# A Review on Hydrodynamics of Free Surface Flows in Emergent Vegetated Channels

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Hydrodynamics of Emergent Vegetated Flows

#### 2.1. Vertical Structure

#### 2.2. Mean Flow and Distribution of Turbulent Kinetic Energy (TKE) in the Horizontal Plan

^{2}in a 3.5 m-long reach populated with rigid cylinders and with longitudinally varying density of cylinders.

#### 2.3. Horizontal Structure

#### 2.4. Drag and Frictional Characteristics

#### 2.5. Vegetation in Bank Protection and Sediment Transport

## 3. Further Research Prospects

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Yager, E.M.; Schmeeckle, M.W. The influence of vegetation on turbulence and bed load transport. J. Geophys. Res. Earth Surf.
**2013**, 118, 1585–1601. [Google Scholar] [CrossRef] - Järvelä, J. Flow resistance of flexible and stiff vegetation: A flume study with natural plants. J. Hydrol.
**2002**, 269, 44–54. [Google Scholar] [CrossRef] - O’Hare, M.T. Aquatic vegetation—A primer for hydrodynamic specialists. J. Hydraul. Res.
**2015**, 53, 687–698. [Google Scholar] [CrossRef] - Ricardo, A.M.; Franca, M.J.; Ferreira, R.M.L. Turbulent flows within random arrays of rigid and emergent cylinders with varying distribution. J. Hydraul. Eng.
**2016**, 142, 4016022. [Google Scholar] [CrossRef] - Schoelynck, J.; De Groote, T.; Bal, K.; Vandenbruwaene, W.; Meire, P.; Temmerman, S. Self-organised patchiness and scale-dependent bio-geomorphic feedbacks in aquatic river vegetation. Ecography
**2012**, 35, 760–768. [Google Scholar] [CrossRef] - Meire, D.W.S.A.; Kondziolka, J.M. Nepf, H.M. Interaction between neighboring vegetation patches: Impact on flow and deposition. Water Resour. Res.
**2014**, 50, 3809–3825. [Google Scholar] [CrossRef] [Green Version] - Lichtenstein, D. Types of Aquatic Plants Sciencing.com. Available online: https://sciencing.com/types-of-aquatic-plants-12003789.html (accessed on 9 January 2020).
- Ricardo, A.M.; Koll, K.; Franca, M.J.; Schleiss, A.J.; Ferreira, R.M.L. The terms of turbulent kinetic energy budget within random arrays of emergent cylinders. Water Resour. Res.
**2014**, 50, 4131–4148. [Google Scholar] [CrossRef] - Tanino, Y.; Nepf, H.M. Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. J. Hydraul. Eng.
**2008**, 134, 34–41. [Google Scholar] [CrossRef] - Ferreira, R.M.L.; Ricardo, A.M.; Franca, M.J. Discussion of “Laboratory Investigation of Mean Drag in a Random Array of Rigid, Emergent Cylinders” by Yukie Tanino and Heidi M. Nepf. J. Hydraul. Eng.
**2009**, 135, 690–693. [Google Scholar] [CrossRef] - Stoesser, T.; Kim, S.J.; Diplas, P. Turbulent flow through idealized emergent vegetation. J. Hydraul. Eng.
**2010**, 136, 1003–1017. [Google Scholar] [CrossRef] - Chang, K.; Constantinescu, G. Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders. J. Fluid Mech.
**2015**, 776, 161–199. [Google Scholar] [CrossRef] - White, B.L.; Nepf, H.M. Shear instability and coherent structures in shallow flow adjacent to a porous layer. J. Fluid Mech.
**2007**, 593, 1–32. [Google Scholar] [CrossRef] - Chen, L.; Stone, M.C.; Acharya, K.; Steinhaus, K.A. Mechanical analysis for emergent vegetation in flowing fluids. J. Hydraul. Res.
**2011**, 49, 766–774. [Google Scholar] [CrossRef] - Tinoco, R.O.; Cowen, E.A. The direct and indirect measurement of boundary stress and drag on individual and complex arrays of elements. Exp. Fluid.
**2013**, 54, 1–16. [Google Scholar] [CrossRef] - Fathi-Maghadam, M.; Kouwen, N.; Nonsubmerged, N. Vegetative Roughness on Floodplains. J. Hydraul. Eng.
**1997**, 123, 51–57. [Google Scholar] [CrossRef] - Chen, Z.; Ortiz, A.; Zong, L.; Nepf, H.M. The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation. Water Resour. Res.
**2012**, 48, W09517. [Google Scholar] [CrossRef] - Mitul, L.; Rominger, J.; Nepf, H. Interaction between flow, transport and vegetation spatial structure. Environ. Fluid Mech.
**2008**, 8, 423–439. [Google Scholar] [CrossRef] - Wu, F.-C.; Shen, H.W.; Chou, Y.-J. Variation of roughness coefficients for unsubmerged and submerged vegetation. J. Hydraul. Eng.
**1999**, 125, 934–942. [Google Scholar] [CrossRef] [Green Version] - Liu, D.; Diplas, P.; Fairbanks, J.D.; Hodges, C.C. An experimental study of flow through rigid vegetation. J. Geophys. Res.
