Cover Crops and Landscape Position Effects on Nitrogen Dynamics in Plant-Soil-Water Pools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Topographic Positions, and Experimental Design
2.2. Lysimeter Installation and Justification
2.3. Crop Management Practices
2.4. Data Collection and Analysis
2.5. Statistical Methods
3. Results and Discussion
3.1. Environmental Conditions During Study Period
3.2. N Uptake: Cover Crops
3.3. N Uptake: Cash Crops
3.4. Soil Nitrate-N and Ammonium-N: Cover Crop Season
3.5. Soil Nitrate-N and Ammonium-N: Cash Crop Season
3.6. Soil Solution Nitrate-N and Total N: Cover Crop Season
3.7. Soil Solution Nitrate-N and Total N: Cash Crop Season
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blesh, J.; Drinkwater, L. Retention of 15n-labeled fertilizer in an Illinois prairie soil with winter rye. Soil Sci. Soc. Am. J. 2014, 78, 496–508. [Google Scholar] [CrossRef]
- Miguez, F.E.; Bollero, G.A. Winter cover crops in Illinois. Crop Sci. 2006, 46, 1536–1545. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.; Drinkwater, L. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and n dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Villamil, M.; