) at different time scales in the Heihe River basin.

The monthly, seasonal, and annual variation ranges of precipitation projected by multi-GCMs in the
three RCP scenarios are shown in Figure 4b. The changes in future precipitation in the Heihe River basin in
different scenarios varied significantly from —28 to 43% at different time scales. The summer precipitation
in most scenarios showed a downward trend with a maximum decline of —14.2%, while simulated results
of spring precipitation by all GCMs showed an upward trend with a maximum increase of 25.1%, except
for the CNRM-CMS5 model. The precipitation in July exhibited the greatest reduction (—27.3%), while the
greatest increase in precipitation occurred in November with a rate of 42.8%.

Based on the interpolation of the mean annual precipitation from the 17 meteorological stations
to the whole basin during the baseline period and the future period, spatial variations in precipitation
in the upper, middle, and lower reaches of the Heihe River basin were obtained in the RCP2.6, RCP4.5,
and RCP8.5 scenarios, respectively. As shown in Figure 5, the mean annual precipitation scenarios
projected by the CNRM-CMS5 presented a consistent downward trend in the upper, middle, and lower
reaches, and the reduction of precipitation gradually decreased from upstream to downstream.
In the upper reaches, the projected precipitation scenarios of the other four GCMs mostly showed
a downward trend with a maximum decline of —11.9%, except for MRI-CGCMS3. In the middle
reaches, only the precipitation projected by CANESM2 and CNRM-CM5 showed a downward trend,
while the projected precipitation of the other three GCMs showed an upward trend, and the overall
variation ranged from —11.4 to 6.9%. The variation in projected precipitation in the lower reaches was
much more dramatic than that in the upper and middle reaches, with the changing range between
—34.9 and 11.3%. Significant differences in projected precipitation by different GCMs were also
screened in lower reaches; the simulated precipitation results of CANESM2 and MPI-ESM-MR showed
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an increasing trend, while the other three GCMs (CNRM-CM5, MPI-ESM-LR and MRI-CGCM3)
indicated a decreasing trend.

RCP45

d

(a) (b) (©

Figure 5. Multi-model projected spatial variations in mean annual precipitation: (a) RCP2.6; (b) RCP4.5;
(c) RCP8.5.

3.2.4. Future Maximum Air Temperature Scenarios

The mean annual maximum air temperature changes of each meteorological station simulated by
multi-models in the three scenarios in the basin are shown in Figure 6a. It can be clearly seen that the
maximum air temperature simulated by all GCMs in different scenarios showed an upward trend over
the next 30 years. Results simulated by most GCMs showed similar temperature amplifications as
follows: RCP8.5 > RCP4.5 > RCP2.6, i.e., the temperature amplification was greater as concentration of
CO, increased. Variations in the maximum air temperature in the 17 meteorological stations generated
by the MRI-CGCM3 model showed the smallest range between 0.5 and 1.3 °C, while variations in the
maximum air temperature generated by the CANESM?2 model indicated the largest range between 1.7
and 2.5 °C in most stations. Variations in the maximum air temperature simulated by other GCMs
ranged between 0.8 and 2.0 °C.
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(a) (b)

Figure 6. Multi-model projected change in mean maximum air temperature: (a) in different RCP
scenarios; (b) at different time scales in the Heihe River basin.

The monthly, seasonal, and annual variation ranges of the maximum air temperature projected
by multi-GCMs in the three RCP scenarios are shown in Figure 6b. The maximum air temperature
simulated by different GCMs also exhibited an increasing trend in all the three RCP scenarios at
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different time scales, and this is consistent with the above analysis. The maximum air temperature
simulated by the CANESM model in the RCP8.5 scenario mostly contributed to the upper limit values
of the variation ranges at different time scales, while simulations of the MRI-CGCM3 model in the
RCP2.6 scenario accounted for the lower limit values of the variation ranges. Monthly and seasonal
changes also showed significant differences among multi-models in the three scenarios. Compared
with the baseline period, the increase in the maximum air temperature in December was the most
obvious, with a maximum amplification of 3.2 °C. The increase in autumn was the most obvious with
a maximum amplification of 2.8 °C, while the increase in spring showed a relatively smaller variation
range than other seasons. Most of the remaining monthly and seasonal maximum air temperatures
increased between 0.5 and 2.0 °C.

