Methodology for Determining the Die-Off Coefficient of Enterococci in the Conditions of Transport through the Karst Aquifer—Case Study: Bokanjac–Poličnik Catchment
Abstract
:1. Introduction
- Soil: surface, infiltration part over which aquifer is water-supplied—water recharge can be autogenous, allogeneic, diffuse or concentrated, depending on the characteristics of the surface layer.
- Epikarst: subsurface layer which stores part of the infiltrated water; it accepts the water which is drained through the vertical flow in a unsaturated zone.
- Vadose zone: connects subsurface layers with a saturated zone;
- Saturated zone: it consists of a low permeable matrix and a net of highly permeable karst channels and fractures.
2. Study Site
3. Materials and Methods
3.1. Preliminary Analysis
3.1.1. Time Series Analysis—Transfer Function
3.1.2. Quantification of the Groundwater Flow Distribution
3.2. Analytical Model
- (a)
- Transport through the unsaturated zone (vertical flow)—calculation of the ENT concentration at the end of the unsaturated zone (the place of shift from vertical to horizontal flow);
- (b)
- Transport through the saturated zone (horizontal flow)—calculation of the ENT concentration at the beginning of the horizontal flow route (inverse procedure) based on measured concentration and on the wells B4 and Jezerce.
3.2.1. Vertical Flow
3.2.2. Horizontal Flow
4. Results
4.1. Preliminary Analysis
4.1.1. Time Series Analysis—Transfer Function
4.1.2. Quantification of the Groundwater Flow Distribution (KarstMod)
4.2. Analytical Model
4.2.1. Sensitivity Analysis
4.2.2. Monte–Carlo Simulations
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mangin, A. Insights Into Hydrodynamic Behaviour of Karst Aquifers. Ph.D. Thesis, Université de Dijon, Dijon, France, 1975. [Google Scholar]
- Drogue, C. Hydrodynamics of karstic aquifers: Experimental sites in the mediterranean karst, Southern France. Int. Contrib. Hydrogeol. 1992, 13, 133–149. [Google Scholar]
- Doerfliger, N.; Jeannin, P.Y.; Zwahlen, F. Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 1999, 39, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.S.; Krothe, N.C. A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem. Geol. 2001, 179, 129–143. [Google Scholar] [CrossRef]
- Perrin, J. A Conceptual Model of Flow and Transport in a Karst Aquifer Based on Spatial and Temporal Variations of Natural Tracers. Ph.D. Thesis, Université de Neuchâtel, Neuchâtel, Switzerland, 2003. [Google Scholar]
- Teutsch, G.; Sauter, M. Distributed parameter modelling approaches in karst hydrological investigations. Bull. Hydrogeol. 1998, 16, 99–110. [Google Scholar]
- Kuniansky, E.L.; Fahlquist, L.; Ardis, A.F. Travel Times Along Selected Flow Paths of the Edwards Aquifer, Central Texas. USGS Water Resour. Invest. Rep. 2001, 1, 69–77. [Google Scholar]
- Scanlon, B.R.; Mace, R.E.; Barrett, M.E.; Smith, B. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J. Hydrol. 2003, 276, 137–158. [Google Scholar] [CrossRef] [Green Version]
- Kuniansky, E.L.; Ardis, A.F. Hydrogeology and Ground-Water Flow in the Edwards-Trinity Aquifer System, West-Central Texas U. S. Department of the Interior; Technical Report; U.S. Geological Survey: Reston, VA, USA, 2004.
- McGurk, B.; Presley, P.F. Simulation of the Effects of Groundwater Withdrawals on the Floridan Aquifer System in East-Central Florida: Model Expansion and Revision; Technical Report; St. Johns River Water Management District Technical Publication SJ2002-3: Platka, FL, USA, 2002. [Google Scholar]
- Sepulveda, N. Simulation of Ground-Water Flow in the Intermediate and Floridan Aquifer Systems in Peninsular Florida; Technical Report; U.S. Geological Survey Water-Resources Investigations Report 02-4009; USGS: Reston, VA, USA, 2002.
- Agyei, E.; Munch, D.; Burger, P. Application of optimisation modeling to water resource planning in East-Central Florida. Tech. Publ. 2005, SJ2005-2, 82. [Google Scholar]
- Davis, B.J.H.; Katz, B.G. Hydrogeologic Investigation, Water Chemistry Analysis, and Model Delineation of Contributing Areas for City of Tallahassee Public-Supply Wells; Technical Report; U.S. Geological Survey: Tallahassee, FL, USA, 2007.
