Deep Flow Variability Offshore South-West Svalbard (Fram Strait)
Abstract
:1. Introduction
2. Data and Methods
2.1. Oceanographic Moorings
2.2. Oceanographic Surveys
2.3. Atmospheric Data
3. Results
3.1. Thermohaline Patterns on the West Spitsbergen Margin during Oceanographic Cruises between 2014 and 2016
3.2. Multiannual Variability of the Thermohaline Properties along the West Spitsbergen Margin
3.3. Temporal Variability in Oceanographic Parameters at Moorings S1 and ID2
3.4. Local Wind Variability and Dynamic Response of the Ocean
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skogseth, R.; Sandvik, A.D.; Asplin, L. Wind and tidal forcing on the meso-scale circulation in Storfjorden, Svalbard. Cont. Shelf Res. 2007, 27, 208–227. [Google Scholar] [CrossRef]
- Nilsen, F.; Skogseth, R.; Vaardal-Lunde, J.; Inall, M. A Simple Shelf Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen Shelf. J. Phys. Oceanogr. 2016, 46, 1209–1230. [Google Scholar] [CrossRef]
- Onarheim, I.H.; Årthun, M. Toward an ice-free Barents Sea. Geophys. Res. Lett. 2017, 44, 8387–8395. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Pnyushkov, A.V.; Alkire, M.B.; Ashik, I.M.; Baumann, T.M.; Carmack, E.C.; Goszczko, I.; Guthrie, J.; Ivanov, V.V.; Kanzow, T.; et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 2017, 356, 285–291. [Google Scholar] [CrossRef]
- Backhaus, J. Formation and export of water masses produced in Arctic shelf polynyas—Process studies of oceanic convection. ICES J. Mar. Sci. 1997, 54, 366–382. [Google Scholar] [CrossRef]
- Fohrmann, H.; Backhaus, J.O.; Blaume, F.; Rumohr, J. Sediments in Bottom-Arrested Gravity Plumes: Numerical Case Studies. J. Phys. Oceanogr. 1998, 28, 2250–2274. [Google Scholar] [CrossRef]
- Rudels, B.; Björk, G.; Nilsson, J.; Winsor, P.; Lake, I.; Nohr, C. The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: Results from the Arctic Ocean-02 Oden expedition. J. Mar. Syst. 2005, 55, 1–30. [Google Scholar] [CrossRef]
- Postlethwaite, C.F.; Morales Maqueda, M.A.; le Fouest, V.; Tattersall, G.R.; Holt, J.; Willmott, A.J. The effect of tides on dense water formation in Arctic shelf seas. Ocean Sci. 2011, 7, 203–217. [Google Scholar] [CrossRef]
- Wobus, F.; Shapiro, G.I.; Huthnance, J.M.; Maqueda, M.A.M.; Aksenov, Y. Tidally induced lateral dispersion of the Storfjorden overflow plume. Ocean Sci. 2013, 9, 885–899. [Google Scholar] [CrossRef]
- Wobus, F.; Shapiro, G.I.; Huthnance, J.M.; Maqueda, M.A.M. The piercing of the Atlantic Layer by an Arctic shelf water cascade in an idealised study inspired by the Storfjorden overflow in Svalbard. Ocean Model. 2013, 71, 54–65. [Google Scholar] [CrossRef]
- Sanchez-Vidal, A.; Veres, O.; Langone, L.; Ferré, B.; Calafat, A.; Canals, M.; Durrieu de Madron, X.; Heussner, S.; Mienert, J.; Grimalt, J.O.; et al. Particle sources and downward fluxes in the eastern Fram strait under the influence of the west Spitsbergen current. Deep Sea Res. Part Oceanogr. Res. Pap. 2015, 103, 49–63. [Google Scholar] [CrossRef]
