Effectiveness of Rainwater Harvesting Systems for Flood Reduction in Residential Urban Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study and Dataset
2.2. Inflow to the RWH Tank
2.3. Water Demand for Toilet Flushing
2.4. Water Balance Simulation
2.5. The Hydraulic Model: FLO 2-D
3. Results
3.1. Water Balance Simulation
3.2. Flood Volume Reduction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ammar, A.; Riksen, M.; Ouessar, M.; Ritsema, C. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. Int. Soil Water Conserv. Res. 2016, 4, 108–120. [Google Scholar] [CrossRef]
- Taffere, G.R.; Beyene, A.; Vuai, S.A.; Gasana, J.; Seleshi, Y. Reliability analysis of roof rainwater harvesting systems in a semi-arid region of sub-Saharan Africa: Case study of Mekelle, Ethiopia. Hydrol. Sci. J. 2016, 61, 1135–1140. [Google Scholar] [CrossRef]
- Al-Batsh, N.; Al-Khatib, I.A.; Ghannam, S.; Anayah, F.; Jodeh, S.; Hanbali, G.; Khalaf, B.; van der Valk, M. Assessment of Rainwater Harvesting Systems in Poor Rural Communities: A Case Study from Yatta Area, Palestine. Water 2019, 11, 585. [Google Scholar] [CrossRef]
- Campisano, A.; Lupia, F. A dimensionless approach for the urban-scale evaluation of domestic rainwater harvesting systems for toilet flushing and garden irrigation. Urban Water J. 2017, 14, 883–891. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Devkota, J.; Phillips, R.; Vargas-Parra, M.V.; Josa, A.; Gabarrell, X.; Apul, D. Life cycle and hydrologic modeling of rainwater harvesting in urban neighborhoods: Implications of urban form and water demand patterns in the US and Spain. Sci. Total Environ. 2018, 621, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Coombes, P.J.; E Barry, M. The relative efficiency of water supply catchments and rainwater tanks in cities subject to variable climate and the potential for climate change. Australas. J. Water Resour. 2008, 12, 85–100. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Duncan, H.P.; Hatt, B.E.; Ladson, A.R.; Walsh, C.J. The stormwater retention performance of rainwater tanks at the landparcel scale. In Proceedings of the 7th International Conference on Water Sensitive Urban Design, Melbourne Australia, 21–23 February 2012; p. 195. [Google Scholar]
- Steffen, J.; Jensen, M.; Pomeroy, C.A.; Burian, S.J. Water Supply and Stormwater Management Benefits of Residential Rainwater Harvesting in U.S. Cities. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 810–824. [Google Scholar] [CrossRef]
- Gerolin, A.; Kellagher, R.B.; Faram, M.G. Rainwater harvesting systems for stormwater management: Feasibility and sizing considerations for the UK. In Proceedings of the Novatech 2010—7th International Conference on Sustainable Techniques and Strategies for Urban Water Management, Lyon, France, 27 June–1 July 2010. [Google Scholar]
- Zhang, X.; Hu, M.; Chen, G.; Xu, Y. Urban Rainwater Utilization and its Role in Mitigating Urban Waterlogging Problems—A Case Study in Nanjing, China. Water Resour. Manag. 2012, 26, 3757–3766. [Google Scholar] [CrossRef]
- Petrucci, G.; Deroubaix, J.-F.; De Gouvello, B.; Deutsch, J.-C.; Bompard, P.; Tassin, B. Rainwater harvesting to control stormwater runoff in suburban areas. An experimental case-study. Urban Water J. 2012, 9, 45–55. [Google Scholar] [CrossRef]
- Campisano, A.; Modica, C. Appropriate resolution timescale to evaluate water saving and retention potential of rainwater harvesting for toilet flushing in single houses. J. Hydroinformatics 2015, 17, 331–346. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; La Barbera, P. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale. J. Environ. Manag. 2017, 191, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Teston, A.; Teixeira, C.A.; Ghisi, E.; Cardoso, E.B. Impact of Rainwater Harvesting on the Drainage System: Case Study of a Condominium of Houses in Curitiba, Southern Brazil. Water 2018, 10, 1100. [Google Scholar] [CrossRef]
- Wisner, P.; P’ng, J.C. OTTHYMO, A Model for Master Drainage Plans, IMPSWM Urban Drainage Modelling Procedures, 2nd ed.; Department of Civil Engineering, University of Ottawa: Ottawa, ON, Canada, 1983. [Google Scholar]