Spatial variations in the maximum air temperature in the upper, middle, and lower reaches in the
Heihe River basin simulated by multi-GCMs in different scenarios are shown in Figure 7. The projected
scenarios of mean annual maximum air temperature by all GCMs in the three RCP scenarios implied
a consistent warming trend in the whole basin, and the increasing rates gradually amplified as the CO,
emission concentration increased. However, increasing rates in different regions exhibited significant
differences. The maximum air temperature projected by the CANESM model in the upper reaches in
the RCP8.5 scenario was the most amplified (+2.4 °C), while the projected minimum increase in the
maximum air temperature occurred in the lower reaches, which was simulated by the MRI-CGCM3
model in the RCP2.6 scenario (+0.5°C). Compared with the increases in the lower reaches, the increases
in the upper reaches projected in the three scenarios were slightly larger.

RCP26

(a) (b) (c)

Figure 7. Multi-model projected spatial variations in maximum air temperature in (a) RCP2.6;
(b) RCP4.5; (c) RCP8.5.

3.2.5. Future Minimum Air Temperature Scenarios

The mean annual minimum air temperature changes of each meteorological station simulated
by multi-models in the three scenarios in the Heihe River basin are shown in Figure 8a. Similar
to the increasing trend of the maximum air temperature, the projected minimum air temperature
showed an upward trend in different scenarios, which increased corresponding to the elevated CO,
concentration. Furthermore, the greatest amplifications were also simulated by the CANESM2 model
in all three RCP scenarios (1.3-2.3 °C), while lower increases simulated by the other GCMs ranged
from 0.5 to 1.5 °C.
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Figure 8. Multi-model projected change in mean maximum air temperature (a) in different RCP
scenarios and (b) at different time scales in the Heihe River basin.

Figure 8b shows the spatial variations in the projected minimum air temperature at monthly;,
seasonal and annual scales. The minimum air temperature simulated by different GCMs also exhibited
an increasing trend in all the three RCP scenarios at different time scales, which were consistent with
the temporal variations in the maximum air temperature. The minimum air temperature simulated
by the CANESM model in the RCP8.5 scenario mostly contributed to the upper limit values of the
variation ranges at different time scales, while simulations of the MRI-CGCM3 model in the RCP2.6
scenario accounted for the lower limit values of the variation ranges. As to monthly variations,
the minimum air temperature increased the most in May, June, September and December amplifying
over 2.5 °C. And the projected largest increase in the seasonal minimum air temperature occurred
in summer, with the highest amplification of 2.5 °C. Different from variations in the maximum air
temperature, increases of the minimum air temperature in most scenarios were much more densely
concentrated between 0.5 and 1.5 °C at different time scales, which were lower than increases of the
maximum air temperature.

Spatial variations in the minimum air temperature in the upper, middle and lower reaches
in the Heihe River basin simulated by multi-GCMs in different scenarios are shown in Figure 9.
The projected scenarios of mean annual minimum air temperature by all GCMs in the three RCP
scenarios, similar to the maximum air temperature, implied a consistent warming trend in the whole
basin, and the increasing rates gradually amplified as the CO;, emission concentration increased.
However, the increasing rates exhibited significant differences in different reaches. The minimum air
temperature projected by the CANESM model in the upper reaches in the RCP8.5 scenario was the most
amplified (+2.2 °C), while the projected minimum increase occurred in the lower reaches, which was
simulated by the MRI-CGCMB3 model in the RCP2.6 scenario (+0.5 °C). Although increases of both
maximum and minimum air temperature in the upper reaches projected in the three scenarios were
larger than those in the middle and lower reaches, the amplifications of the minimum air temperature
were much more significant compared with those of the maximum air temperature.
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Figure 9. Multi-model projected spatial variations in minimum air temperature in (a) RCP2.6;
(b) RCP4.5; (c) RCP8.5.