- Grubbs, J.W.; Crandall, C.A. Exchanges of Water between the Upper Floridan Aquifer and the Lower Suwannee and Lower Santa Fe Rivers, Florida; Technical Report; Geological Survey (USGS): Santa Fe Rivers, FL, USA, 2007. [CrossRef]
- Davis, J.H.; Katz, B.G.; Griffin, D.W. Nitrate-N Movement in Groundwater From the Land Application of Treated Municipal Wastewater and Other Sources in the Wakulla Springs Springshed, Leon and Wakulla Counties, Florida, 1966–2018. U.S. Geol. Surv. Sci. Invest. Rep. 2010, 5099, 90. [Google Scholar] [CrossRef]
- Sepulveda, N.; Tiedeman, C.; O’Reilly, A.; Davis, J.; Burger, P. Groundwater Flow and Water Budget in the Surficial and Floridan Aquifer Systems in East-Central Florida; Technical Report, U.S. Geological Survey Scientific Investigations Report 2012-5161; USGS: Reston, VA, USA, 2012.
- Miles, R.J.; Borchelt, G.; Casaletto, D. Treatment of drip dispersed effluent in imported soils. Innovation in Soil-Based Onsite Wastewater Treatment. In Proceedings of the Soil Science Society of America, Albuquerque, NM, USA, 7–8 April 2014. [Google Scholar]
- Siegrist, R.L. Engineering of a Soil Treatment Unit as a Unit Operation in an Onsite Wastewater System. Innov. Soil Based Onsite Wastewater Treat. 2014, 1, 13–26. [Google Scholar] [CrossRef]
- Morrissey, P.J.; Johnston, P.M.; Gill, L.W. The impact of on-site wastewater from high density cluster developments on groundwater quality. J. Contam. Hydrol. 2015, 182, 36–50. [Google Scholar] [CrossRef]
- Zyman, J.; Sorber, C.A. Influence of Simulated Rainfall on the Transport and Survival of Selected Indicator Organisms in Sludge-Amended Soils. J. Water Poll. Control Fed. 1988, 60, 2105–2110. [Google Scholar]
- Guber, A.K.; Shelton, D.R.; Pachepsky, Y.A. Transport and Retention of Manure-Borne Coliforms in Soil. Vad. Zone J. 2005, 4, 828–837. [Google Scholar] [CrossRef]
- Cey, E.E.; Rudolph, D.L.; Passmore, J. Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils. J. Contam. Hydrol. 2009, 107, 45–57. [Google Scholar] [CrossRef]
- Jiang, S.; Pang, L.; Buchan, G.D.; Šimůnek, J.; Noonan, M.J.; Close, M.E. Modeling water flow and bacterial transport in undisturbed lysimeters under irrigations of dairy shed effluent and water using HYDRUS-1D. Water Res. 2010, 44, 1050–1061. [Google Scholar] [CrossRef]
- Liping, P.; Malcolm, M.; Jacqueline, A.J.Š.; Murray, C.; Hector, R. Modeling Transport of Microbes in Ten Undisturbed Soils under Effluent Irrigation. Vad. Zone J. 2008, 7, 97. [Google Scholar] [CrossRef]
- Wang, Y.; Bradford, S.A.; Šimůnek, J. Transport and fate of microorganisms in soils with preferential flow under different solution chemistry conditions. Water Res. Res. 2013, 49, 2424–2436. [Google Scholar] [CrossRef] [Green Version]
- Firouzi, A.F.; Homaee, M.; Klumpp, E.; Kasteel, R.; Tappe, W. Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions. J. Hydrol. Hydromech. 2015, 63, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Foppen, J.W.A.; Schijven, J.F. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Res. 2006, 40, 401–426. [Google Scholar] [CrossRef] [Green Version]
- Rogers, S.W.; Donnelly, M.; Peed, L.; Kelty, C.A.; Mondal, S.; Zhong, Z.; Shanks, O.C. Decay of bacterial pathogens, fecal indicators, and real-time quantitative PCR genetic markers in manure-amended soils. Appl. Environ. Microbiol. 2011, 77, 4839–4848. [Google Scholar] [CrossRef]
- Alexandria, B.B.; Sassoubre, L.M. Enterococci as Indicators of Environmental Fecal Contamination. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, UK, 2014; pp. 101–123. [Google Scholar] [CrossRef]
- Oladeinde, A.; Bohrmann, T.; Wong, K.; Purucker, S.T.; Bradshaw, K.; Brown, R.; Snyder, B.; Molina, M. Decay of Fecal Indicator Bacterial Populations and Bovine-Associated Source-Tracking Markers in Freshly Deposited Cow Pats. Appl. Environ. Microbiol. 2014, 80, 110–118. [Google Scholar] [CrossRef] [PubMed]
