Moisture Distribution in Sloping Black Soil Farmland during the Freeze–Thaw Period in Northeastern China
Abstract
:1. Introduction
- (1)
- To analyze the relationship between the reanalysis datasets of CMADS-ST and the observed values;
- (2)
- to study the characteristics of moisture distribution during the freeze–thaw period; and
- (3)
- to identify the effects of soil temperature on the moisture distribution in the black soil zone.
2. Materials and Methods
2.1. Experimental Site
2.2. Experiment and Data Collection
3. Results
3.1. Observed Soil Moisture and Soil Temperature Values
3.2. The Relationship between Soil Moisture and Soil Temperature
3.3. Soil Moisture Distribution in Freeze–Thaw Period
4. Analysis and Discussion
4.1. Freeze–Thaw Periods Divided into Six Periods
4.2. Changes of Soil Moisture Content in Freeze–Thawing Period
4.2.1. Plots of Soil Moisture Contents at the Same Depth
4.2.2. Soil Moisture Contents Measured at the Same Location
4.3. Verification Analysis of Soil Moisture Contents Distribution
4.4. Soil Temperature Observed Value Associated with the CMADS-ST Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaighin, A.M.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Yang, M.; Yao, T.; Gou, X.; Koike, T.; He, Y. The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) plateau. J. Asian Earth Sci. 2003, 21, 457–465. [Google Scholar] [CrossRef]
- Li, T.; Shao, M.; Jia, X.; Huang, L. Profile distribution of soil moisture in the gully on the northern Loess Plateau, China. Catena 2018, 171, 460–468. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Wang, L.; Liu, Y.; Liu, Y.; Feng, Q. Relationship between soil water content and soil particle size on typical slopes of the Loess Plateau during a drought year. Sci. Total Environ. 2019, 648, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Feng, X.; Yang, L.; Chen, L.; Feng, T.; Chen, D. The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China. Sci. Total Environ. 2019, 647, 1323–1332. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.; Wei, W. Effects of vegetation restoration on the spatial distribution of soil moisture at the hillslope scale in semi-arid regions. Catena 2015, 124, 138–146. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.; Mo, B. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 2012, 475, 111–122. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Zhang, Y.; Dou, D.; Hu, R.; Zhang, H. Temporal stability analysis of surface and subsurface soil moisture for a transect in artificial revegetation desert area, China. J. Hydrol. 2013, 507, 100–109. [Google Scholar] [CrossRef]
- Zhao, N.; Yu, F.; Li, C.; Wang, H.; Liu, J.; Mu, W. Investigation of Rainfall-Runoff Processes and Soil Moisture Dynamics in Grassland Plots under Simulated Rainfall Conditions. Water 2014, 6, 2671–2689. [Google Scholar] [CrossRef]
- Lazzari, M.; Piccarreta, M.; Manfreda, S. The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides. Nat. Hazards Earth Syst. Sci. Discuss. 2018. [Google Scholar] [CrossRef]
- Meng, X.; Dan, L.; Liu, Z. Energy balance-based SWAT model to simulate the mountain snowmelt and runoff—Taking the application in Juntanghu watershed (China) as an example. J. Mt. Sci. 2015, 12, 368–381. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, X. Snowmelt runoff analysis under generated climate change scenarios for the Juntanghu River basin in Xinjiang, China. Tecnol. Cienc. Agua 2016, 7, 41–54. [Google Scholar]