- Bensi, M.; Kovačević, V.; Ursella, L.; Rebesco, M.; Langone, L.; Viola, A.; Mazzola, M.; Beszczynska-Möller, A.; Goszczko, I.; Soltwedel, T.; et al. Spitsbergen Oceanic and Atmospheric interactions—SOA. In SESS Report 2018 The State of Environmental Science in Svalbard—An Annual Report; Orr, E., Hansen, G., Lappalainen, H., Hübner, C., Lihavainen, H., Eds.; Longyearbyen, Svalbard Integrated Arctic Earth Observing System (SIOS): Longyearbyen, Norway, 2019; ISBN 978-82-691528-0-7. [Google Scholar]
- Teigen, S.H.; Nilsen, F.; Gjevik, B. Barotropic instability in the West Spitsbergen Current. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Teigen, S.H.; Nilsen, F.; Skogseth, R.; Gjevik, B.; Beszczynska-Möller, A. Baroclinic instability in the West Spitsbergen Current. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef]
- Von Appen, W.-J.; Schauer, U.; Somavilla, R.; Bauerfeind, E.; Beszczynska-Möller, A. Exchange of warming deep waters across Fram Strait. Deep Sea Res. Part Oceanogr. Res. Pap. 2015, 103, 86–100. [Google Scholar] [CrossRef]
- Van Haren, H.; Greinert, J. Turbulent high-latitude oceanic intrusions—Details of non-smooth apparent isopycnal transport West of Svalbard. Ocean Dyn. 2016, 66, 785–794. [Google Scholar] [CrossRef]
- Fer, I.; Ådlandsvik, B. Descent and mixing of the overflow plume from Storfjord in Svalbard: An idealized numerical model study. Ocean Sci. 2008, 4, 115–132. [Google Scholar] [CrossRef]
- Nilsen, F.; Cottier, F.; Skogseth, R.; Mattsson, S. Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res. 2008, 28, 1838–1853. [Google Scholar] [CrossRef]
- Tverberg, V.; Nøst, O.A.; Lydersen, C.; Kovacs, K.M. Winter sea ice melting in the Atlantic Water subduction area, Svalbard Norway. J. Geophys. Res. Oceans 2014, 119, 5945–5967. [Google Scholar] [CrossRef]
- Tverberg, V.; Skogseth, R.; Cottier, F.; Sundfjord, A.; Walczowski, W.; Inall, M.; Falck, E.; Pavlova, O.; Nilsen, F. The Kongsfjorden Transect: Seasonal and inter-annual variability in hydrography. In The Ecosystem Kongsfjorden, Svalbard; Hop, H., Wiencke, C., Eds.; Adv. Polar Ecol.; Springer: Cham, Switzerland, 2019; p. 562. ISBN 978-3-319-46423-7. [Google Scholar]
- Aagaard, K.; Foldvik, A.; Hillman, S.R. The West Spitsbergen Current: Disposition and water mass transformation. J. Geophys. Res. Oceans 1987, 92, 3778–3784. [Google Scholar] [CrossRef]
- Beszczynska-Möller, A.; Fahrbach, E.; Schauer, U.; Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 2012, 69, 852–863. [Google Scholar] [CrossRef]
- Boyd, T.J.; D’Asaro, E.A. Cooling of the West Spitsbergen Current: Wintertime observations west of Svalbard. J. Geophys. Res. Oceans 1994, 99, 22597–22618. [Google Scholar] [CrossRef]
- Swift, J.H.; Koltermann, K.P. The origin of Norwegian Sea deep water. J. Geophys. Res. Oceans 1988, 93, 3563–3569. [Google Scholar] [CrossRef]