**2008**, 113, 1–16. [Google Scholar] [CrossRef] - Pu, J.H.; Wei, J.; Huang, Y. Velocity Distribution and 3D Turbulence Characteristic Analysis for Flow over Water-Worked Rough Bed. Water
**2017**, 9, 668. [Google Scholar] [CrossRef] [Green Version] - Liu, C.; Shan, Y. Analytical model for predicting the longitudinal profiles of velocities in a channel with a model vegetation patch. J. Hydrol.
**2019**, 576, 561–574. [Google Scholar] [CrossRef] - Tong, X.; Liu, X.; Yang, T.; Hua, Z.; Wang, Z.; Liu, J.; Li, R. Hydraulic Features of Flow through Local Non-Submerged Rigid Vegetation in the Y-Shaped Confluence Channel. Water
**2019**, 11, 146. [Google Scholar] [CrossRef] [Green Version] - Heidari, M. Wake Characteristics of Single and Tandem Emergent Cylinders in Shallow Open Channel Flow. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada, 2016. [Google Scholar]
- Nicolle, A.; Eames, I. Numerical study of flow through and around a circular array of cylinders. J. Fluid Mech.
**2011**, 679, 1–31. [Google Scholar] [CrossRef] [Green Version] - Nepf, H.M. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech.
**2012**, 44, 123–142. [Google Scholar] [CrossRef] [Green Version] - White, B.L.; Nepf, H.M. A vortex-based model of velocity and shear stress in a partially vegetated shallow channel. Water Resour. Res.
**2008**, 44, WR005651. [Google Scholar] [CrossRef] - Meftah, M.B.; Mossa, M. Partially obstructed channel: Contraction ratio effect on the flow hydrodynamic structure and prediction of the transversal mean velocity profile. J. Hydrol.
**2016**, 542, 87–100. [Google Scholar] [CrossRef] - Naot, D.; Nezu, I.; Nakagawa, H. Hydrodynamic Behavior of Partly Vegetated Open Channels. J. Hydraul. Eng.
**1996**, 122, 625–633. [Google Scholar] [CrossRef] - Ikeda, S.; Yamada, T.; Toda, Y. Numerical study on turbulent flow and honami in and above flexible plant canopy. Int. J. Heat Fluid Flow
**2001**, 22, 252–258. [Google Scholar] [CrossRef] - Kim, S.J.; Stoesser, T. Closure modelling and direct simulation of vegetation drag in flow through emergent vegetation. Water Resour. Res.
**2011**, 47, W10511. [Google Scholar] [CrossRef] - Anjum, N.; Tanaka, N. Study on the flow structure around discontinued vertically layered vegetation in an open channel. J. Hydrodyn.
**2019**. [Google Scholar] [CrossRef] - Yamasaki, T.N.; de Lima, P.H.; Silva, D.F.; Cristiane, G.D.A.; Janzen, J.G.; Johannes, G.; Nepf, H.M. From patch to channel scale: The evolution of emergent vegetation in a channel. Adv. Water Res.
**2019**, 129, 131–145. [Google Scholar] [CrossRef] - Pu, J.H.; Hussain, A.; Guo, Y.; Vardakastanis, N.; Hanmaiahgari, R.; Lam, D. Submerged Flexible Vegetation Impact toward Open Channel Flow Velocity Distribution: An Analytical Modelling Study on Drag and Friction. Water Sci. Eng.
**2019**, 12, 121–128. [Google Scholar] [CrossRef] - Nepf, H.M. Drag, Turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res.
**1999**, 35, 479–489. [Google Scholar] [CrossRef] - Musleh, F.; Cruise, J. Functional Relationships of Resistance in Wide Flood Plains with Rigid Unsubmerged Vegetation. J. Hydraul. Eng.
**2006**, 132, 163–171. [Google Scholar] [CrossRef] - Maji, S.; Pal, D.; Hanmaiahgari, P.R.; Pu, J.H. Phenomenological Features of Turbulent Hydrodynamics in Sparsely Vegetated Open Channel Flow. J. Appl. Fluid Mech.
**2016**, 9, 2865–2875. [Google Scholar] [CrossRef] - Pu, J.H.; Tait, S.; Guo, Y.; Huang, Y.; Hanmaiahgari, R. Dominant Features in Three-Dimensional Turbulence Structure: Comparison of Non-Uniform Accelerating and Decelerating Flows. Environ. Fluid Mech.
**2018**, 18, 395–416. [Google Scholar] [CrossRef] [Green Version] - Maji, S.; Pal, D.; Hanmaiahgari, R.; Gupta, U. Hydrodynamics and turbulence in emergent and sparsely vegetated open channel flow. Environ. Fluid Mech.
**2017**, 17, 853–877. [Google Scholar] [CrossRef] - Heidari, M.; Balachandar, R.; Roussinova, V.; Barron, R.M. Characteristics of flow past a slender, emergent cylinder in shallow open channels. Phys. Fluid.
**2017**, 29, 065111. [Google Scholar] [CrossRef] - Kothyari, U.C.; Hashimoto, H.; Hayashi, K. Effect of tall vegetation on sediment transport by channel flows. J. Hydraul. Res.