- Ala, M.; Ya, L.; Anzhi, W.; Cunyang, N. Characteristics of soil freeze–thaw cycles and their effects on water enrichment in the rhizosphere. Geoderma 2016, 264, 132–139. [Google Scholar]
- Chen, S.; Ouyang, W.; Hao, F.; Zhao, X. Combined impacts of freeze–thaw processes on paddy land and dry land in Northeast China. Sci. Total Environ. 2013, 456, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Kelln, C.; Barbour, S.L.; Qualizza, C. Controls on the spatial distribution of soil moisture and solute transport in a sloping reclamation cover. Can. Geotech. J. 2008, 45, 351–366. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Morel, C.; Parent, L.E. Soil phosphorus availability in no-till versus conventional tillage following freezing and thawing cycles. Can. J. Soil Sci. 2010, 90, 419–428. [Google Scholar] [CrossRef]
- Lei, Z.; Shang, S.; Yang, S.; Wang, Y.; Zhao, D. Simulation on phreatic evaporation during soil freezing. J. Hydraul. Eng. 1999, 6, 8–12. [Google Scholar]
- Harlan, R.L. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour. Res. 1973, 9, 1314–1323. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Hu, Y. Freeze under the conditions of unsaturated soil, water, heat, and solute coupled transport modeling. Yangtze River 2009, 40, 78–80. [Google Scholar]
- Warrach, K.; Mengelkamp, H.T.; Raschke, E. Treatment of frozen soil and snow cover in the land surface model SEWAB. Theor. Appl. Climatol. 2001, 69, 23–37. [Google Scholar] [CrossRef]
- Sinha, T.; Cherkauer, K.A. Time series analysis of soil freeze and thaw processes in Indiana. J. Hydrometeorol. 2008, 9, 936–950. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S. The impact of soil freezing/thawing processes on water and energy balances. Adv. Atmos. Sci. 2011, 28, 169–177. [Google Scholar] [CrossRef]
- Wei, D.; Chen, X.; Wang, T. Migration of different snow cover conditions, soil freezing and soil water. J. Anhui Agric. Sci. 2007, 12, 3570–3572. [Google Scholar]
- Liu, T.; Huang, Y.; Zhang, R.; Li, J. Experiment study on the law of thermal motion of water of soil freeze-thaw on the black land. In Proceedings of the Second International Conference on Mechanic Automation and Control Engineering Institute of Electrical and Electronics Engineers, Inner Mongolia, China, 15–17 July 2011. [Google Scholar]
- Li, R.; Shi, H.; Flerchinger, G.N.; Akae, T.; Wang, C. Simulation of freezing and thawing soils in inner Mongolia Hetao irrigation district, China. Geoderma 2012, 173, 28–33. [Google Scholar] [CrossRef]
- French, H.K.; van der Zee, S.E. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions. Environ. Sci. Pollut. Res. 2014, 21, 8897–8913. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xu, S.; Liu, Z. Study on Freeze-Thaw erosion lead to black soil and agricultural non-point source pollution. In 8th China Water Forum; China Water & Power Press: Beijing, China, 2010; pp. 268–272. [Google Scholar]
- Zhao, X.; Liu, T.; Xu, S.; Liu, Z. Freezing-thawing process and soil moisture migration within the black soil plow layer in seasonally frozen ground regions. J. Glaciol. Geocryol. 2015, 37, 233–240. [Google Scholar]
- Zhao, X.; Liu, Z.; Xu, S.; Liu, T. Study of the black soil plow layer moisture changing with temperature in freeze-thaw cycle period in the seasonal frozen soil regions. J. Glaciol. Geocryol. 2015, 37, 931–939. [Google Scholar]