- Sternal, B.; Szczuciski, W.; Forwick, M.; Zajączkowski, M.; Lorenc, S.; Przytarska, J. Postglacial variability in near-bottom current speed on the continental shelf off south-west Spitsbergen. J. Quat. Sci. 2014, 29, 767–777. [Google Scholar] [CrossRef]
- Menze, S.; Ingvaldsen, R.B.; Haugan, P.; Fer, I.; Sundfjord, A.; Beszczynska-Moeller, A.; Falk-Petersen, S. Atlantic Water Pathways along the North-Western Svalbard Shelf Mapped Using Vessel-Mounted Current Profilers. J. Geophys. Res. Oceans 2019, 124. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Alekseev, G.V.; Timokhov, L.A.; Bhatt, U.S.; Colony, R.L.; Simmons, H.L.; Walsh, D.; Walsh, J.E.; Zakharov, V.F. Variability of the Intermediate Atlantic Water of the Arctic Ocean over the Last 100 Years. J. Clim. 2004, 17, 4485–4497. [Google Scholar] [CrossRef]
- Walczowski, W.; Beszczynska-Möller, A.; Wieczorek, P.; Merchel, M.; Grynczel, A. Oceanographic observations in the Nordic Sea and Fram Strait in 2016 under the IO PAN long-term monitoring program AREX. Oceanologia 2017, 59, 187–194. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Bhatt, U.S.; Walsh, J.E.; Abrahamsen, E.P.; Pnyushkov, A.V.; Wassmann, P.F. Recent oceanic changes in the Arctic in the context of long-term observations. Ecol. Appl. 2013, 23, 1745–1764. [Google Scholar] [CrossRef] [PubMed]
- Walczowski, W.; Piechura, J. Pathways of the Greenland Sea warming. Geophys. Res. Lett. 2007, 34, L10608. [Google Scholar] [CrossRef]
- Promińska, A.; Cisek, M.; Walczowski, W. Kongsfjorden and Hornsund hydrography–comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 2017, 59, 397–412. [Google Scholar] [CrossRef]
- Oldenburg, D.; Armour, K.C.; Thompson, L.; Bitz, C.M. Distinct Mechanisms of Ocean Heat Transport into the Arctic Under Internal Variability and Climate Change. Geophys. Res. Lett. 2018, 45, 7692–7700. [Google Scholar] [CrossRef]
- Lien, V.S.; Vikebø, F.B.; Skagseth, Ø. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat. Commun. 2013, 4, 1488. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, I.V.; Beszczynska, A.; Carmack, E.C.; Dmitrenko, I.A.; Fahrbach, E.; Frolov, I.E.; Gerdes, R.; Hansen, E.; Holfort, J.; Ivanov, V.V.; et al. One more step toward a warmer Arctic. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Walczowski, W.; Piechura, J.; Goszczko, I.; Wieczorek, P. Changes in Atlantic water properties: An important factor in the European Arctic marine climate. ICES J. Mar. Sci. 2012, 69, 864–869. [Google Scholar] [CrossRef]
- Haarpaintner, J. The Storfjorden polynya: ERS-2 SAR observations and overview. Polar Res. 1999, 18, 175–182. [Google Scholar] [CrossRef]
- Haarpaintner, J.; Gascard, J.-C.; Haugan, P.M. Ice production and brine formation in Storfjorden, Svalbard. J. Geophys. Res. Oceans 2001, 106, 14001–14013. [Google Scholar] [CrossRef]
- Skogseth, R.; Haugan, P.M.; Jakobsson, M. Watermass transformations in Storfjorden. Cont. Shelf Res. 2005, 25, 667–695. [Google Scholar] [CrossRef]