- John, D.E.; Rose, J.B. Review of Factors Affecting Microbial Survival in Groundwater. Environ. Sci. Technol. 2005, 39, 7345–7356. [Google Scholar] [CrossRef] [Green Version]
- Althaus, H.; Jung, K.D.; Matthess, G.; Pekdeger, A. Lebensdauer von Bacterien und Viren in Grundwasserleitern. Umweltbundesamt Mater. 1982, 1, 190. [Google Scholar]
- Artz, R.R.; Killham, K. Survival of Escherichia coli O157:H7 in private drinking water wells: Influences of protozoan grazing and elevated copper concentrations. FEMS Microbiol. Lett. 2002, 216, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, K.; Barth, J.A.; Postigo-Rebollo, C.; Grathwohl, P. Mixing and transport of water in a karst catchment: A case study from precipitation via seepage to the spring. Hydrol. Earth Syst. Sci. 2009, 13, 285–292. [Google Scholar] [CrossRef]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef]
- Kuk, V.; Prelogović, E.; Dragičević, I. Seismotectonically Active Zones in the Dinarides. Geol. Croat. 2000, 53, 295–303. [Google Scholar]
- Majcen, Ž.; Korolija, B. Osnovna Geološka Karta SFRJ 1:100.000, List Zadar L33–139, (Basic Geological Map of the SFRY, scale 1:100.000, Zadar Sheet); Technical Report; Institut za geološka istraživanja Zagreb (1963–1969), Savezni Geološki Zavod: Beograd, Serbia, 1973. [Google Scholar]
- Vlahović, I.; Tišljar, J.; Velić, I.; Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 333–360. [Google Scholar] [CrossRef]
- Hrvatski Geološki Institut (HGI). Hidrogeološki Elaborat Zona Sanitarne Zaštite Crpilišta Zadarskog Vodovoda (Zdenci B-4 i B-5, Jezerce, Oko, Boljkovac i Golubinka) u Sklopu Hidrogeološkog Sustava Bokanjac-Poličnik; Technical Report; Hrvatski geološki institut (Croatian Geological Survey): Zagreb, Croatia, 2013. [Google Scholar]
- Pavičić, A.; Terzić, J. Hidrogeološki i Geofizički Istraživački Radovi za Mikrozoniranje Poslovne Zone “Bokanjac" kod Zadra, (Hydrogeological and Geophysical Research for the Micro Zoning of the Bokanjac Business District Near Zadar); Technical Report, Fond HGI 14/2006; Hrvatski geološki institut (Croatian Geological Survey): Zagreb, Croatia, 2006. [Google Scholar]
- Fritz, F. Ravni Kotari–Bukovica, Hidrogeološka Studija (Ravni Kotari–Bukovica, Hydrogeological Study); Technical Report, Archive of the Croatian Geological Survey; Hrvatski geološki Institut (Croatian Geological Survey): Zagreb, Croatia, 1976. [Google Scholar]
- Geotehnika. Vodoistražni radovi Zadar, Knjiga III—Vodostaji; Professional Project: Water research works in the wider area of Zadar; City Waterworks Zadar: Zadar, Croatia, 1968. [Google Scholar]
- Young, P.C.; Tych, W.; Taylor, C.J. The Captain Toolbox for Matlab. IFAC Proc. Vol. 2009, 42, 758–763. [Google Scholar] [CrossRef]
- Young, P.C. Recursive Estimation and Time-Series Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2011; p. 504. [Google Scholar] [CrossRef]
- Young, P.C.; Taylor, C.J. Recent Developments in the CAPTAIN Toolbox for Matlab. IFAC Proc. Vol. 2012, 45, 1838–1843. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day series in time series analysis and digital processing, Holden-Day; John Wiley & Sons: Hoboken, NJ, USA, 1976. [Google Scholar]
- Jourde, H.; Mazzilli, N.; Lecoq, N.; Arfib, B.; Bertin, D. KARSTMOD: A Generic Modular Reservoir Model Dedicated to Spring Discharge Modeling and Hydrodynamic Analysis in Karst. In Hydrogeological and Environmental Investigations in Karst Systems; Andreo, B., Carrasco, F., Durán, J.J., Jiménez, P., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 339–344. [Google Scholar] [CrossRef]
- Bonacci, O. Monthly and annual effective infiltration coefficients in Dinaric karst: Example of the Gradole karst spring catchment. Hydrol. Sci. J. 2010, 46, 287–299. [Google Scholar] [CrossRef]
- Lončar, G.; Šreng, Ž.; Bekić, D.; Kunštek, D. Hydraulic-Hydrology Analysis of the Turbulent Seepage Flow within Karst Aquifer of the Golubinka Spring Catchment. Geofluids 2018, 2018, 12. [Google Scholar] [CrossRef]