4. Conclusions

In this study, a statistical downscaling model (SDSM) was constructed based on observed
data from 17 meteorological stations, 23 GCM data, and ERA-40 data in the Heihe River basin,
which projected future climate change scenarios by multi-models under three RCP scenarios. The main
conclusions are as follows:

(1) Among the 23 GCMs selected from CMIP5 using for performance evaluation in the Heihe
River basin, precipitation was best represented by CNRM-CM5, MPI-ESM-LR, and MPI-ESM-MR.
Maximum air temperature was best simulated by MPI-ESM-LR, IPSL-CM5A-LR, and BCC-CSM-1-1-M,
while minimum air temperature was best simulated by BCC-CSM1-1-M, MPI-ESM-MR, and GISS-E2-R.
The sensitivity analysis for climate variables implied that the GCMs’ adaptive assessment results were
influenced significantly by climate variables, and precipitation was the most sensitive variable.

(2) The SDSM has better effects in terms of temperature simulation for the Heihe River basin.
However, the R? values of precipitation during the calibration period and validation period, compared
with those of air temperature, were slightly lower and were still larger than 0.5 at most stations.
The RMSE of each station was within 20% of the measured precipitation, and this was considered
acceptable. The NSE values of each station during the calibration period and validation period were
0.333-0.838 and 0.450-0.873, respectively. These statistical parameters meet the accuracy requirements,
but they also indicate that it is difficult to predict future precipitation more accurately than temperature.
In view of this conclusion, the reasons are summarized as follows: (i) Because the precipitation of the
Heihe River basin is not only affected by atmospheric circulation factors but also by underlying surface
conditions and human activities, it is difficult to accurately capture characteristics of precipitation.
(ii) The inland arid region of Northwest China is an area that, on a global scale, responds most
sensitively to global climate change, and the downstream area of this region is mostly covered by the
Gobi desert, which has low precipitation frequency and is highly unpredictable because of the extreme
natural variability.

(3) Projected changes in future mean annual precipitation in the Heihe River basin varied among
meteorological stations, which indicates a dramatic decreasing trend over the next 30 years compared
with the baseline period in the three RCP scenarios (RCP2.6, RCP4.5, and RCP8.5). The changes in
future precipitation in the Heihe River basin in the different scenarios varied significantly with
seasonal changes at different time scales. The summer precipitation in most scenarios showed
a downward trend, while the projected spring precipitation by all GCMs showed an upward trend
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except CNRM-CMb5. The spatial variations in precipitation in the upper, middle, and lower reaches
of the Heihe River basin were obtained in the three scenarios, and a downward trend in projected
precipitation was shown by most GCMs in the upper reaches, with a maximum decline of 11.92%.
In the middle reaches, projected precipitation by most GCMs showed a downward trend, and the
variation ranged from —11.4 to 6.9%. Due to the extremely natural variability in the downstream
area covered mainly by the Gobi desert and the relatively lower model performance, variations in the
projected precipitation in the lower reaches were much more dramatic than those in the upper and
middle reaches, with the changing range between —24.9 and 11.3%.

(4) The maximum air temperature and minimum air temperature simulated by all GCMs in
all scenarios (RCP2.6, RCP4.5, RCP8.5) showed an upward trend for the next 30 years. Results
simulated by most GCMs exhibited an increasing air temperature due to the amplification of typical
concentration targets, i.e., air temperature amplification was greater as concentration of CO, increased
in the same model. Meanwhile, compared with the minimum air temperature, the increase range
of the maximum air temperature in all scenarios was greater. Compared with the increases in the
lower reaches, the increases in the upper reaches projected in multiple scenarios were slightly larger.
The maximum air temperature simulated by different GCMs also exhibited an increasing trend in all
the three RCP scenarios at different time scales, and the increase in autumn was the most obvious with
a maximum amplification of 2.8 °C. In contrast, the projected largest increase in the seasonal minimum
air temperature occurred in summer, with the highest amplification of 2.5 °C.

In this study, the top 5 GCMs were selected by rank score to use the SDSM to project future
climate change in the RCP2.6, RCP4.5 and RCP8.5 scenarios in the inland arid regions of Northwest
China. The results could provide scientific reference for sustainable agricultural production and
water resources management in arid inland areas subject to climate change. However, there are
too many uncertainties in projected extreme events to obtain accurate results, especially climate
events that are precipitation-related. Such uncertainties pertain to events, the influence of predictors,
the underlying surface conditions of the simulated area, and human activities. Therefore, further
research is still needed.
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