- Yaziz, M.I.; Gunting, H.; Sapari, N.; Ghazali, A.W. Variations in rainwater quality from roof catchments. Water Res. 1989, 23, 761–765. [Google Scholar] [CrossRef]
- Coombes, P. Rainwater Tanks Revisited: New Opportunities for Urban Water Cycle Management. Ph.D. Thesis, University of Newcastle, Callaghan, NSW, Australia, 2002. [Google Scholar]
- Liuzzo, L.; Notaro, V.; Freni, G. A Reliability Analysis of a Rainfall Harvesting System in Southern Italy. Water 2016, 8, 18. [Google Scholar] [CrossRef]
- Fewkes, A.; Butler, D. Simulating the performance of rainwater collection and reuse systems using behavioural models. Build. Serv. Eng. Res. Technol. 2000, 21, 99–106. [Google Scholar] [CrossRef]
- Ward, S.; Memon, F.A.; Butler, D. Rainwater harvesting: Model-based design evaluation. Water Sci. Technol. 2010, 61, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.; Pearson, F.; Moore, E.; Sun, J.K.; Valentine, R. Feasibility of Rainwater Collection Systems in California. Contribution No. 173; Californian Water Resources Centre, University of California: Oakland, CA, USA, 1978. [Google Scholar]
- Palla, A.; Gnecco, I.; Lanza, L. Non-dimensional design parameters and performance assessment of rainwater harvesting systems. J. Hydrol. 2011, 401, 65–76. [Google Scholar] [CrossRef]
- Karim, M.R.; Bashar, M.Z.I.; Alam Imteaz, M. Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh. Resour. Conserv. Recycl. 2015, 104, 61–67. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecol. Eng. 2016, 95, 876–887. [Google Scholar] [CrossRef]
- O’Brien, J.S.; Julien, P.Y.; Fullerton, W.T. Two-Dimensional Water Flood and Mudflow Simulation. J. Hydraul. Eng. 1993, 119, 244–261. [Google Scholar] [CrossRef]
Month | Total Rainfall (mm) | Rainy Days | ||
---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | |
January | 64.1 | 43.0 | 13 | 3 |
February | 60.5 | 33.6 | 11 | 5 |
March | 67.7 | 35.0 | 11 | 3 |
April | 63.7 | 39.9 | 10 | 4 |
May | 21.3 | 20.3 | 5 | 3 |
June | 19.1 | 16.0 | 3 | 1 |
July | 8.5 | 9.1 | 2 | 1 |
August | 13.0 | 13.2 | 3 | 3 |
September | 76.4 | 36.9 | 9 | 2 |
October | 81.1 | 42.5 | 10 | 3 |
November | 62.9 | 37.1 | 12 | 3 |
December | 124.5 | 39.0 | 16 | 3 |
Annual | 656.4 | 159.8 | 103.3 | 12.2 |
Year | Number of Flood Events | Flood Volumes (m3) | % Flood Volume Reduction | ||
---|---|---|---|---|---|
No RWH | RWH | No RWH | RWH | ||
2002 | 3 | 2 | 2629.2 | 529.2 | −80 |
2003 | 5 | 3 | 7506.1 | 4047.7 | −46 |
2004 | 5 | 2 | 3472.8 | 931.3 | −73 |
2005 | 4 | 4 | 9121.8 | 5960.4 | −35 |
2006 | 2 | 0 | 654.4 | 0.0 | −100 |
2007 | 3 | 1 | 2062.8 | 741.1 | −64 |
2008 | 2 | 0 | 819.7 | 0.0 | −100 |
Rainfall (mm) | PR (%) | U (%) | |
---|---|---|---|
Maximum daily rainfall | 95.2 | 83.9 | 43.6 |
Annual average maximum daily rainfall | 52.1 | 100.0 | 100.0 |
Critical rainfall (d = 24 h and T = 5 years) | 71.2 | 90.2 | 88.4 |
Rainfall Event | Rainfall Depth (mm) | Area (m2) | % Reduction of Flooded Area | |
---|---|---|---|---|
No RWH | RWH | |||
Maximum (13 December 2005) | 95.2 | 590713.7 | 561307.1 | 5.0 |
Average maximum (26 September 2003) | 41.8 | 601352.2 | 391242.1 | 34.9 |
Average (19 September 2003) | 34.0 | 574189.0 | 0 | 100.0 |
Critical (d = 24 h, T = 5 years) | 71.2 | 617963.6 | 566099.5 | 8.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freni, G.; Liuzzo, L. Effectiveness of Rainwater Harvesting Systems for Flood Reduction in Residential Urban Areas. Water 2019, 11, 1389. https://doi.org/10.3390/w11071389
Freni G, Liuzzo L. Effectiveness of Rainwater Harvesting Systems for Flood Reduction in Residential Urban Areas. Water. 2019; 11(7):1389. https://doi.org/10.3390/w11071389
Chicago/Turabian StyleFreni, Gabriele, and Lorena Liuzzo. 2019. "Effectiveness of Rainwater Harvesting Systems for Flood Reduction in Residential Urban Areas" Water 11, no. 7: 1389. https://doi.org/10.3390/w11071389
APA StyleFreni, G., & Liuzzo, L. (2019). Effectiveness of Rainwater Harvesting Systems for Flood Reduction in Residential Urban Areas. Water, 11(7), 1389. https://doi.org/10.3390/w11071389