- Zhao, X.; Xu, S.; Li, M. Freeze-Thaw lead to black soil erosion and non-point source pollution preferences: Alterable fuzzy optimum model of semi-structural decision applied. World Hydrol. 2015, 272, 14–18. [Google Scholar]
- Meng, X.; Wang, H.; Wu, Y.; Long, A.; Wang, J.; Shi, C.; Ji, X. Investigating spatiotemporal changes of the land surface processes in Xinjiang using high-resolution CLM3.5 and CLDAS: Soil temperature. Sci. Rep. 2017, 7, 13286. [Google Scholar] [CrossRef] [PubMed]
- Nayak, H.P.; Osuri, K.K.; Sinha, P.; Nadimpalli, R.; Mohanty, U.C.; Chen, F.; Rajeevan, M.; Niyogi, D. High-resolution gridded soil moisture and soil temperature datasets for the Indian monsoon region. Sci. Data 2018, 5, 180264. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, J. Evaluation of reanalysis datasets against observational soil temperature data over China. Clim. Dyn. 2018, 50, 317–337. [Google Scholar] [CrossRef]
- Davtian, N.; Menot, G.; Bard, E.; Poulenard, J.; Podwojewski, P. Consideration of soil types for the calibration of molecular proxies for soil pH and temperature using global soil datasets and Vietnamese soil profiles. Org. Geochem. 2016, 101, 140–153. [Google Scholar] [CrossRef]
- Gómez, I.; Caselles, V.; Estrela, M.J.; Niclòs, R. Impact of Initial Soil Temperature Derived from Remote Sensing and Numerical Weather Prediction Datasets on the Simulation of Extreme Heat Events. Remote Sens. 2016, 8, 589. [Google Scholar] [CrossRef]
- Ambadan, J.T.; Berg, A.A.; Merryfield, W.J.; Lee, W. Influence of snowmelt on soil moisture and on near surface air temperature during winter–spring transition season. Clim. Dyn. 2018, 51, 1295–1309. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H.; Lei, X.; Cai, S.; Wu, H. Hydrological Modeling in the Manas River Basin Using Soil and Water Assessment Tool Driven by CMADS. Teh. Vjesn. 2017, 24, 525–534. [Google Scholar]
- Meng, X.; Wang, H.; Cai, S.; Zhang, X.; Leng, G.; Lei, X.; Shi, C.; Liu, S.; Shang, Y. The China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) Application in China: A Case Study in Heihe River Basin. Preprints 2016, 120091. [Google Scholar] [CrossRef]
- Shi, C.; Xie, Z.; Qian, H.; Liang, M.; Yang, X. China land soil moisture EnKF data assimilation based on satellite remote sensing data. China Earth Sci. 2011, 54, 1430. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Meng, X. Spring Flood Forecasting Based on the WRF-TSRM mode. Teh. Vjesn. 2018, 25, 27–37. [Google Scholar]
- Zhao, F.; Wu, Y. Parameter Uncertainty Analysis of the SWAT Model in a Mountain Loess Transitional Watershed on the Chinese Loess Plateau. Water 2018, 10, 690. [Google Scholar] [CrossRef]
- Liu, J.; Shanguan, D.; Liu, S.; Ding, Y. Evaluation and Hydrological Simulation of CMADS and CFSR Reanalysis Datasets in the Qinghai Tibet Plateau. Water 2018, 10, 513. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Yang, M. Application of SWAT Model with CMADS Data to Estimate Hydrological Elements and Parameter Uncertainty Based on SUFI-2 Algorithm in the Lijiang River Basin, China. Water 2018, 10, 742. [Google Scholar] [CrossRef]