- Jardon, F.P.; Vivier, F.; Bouruet-Aubertot, P.; Lourenço, A.; Cuypers, Y.; Willmes, S. Ice production in Storfjorden (Svalbard) estimated from a model based on AMSR-E observations: Impact on water mass properties. J. Geophys. Res. Oceans 2014, 119, 377–393. [Google Scholar] [CrossRef]
- Preußer, A.; Willmes, S.; Heinemann, G.; Paul, S. Thin-ice dynamics and ice production in the Storfjorden polynya for winter-seasons 2002/2003–2013/2014 using MODIS thermal infrared imagery. Cryosphere 2015, 9, 1063–1073. [Google Scholar] [CrossRef]
- Quadfasel, D.; Rudels, B.; Kurz, K. Outflow of dense water from a Svalbard fjord into the Fram Strait. Deep Sea Res. Part Oceanogr. Res. Pap. 1988, 35, 1143–1150. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Backhaus, J.O.; Fohrmann, H. Outflow of dense water from the Storfjord in Svalbard: A numerical model study. J. Geophys. Res. 1995, 100, 24719. [Google Scholar] [CrossRef]
- Shaw, P.-T.; Chao, S.-Y. Effects of a baroclinic current on a sinking dense water plume from a submarine canyon and heton shedding. Deep Sea Res. Part Oceanogr. Res. Pap. 2003, 50, 357–370. [Google Scholar] [CrossRef]
- Inall, M.E.; Nilsen, F.; Cottier, F.R.; Daae, R. Shelf/fjord exchange driven by coastal-trapped waves in the A rctic. J. Geophys. Res. Oceans 2015, 120, 8283–8303. [Google Scholar] [CrossRef]
- Nilsen, F.; Gjevik, B.; Schauer, U. Cooling of the West Spitsbergen Current: Isopycnal diffusion by topographic vorticity waves. J. Geophys. Res. 2006, 111, C08012. [Google Scholar] [CrossRef]
- Cacchione, D.A.; Pratson, L.F.; Ogston, A.S. The shaping of continental slopes by internal tides. Science 2002, 296, 724–727. [Google Scholar] [CrossRef]
- Cacchione, D.A.; Drake, D.E. Nepheloid layers and internal waves over continental shelves and slopes. Geo-Mar. Lett. 1986, 6, 147–152. [Google Scholar] [CrossRef]
- Akimova, A.; Schauer, U.; Danilov, S.; Núñez-Riboni, I. The role of the deep mixing in the Storfjorden shelf water plume. Deep Sea Res. Part Oceanogr. Res. Pap. 2011, 58, 403–414. [Google Scholar] [CrossRef]
- Rebesco, M.; Wåhlin, A.; Laberg, J.S.; Schauer, U.; Beszczynska-Möller, A.; Lucchi, R.G.; Noormets, R.; Accettella, D.; Zarayskaya, Y.; Diviacco, P. Quaternary contourite drifts of the Western Spitsbergen margin. Deep Sea Res. Part Oceanogr. Res. Pap. 2013, 79, 156–168. [Google Scholar] [CrossRef]
- Etling, D.; Gelhardt, F.; Schrader, U.; Brennecke, F.; Kühn, G.; d’Hieres, G.C.; Didelle, H. Experiments with density currents on a sloping bottom in a rotating fluid. Dyn. Atmos. Oceans 2000, 31, 139–164. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Carpenter, J.H. The Accuracy of the Winkler Method for Dissolved Oxygen Analysis1. Limnol. Oceanogr. 1965, 10, 135–140. [Google Scholar] [CrossRef]
- Schlitzer, R. Ocean Data View. 2018. Available online: http://odv.awi.de/ (accessed on 1 October 2018).