**2009**, 47, 700–710. [Google Scholar] [CrossRef] - Vargas-Luna, A.; Crosato, A.; Uijttewaal, W.S.J. Effects of vegetation on flow and sediment transport: Comparative analyses and validation of predicting models. Earth. Surf. Proc. Landf.
**2015**, 40, 157–176. [Google Scholar] [CrossRef] - Baptist, M.J. Modelling Floodplain Biogeomorphology. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2005. [Google Scholar]
- Takemura, T.; Tanaka, N. Flow structures and drag characteristics of a colony-type emergent roughness model mounted on a flat plate in uniform flow. Fluid Dyn. Res.
**2007**, 39, 694–710. [Google Scholar] [CrossRef] - Liu, X.; Zeng, Y. Drag coefficient for rigid vegetation in subcritical open-channel flow. Environ. Fluid Mech.
**2017**, 17, 1035–1050. [Google Scholar] [CrossRef] - Van Rooijen, A.; Lowe, R.; Ghisalberti, M.; Conde-Frias, M.; Tan, L. Predicting Current-Induced Drag in Emergent and Submerged Aquatic Vegetation Canopies. Front. Mar. Sci.
**2018**, 5, 449. [Google Scholar] [CrossRef] - Wang, W.J.; Huaia, W.X.; Thompson, S.; Peng, W.Q.; Katul, G.G. Drag coefficient estimation using flume experiments in shallow non-uniform water flow within emergent vegetation during rainfall. Ecol. Indic.
**2018**, 92, 367–378. [Google Scholar] [CrossRef] - Shan, Y.; Liu, C.; Nepf, H. Comparison of drag and velocity in model mangrove forests with random and in-line tree distributions. J. Hydrol.
**2019**, 568, 735–746. [Google Scholar] [CrossRef] - Razmi, A.; Chamecki, M.; Nepf, H.M. Efficient numerical representation of the impacts of flexible plant reconfiguration on canopy posture and hydrodynamic drag. J. Hydraul. Res.
**2019**. [Google Scholar] [CrossRef] - Perucca, E.; Camporeale, C.; Ridolfi, L. Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resour. Res.
**2007**, 43, W03430. [Google Scholar] [CrossRef] - Motta, D.; Langendoen, E.J.; Abad, J.D.; García, M.H. Modification of meander migration by bank failures. J. Geophys. Res. Earth Surf.
**2014**, 119, 1026–1042. [Google Scholar] [CrossRef] - Liu, D.; Valyrakis, M.; Williams, R. Flow Hydrodynamics across Open Channel Flows with Riparian Zones: Implications for Riverbank Stability. Water
**2017**, 9, 720. [Google Scholar] [CrossRef] [Green Version] - Thorne, C.R. Effects of vegetation on riverbank erosion and stability. In Vegetation and Erosion; Thorne, J.B., Ed.; John Wiley and Sons: Chichester, UK, 1990; pp. 125–144. [Google Scholar]
- Simon, A.; Collison, A.J.C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth. Surf. Proc. Landf.
**2010**, 27, 527–546. [Google Scholar] [CrossRef] - Hopkinson, L.; Wynn, T. Vegetation impacts on near bank flow. Ecohydrology
**2009**, 2, 404–418. [Google Scholar] [CrossRef] - Baets, S.D.; Poesen, J.; Reubensm, B.; Wemans, J.; Baerdemaeker, D.; Muys, B. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil
**2008**, 305, 207–226. [Google Scholar] [CrossRef] - Abernethy, B.; Rutherfurd, I.D. The effect of riparian tree roots on the mass-stability of riverbanks. Earth. Surf. Proc. Landf. J. Br. Geomorphol. Res. Group
**2000**, 25, 921–937. [Google Scholar] [CrossRef] - Pollen, N. Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena
**2007**, 69, 197–205. [Google Scholar] [CrossRef] - Tal, M.; Paola, C. Effects of vegetation on channel morphodynamics: Results and insights from laboratory experiments. Earth. Surf. Proc. Landf.
**2010**, 35, 1014–1028. [Google Scholar] [CrossRef] - Krzeminska, D.; Kerkhof, T.; Skaalsveen, K.; Stolte, J. Effect of riparian vegetation on stream bank stability in small agricultural catchments. Catena
**2019**, 172, 87–96. [Google Scholar] [CrossRef] - Hupp, C.R.; Osterkamp, W.R. Riparian vegetation and fluvial geomorphic processes. Geomorphology
**1996**, 14, 277–295. [Google Scholar] [CrossRef] - Tooth, S.; Nanson, G.C. The role of vegetation in the formation of anabranching channels in an ephemeral river, Northern Plains, arid central Australia. Hydrol. Process.
**2000**, 14, 3099–3117. [Google Scholar] [CrossRef] - Micheli, E.R.; Kirchner, J.W.; Larsen, E.W. Quantifying the effect of riparian forest versus agricultural vegetation on river meander migration rates, central Sacramento river, California, USA. River Res. Appl.