- Jović, V. Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks; Wiley: Split, Croatia, 2013; p. 544. [Google Scholar]
- Bandy, A.M. Mobility of Escherichia coli within Karst Terrains, Kentucky, USA. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2016. [Google Scholar]
Parameter | Upper Layer | Lower Layer |
---|---|---|
(m/s) | ||
(m/s) | ||
(m/s) | ||
(−) | 0.02 | 0.01 |
(−) | 0.02 | 0.02 |
WELL | STRUCTURE (n m ) | SISO | MISO | ||
---|---|---|---|---|---|
RT2 | YIC | RT2 | YIC | ||
JEZERCE | 1 1 7 | 0.35 | 0.396 | ||
B4 | 3 2 5 | 0.31 | 0.353 |
Optimisation Parameter | Range | Optimal Value |
---|---|---|
R (km2) | 20–70 | 30.42 |
E (mm) | 0–100 | 1.76 |
M (mm) | 0–100 | 19.73 |
F (mm) | 0–100 | 25.98 |
(mm/day) | 0.0551 | |
(−) | 2.08 | |
(mm/day) | 0.0954 | |
(mm/day) | 0.013 | |
(mm/day) | 0.00026 | |
(mm/day) | 0.0277 | |
(−) | 1 | |
WOBJ value (calibration stage) | 0.61 | |
WOBJ value (validation stage) | 0.63 |
Parameter | The Flow Part | Type | Interval |
---|---|---|---|
Turbulent filtration coefficient, K (m/s) | Horizontal flow, (Equation (9)) | Variational | 0.1–0.5 |
Percolation velocity, (m/s) | Vertical flow (Equation (7)) | Variational | – |
Retardation coefficient, R (−) | Vertical flow (Equation (7)) | Variational | 3–9 |
Natural die-off coeff., (day) | Horizontal and vertical flow, (Equations (6) and (13)) | Fixed, (linearly interpolated) | 0.15–0.5 |
Sorption coeff., k (day) | Vertical flow (Equation (6)) | Variational | 1–11 |
Coeff. of the delayed concentration | Vertical flow (Equation (10)) | Variational | 0.2–0.5 |
Coeff. of the delayed concentration | Vertical flow (Equation (10)) | Variational | 0.05–0.2 |
Parameter | Values |
---|---|
Turbulent filtration coefficient, K (m/s) | 0.5 |
Percolation velocity, (m/s) | |
Retardation coeff., R (−) | 5–9 |
Natural die-off coeff., (day) | 0.15–0.5 |
Sorption coeff., k (day) | 4–11 |
Coeff. of the delayed concentration | 0.5 |
Coeff. of the delayed concentration | 0.1 |
Source | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
RMSE (cfu/100 mL) | 10.85 | 12.66 | 15.1 | 9.77 | 11.7 | 19.87 | 21.91 | 23.58 |
K (m/s) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
(m/s) | ||||||||
R (−) | 5.15 | 8.53 | 8.75 | 8.45 | 5.35 | 7.77 | 5.72 | 6.04 |
k (day−1) | 11 | 7.9 | 7.7 | 8.2 | 8.4 | 7.5 | 7.8 | 7.5 |
(−) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
(−) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Source | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
RMSE (cfu/100 mL) | 17.55 | 15.24 | 17.57 | 18.95 | 16.21 | 16.71 | 0 | 0 |
K (m/s) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
(m/s) | ||||||||
R (−) | 8.34 | 8.77 | 8.86 | 8.98 | 8.32 | 8.98 | 8.79 | 8.99 |
k (day−1) | 8.11 | 7 | 8.79 | 7.86 | 7 | 7 | 11 | 11 |
(−) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
(−) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šreng, Ž.; Lončar, G.; Grubišić, M. Methodology for Determining the Die-Off Coefficient of Enterococci in the Conditions of Transport through the Karst Aquifer—Case Study: Bokanjac–Poličnik Catchment. Water 2019, 11, 820. https://doi.org/10.3390/w11040820
Šreng Ž, Lončar G, Grubišić M. Methodology for Determining the Die-Off Coefficient of Enterococci in the Conditions of Transport through the Karst Aquifer—Case Study: Bokanjac–Poličnik Catchment. Water. 2019; 11(4):820. https://doi.org/10.3390/w11040820
Chicago/Turabian StyleŠreng, Željko, Goran Lončar, and Marin Grubišić. 2019. "Methodology for Determining the Die-Off Coefficient of Enterococci in the Conditions of Transport through the Karst Aquifer—Case Study: Bokanjac–Poličnik Catchment" Water 11, no. 4: 820. https://doi.org/10.3390/w11040820
APA StyleŠreng, Ž., Lončar, G., & Grubišić, M. (2019). Methodology for Determining the Die-Off Coefficient of Enterococci in the Conditions of Transport through the Karst Aquifer—Case Study: Bokanjac–Poličnik Catchment. Water, 11(4), 820. https://doi.org/10.3390/w11040820