- Shao, G.; Guan, Y.; Zhang, D.; Yu, B.; Zhu, J. The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin. Water 2018, 10, 814. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Chang, J.; Guo, A.; Li, Z. Investigating the Dynamic Influence of Hydrological Model Parameters on Runoff Simulation Using Sequential Uncertainty Fitting-2-Based Multilevel-Factorial-Analysis Method. Water 2018, 10, 1177. [Google Scholar] [CrossRef]
- Qin, G.; Liu, J.; Wang, T.; Xu, S.; Su, G. An Integrated Methodology to Analyze the Total Nitrogen Accumulation in a Drinking Water Reservoir Based on the SWAT Model Driven by CMADS: A Case Study of the Biliuhe Reservoir in Northeast China. Water 2018, 10, 1535. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Xu, T.; Croke, B.; Jakeman, A.; Song, Y.; Yang, Q.; Lei, X.; Liao, W. Applicability Assessment and Uncertainty Analysis of Multi-Precipitation Datasets for the Simulation of Hydrologic Models. Water 2018, 10, 1611. [Google Scholar] [CrossRef]
- Dong, N.; Yang, M.; Meng, X.; Liu, X.; Wang, Z.; Wang, H.; Yang, C. CMADS-Driven Simulation and Analysis of Reservoir Impacts on the Streamflow with a Simple Statistical Approach. Water 2018, 11, 178. [Google Scholar] [CrossRef]
- Vu, T.; Li, L.; Jun, K. Evaluation of Multi-Satellite Precipitation Products for Streamflow Simulations: A Case Study for the Han River Basin in the Korean Peninsula, East Asia. Water 2018, 10, 642. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H. Significance of the China Meteorological Assimilation Driving Data sets for the SWAT Model (CMADS) of East Asia. Water 2017, 9, 765. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H.; Shi, C.; Wu, Y.; Ji, X. Establishment and Evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS). Water 2018, 10, 1555. [Google Scholar] [CrossRef]
- Meng, X. Simulation and spatiotemporal pattern of air temperature and precipitation in Eastern Central Asia using RegCM. Sci. Rep. 2018, 8, 3639. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, K.; Xu, Y.; Gao, X.; Wang, J. Evaluation of Potential Evapo-transpiration Based on CMADS Reanalysis Dataset over China. Water 2018, 10, 1126. [Google Scholar] [CrossRef]
Model | Gaussian | ||||||||
---|---|---|---|---|---|---|---|---|---|
Equation | |||||||||
Sunny slope | Depth | 1 cm | 5 cm | 10 cm | 15 cm | ||||
Reduced Chi-Sqr | 22.52 | 52.48 | 2.5 | 2.4 | |||||
R2 | 0.835 | 0.788 | 0.948 | 0.91 | |||||
Prob > F | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |||||
Parameter | Value | Standard Error | Value | Standard Error | Value | Standard Error | Value | Standard Error | |
y0 | 24.46 | 0.53 | 45.22 | 0.74 | 21.93 | 0.18 | 23.93 | 0.17 | |
xc | 138.29 | 2.22 | 134.59 | 1.07 | 148.18 | 2.57 | 152.63 | 4.79 | |
w | 42.78 | 3.98 | 29.31 | 2.41 | 46.92 | 3.28 | 49.92 | 5.37 | |
A | 1581.8 | 159.9 | 1496.6 | 114.2 | 1240.6 | 124 | 1039.1 | 182.8 | |
Shady slope | Depth | 1 cm | 5 cm | 10 cm | |||||
Reduced Chi-Sqr | 18 | 4.4 | 1.14 | ||||||
R2 | 0.558 | 0.867 | 0.954 | ||||||
Prob > F | 0.0001 | 0.0001 | 0.0001 | ||||||
Parameters | Value | Standard Error | Value | Standard Error | Value | Standard Error | |||
y0 | 10.38 | 0.46 | 10.8 | 0.25 | 9.31 | 0.13 | |||
xc | 130.54 | 1.86 | 151.28 | 6.02 | 204.25 | 26.85 | |||
w | 33.8 | 4.37 | 56.95 | 7.18 | 82.07 | 15.14 | |||
A | 565.5 | 69.2 | 1193 | 233.8 | 5023.9 | 3807.4 |
n | Periods | F–Tn = f(t) | Season | ta | ts |
---|---|---|---|---|---|
1 | Pre-freezing period | F–T1 = F–TP = f(t) | After the autumn harvest to winter | >0 °C | >0 °C (all day) |
2 | Freezing period | F–T2 = F–Tf = f(t) | Winter | <0 °C | <0 °C |