**2010**, 20, 537–548. [Google Scholar] [CrossRef] - Hickin, E.J. Vegetation and river channel dynamics. Can. Geogr.
**1984**, 28, 111–126. [Google Scholar] [CrossRef] - Pollen, N.; Simon, A.; Collision, A.J.C. Advances in assessing the mechanical and hydrologic effect of riparian vegetation on streambank stability. Riparian Veg. Fluv. Geomorphol.
**2004**, 8, 125–139. [Google Scholar] - Graf, W.L. Fluvial Processes in Dryland Rivers; Springer: Berlin, Germany, 1988. [Google Scholar]
- Birken, A.S.; Cooper, D.J. Processes of Tamarix invasion and floodplain development along the lower Green River Utah. Ecol. Appl.
**2006**, 16, 1103–1120. [Google Scholar] [CrossRef] - Braudrick, C.A.; Dietrich, W.E.; Leverich, G.T.; Sklar, L.S. Experimental evidence for the conditions necessary to sustain meandering in coarse bedded rivers. Proc. Natl. Acad. Sci. USA
**2009**, 106, 16936–16941. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Camporeale, C.; Perucca, E.; Ridolfi, L.; Gurnell, A.M. Modeling the interactions between river morphodynamics and riparian vegetation. Rev. Geophys.
**2013**, 51, 379–414. [Google Scholar] [CrossRef] [Green Version] - Gran, K.; Wartman, E.D. Co-evolution of riparian vegetation and channel dynamics in an aggrading braided river system, Mount Pinatubo. Philippines. Earth Surf. Proc. Landf.
**2015**, 40, 1101–1115. [Google Scholar] [CrossRef] - Yu, M.-H.; Wei, H.-Y.; Wu, S.-B. Experimental study on the bank erosion and interaction with near-bank bed evolution due to fluvial hydraulic force. Int. J. Sediment Res.
**2015**, 30, 81–89. [Google Scholar] [CrossRef] - Yang, J.Q.; Nepf, H.M. A turbulence-based bed-load transport model for bare and vegetated channels. Geophys. Res. Lett.
**2018**, 45, 10428–10436. [Google Scholar] [CrossRef] - Armanini, A.; Cavedon, V. Bed-load through emergent vegetation. Adv. Water Resour.
**2019**, 129, 250–259. [Google Scholar] [CrossRef] - Armanini, A.; Cavedon, V.; Righetti, M. A probabilistic/deterministic approach for the prediction of the sediment transport rate. Adv. Water Res.
**2015**, 81, 10–18. [Google Scholar] [CrossRef] - Einstein, H.A. The Bed-Load Function for Sediment Transportation in Open Channel Flows; Technical Report No. 1026; U.S. Department of Agriculture: Washington, DC, USA, 1950.
- Rowiński, M.; Kubrak, J. A mixing-length model for predicting vertical velocity distribution in flows through emergent vegetation. Hydrol. Sci. J.
**2002**, 47, 893–904. [Google Scholar] [CrossRef] [Green Version] - Rubol, S.; Ling, B.; Battiato, I. Universal scaling-law for flow resistance over canopies with complex morphology. Sci. Rep.
**2018**, 8, 4430. [Google Scholar] [CrossRef] [PubMed] - Siniscalchi, F.; Nikora, V.I.; Aberle, J. Plant patch hydrodynamics in streams: Mean flow, turbulence, and drag forces. Water Resour. Res.
**2012**, 48, 1–14. [Google Scholar] [CrossRef] [Green Version] - Västilä, K.; Järvelä, J. Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem. Water Resour. Res.
**2014**, 50, 229–245. [Google Scholar] [CrossRef] - Caroppi, G.; Västilä, K.; Järvelä, J.; Rowiński, M.; Giugni, M. Turbulence at water-vegetation interface in open channel flow: Experiments with natural-like plants. Adv. Water Resour.
**2019**, 127, 180–191. [Google Scholar] [CrossRef] - Valyrakis, M.; Diplas, P.; Dancey, C.L. Entrainment of coarse particles in turbulent flows: An energy approach. J. Geophys. Res. Earth Surf.
**2013**, 118, 42–53. [Google Scholar] [CrossRef] [Green Version] - Valyrakis, M.; Diplas, C.L.; Dancey, K.; Greer, K.; Celik, A.O. Role of instantaneous force magnitude and duration on particle entrainment. J. Geophys. Res.
**2010**, 115. [Google Scholar] [CrossRef] - Diplas, P.; Dancey, C.L.; Celik, A.O.; Valyrakis, M.; Greer, K.; Akar, T. The role of impulse on the initiation of particle movement under turbulent flow conditions. Science
**2008**, 322, 717–720. [Google Scholar] [CrossRef] [Green Version] - Licci, S.; Nepf, H.M.; Delolme, C.; Marmonier, P.; Bouma, T.J.; Puijalon, S. The role of patch size in ecosystem engineering capacity: A case study of aquatic vegetation. Aquat. Sci.
**2019**, 81. [Google Scholar] [CrossRef]