- Artegiani, A.; Paschini, E.; Russo, A.; Bregant, D.; Raicich, F.; Pinardi, N. The Adriatic Sea General Circulation. Part I: Air–Sea Interactions and Water Mass Structure. J. Phys. Oceanogr. 1997, 27, 1492–1514. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Saloranta, T.M.; Svendsen, H. Across the Arctic front west of Spitsbergen: High-resolution CTD sections from 1998–2000. Polar Res. 2001, 20, 177–184. [Google Scholar]
- Chatterjee, S.; Raj, R.P.; Bertino, L.; Skagseth, Ø.; Ravichandran, M.; Johannessen, O.M. Role of Greenland Sea Gyre Circulation on Atlantic Water Temperature Variability in the Fram Strait. Geophys. Res. Lett. 2018, 45, 8399–8406. [Google Scholar] [CrossRef]
- Zhao, M.; Timmermans, M.-L.; Cole, S.; Krishfield, R.; Proshutinsky, A.; Toole, J. Characterizing the eddy field in the Arctic Ocean halocline. J. Geophys. Res. Oceans 2014, 119, 8800–8817. [Google Scholar] [CrossRef]
- Lien, V.S.; Gusdal, Y.; Vikebø, F.B. Along-shelf hydrographic anomalies in the Nordic Seas (1960–2011): Locally generated or advective signals? Ocean Dyn. 2014, 64, 1047–1059. [Google Scholar] [CrossRef]
- Skeie, P.; Gronaas, S. Strongly stratified easterly flows across Spitsbergen. Tellus A 2000, 52, 473–486. [Google Scholar] [CrossRef]
- Häkkinen, S.; Cavalieri, D.J. A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents Seas. J. Geophys. Res. Oceans 1989, 94, 6145–6157. [Google Scholar] [CrossRef]
- Akiyama, J.; Stefan, H. Turbidity Current with Erosion and Deposition. J. Hydraul. Eng. 1985, 111, 1473–1496. [Google Scholar] [CrossRef]
- Kämpf, J.; Backhaus, J.O.; Fohrmann, H. Sediment-induced slope convection: Two-dimensional numerical case studies. J. Geophys. Res. Oceans 1999, 104, 20509–20522. [Google Scholar] [CrossRef]
- Gill, A. Atmosphere-Ocean Dynamics, 1st ed.; Academic Press: San Diego, CA, USA, 1982; Volume 30, ISBN 978-0-08-057052-5. [Google Scholar]
- González-Pola, C.; Larsen, K.M.; Fratantoni, P.; Beszczynska-Möller, A.; Hughes, S.L. ICES Report on Ocean Climate 2016; ICES Cooperative Research Report No. 339; International Council for the Exploration of the Sea (ICES), Conseil International pour l’Exploration de la Mer (CIEM): Copenhagen, Denmark, 2018; p. 110. [Google Scholar]
Metrics | Layer 100–800 m and θ > 2 °C Criterion | Layer > 800 m | Layer > 800 m | |
---|---|---|---|---|
Sub-Period 2009–17 | ||||
θ | Trend (°C)/year ± SE | 0.0314 ± 0.0121 | 0.009 ± 0.0016 | 0.0222 ± 0.0033 |
RMSE | 0.3362 | 0.0445 | 0.0254 | |
p-value | 0.01779 | 0.00002 | 0.00026 | |
S | Trend /year ± SE | 0.0042 ± 0.0007 | 0.0005 ± 0.0001 | 0.0007 ± 0.0002 |
RMSE | 0.0202 | 0.0035 | 0.0013 | |
p-value | 0.00001 | 0.00083 | 0.00399 | |
σθ | Trend (kg m−3)/year ± SE | 0.0004 ± 0.0010 | 0 ± 0.0001 | −0.0004 ± 0.0001 |
RMSE | 0.0272 | 0.0036 | 0.001 | |
p-value | 0.69369 | 0.89612 | 0.01304 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bensi, M.; Kovačević, V.; Langone, L.; Aliani, S.; Ursella, L.; Goszczko, I.; Soltwedel, T.; Skogseth, R.; Nilsen, F.; Deponte, D.; et al. Deep Flow Variability Offshore South-West Svalbard (Fram Strait). Water 2019, 11, 683. https://doi.org/10.3390/w11040683
Bensi M, Kovačević V, Langone L, Aliani S, Ursella L, Goszczko I, Soltwedel T, Skogseth R, Nilsen F, Deponte D, et al. Deep Flow Variability Offshore South-West Svalbard (Fram Strait). Water. 2019; 11(4):683. https://doi.org/10.3390/w11040683
Chicago/Turabian StyleBensi, Manuel, Vedrana Kovačević, Leonardo Langone, Stefano Aliani, Laura Ursella, Ilona Goszczko, Thomas Soltwedel, Ragnheid Skogseth, Frank Nilsen, Davide Deponte, and et al. 2019. "Deep Flow Variability Offshore South-West Svalbard (Fram Strait)" Water 11, no. 4: 683. https://doi.org/10.3390/w11040683