3 | Early freeze–thaw period | F–T3 = F–Te = f(t) | Early spring | >0 °C at daytime | 1 cm depth >0 °C at noon |
<0 °C at night | 1 cm depth <0 °C in the morning and at night | ||||
4 | Mid freeze–thaw period | F–T5 = F–Tl = f(t) | Early-mid spring | >0 °C at daytime | >0 °C at daytime |
<0 °C at night | <0 °C at night | ||||
5 | Late freeze–thaw period | F–T5 = F–Tl = f(t) | Mid spring | >0 °C at daytime | >0 °C at daytime |
>0 °C during night (most of the time, and occasionally below 0 °C) | ≈0 °C ↓↑ at night | ||||
1 cm depth >0 ℃ | |||||
5 cm depth <0 °C at night | |||||
6 | Post-thawing period | F–T6 = F–TPo = f(t) | Late spring | >0 °C | >0 °C at depths of 1 cm, 5 cm, to 10 cm and 15 cm |
Model | Gaussian | ||||||
---|---|---|---|---|---|---|---|
Equation | |||||||
Location | Depth | 0–1 cm | 1–5 cm | 5–10 cm | |||
10 m away from the bottom | Reduced Chi-Sqr | 2.54 | 2.31 | 17.79 | |||
R2 | 0.905 | 0.921 | 0.499 | ||||
Prob > F | 0.0012 | 0.001 | 0.0071 | ||||
Parameters | Value | Standard Error | Value | Standard Error | Value | Standard Error | |
y0 | 33.57 | 0.92 | 34.3 | 1.12 | 35.56 | 3.12 | |
(F–T)c | 127.86 | 3.7 | 115.01 | 2.16 | 113.83 | 4.47 | |
W | 10.6 | 5.87 | 23.41 | 3.42 | 24.38 | 9.37 | |
A | 160.1 | 100.9 | 745.2 | 199.8 | 840.4 | 527.7 | |
50 m away from the bottom | Reduced Chi-Sqr | 5.38 | 18.15 | 17.21 | |||
R2 | 0.905 | 0.612 | 0.703 | ||||
Prob > F | 0.0027 | 0.0092 | 0.0081 | ||||
Parameters | Value | Standard Error | Value | Standard Error | Value | Standard Error | |
y0 | 23.49 | 2.32 | 29.49 | 3.23 | 26.11 | 4.14 | |
(F–T)c | 126.54 | 4.35 | 113.43 | 3.47 | 121.97 | 6.31 | |
W | 55.04 | 9.94 | 25.95 | 8.64 | 46.72 | 14.33 | |
A | 1286.6 | 326.8 | 1013.7 | 479.2 | 1118.1 | 497.2 | |
100 m away from the bottom | Reduced Chi-Sqr | 2.91 | 15.76 | 15.69 | |||
R2 | 0.956 | 0.73 | 0.55 | ||||
Prob > F | 0.0017 | 0.0089 | 0.0087 | ||||
Parameters | Value | Standard Error | Value | Standard Error | Value | Standard Error | |
y0 | 18.31 | 1.72 | 27.99 | 3.02 | 25.43 | 3.96 | |
(F–T)c | 118.3 | 2.39 | 120.6 | 32.1 | 125.61 | 9.92 | |
W | 61.83 | 7.86 | 20.13 | 30.46 | 54.31 | 22.84 | |
A | 1791.3 | 265.9 | 579.2 | 1837.6 | 923.5 | 547.1 | |
150 m away from the bottom | Reduced Chi-Sqr | 6.69 | 38.79 | 10.76 | |||
R2 | 0.87 | 0.544 | 0.705 | ||||
Prob > F | 0.0036 | 0.0245 | 0.0063 | ||||
Parameters | Value | Standard Error | Value | Standard Error | Value | Standard Error | |
y0 | 24.52 | 2.51 | 24.83 | 4.58 | 25.87 | 3.2 | |
(F–T)c | 115.75 | 2.7 | 120.73 | 49.38 | 118.72 | 5.25 | |
W | 39.85 | 8.15 | 19.6 | 45.74 | 38.11 | 12.26 | |
A | 1117.9 | 254.2 | 657.3 | 3268.8 | 784.4 | 334.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Xu, S.; Liu, T.; Qiu, P.; Qin, G. Moisture Distribution in Sloping Black Soil Farmland during the Freeze–Thaw Period in Northeastern China. Water 2019, 11, 536. https://doi.org/10.3390/w11030536
Zhao X, Xu S, Liu T, Qiu P, Qin G. Moisture Distribution in Sloping Black Soil Farmland during the Freeze–Thaw Period in Northeastern China. Water. 2019; 11(3):536. https://doi.org/10.3390/w11030536
Chicago/Turabian StyleZhao, Xianbo, Shiguo Xu, Tiejun Liu, Pengpeng Qiu, and Guoshuai Qin. 2019. "Moisture Distribution in Sloping Black Soil Farmland during the Freeze–Thaw Period in Northeastern China" Water 11, no. 3: 536. https://doi.org/10.3390/w11030536