**Figure 2.**(

**a**) Classification of aquatic plants; (

**b**) emergent vegetation types based on plant stiffness.

**Figure 4.**(

**a**) Time-averaged longitudinal velocity map (m/s); (

**b**) out-of-plane vorticity map (m

^{−1}); (

**c**) rate of production of TKE (m

^{2}s

^{−3}), at longitudinal position P8 and at 3.1 cm above the bed corresponding to 60% of the flow depth. (Source: Ricardo et al., 2014).

**Figure 6.**Patches of vegetation (highlighted in circles) present in the river systems (Background image is sourced from Google Earth).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Maji, S.; Hanmaiahgari, P.R.; Balachandar, R.; Pu, J.H.; Ricardo, A.M.; Ferreira, R.M.L.
A Review on Hydrodynamics of Free Surface Flows in Emergent Vegetated Channels. *Water* **2020**, *12*, 1218.
https://doi.org/10.3390/w12041218

**AMA Style**

Maji S, Hanmaiahgari PR, Balachandar R, Pu JH, Ricardo AM, Ferreira RML.
A Review on Hydrodynamics of Free Surface Flows in Emergent Vegetated Channels. *Water*. 2020; 12(4):1218.
https://doi.org/10.3390/w12041218

**Chicago/Turabian Style**

Maji, Soumen, Prashanth Reddy Hanmaiahgari, Ram Balachandar, Jaan H. Pu, Ana M. Ricardo, and Rui M.L. Ferreira.
2020. "A Review on Hydrodynamics of Free Surface Flows in Emergent Vegetated Channels" *Water* 12, no. 4: 1218.
https://doi.org/10.3390/w12041218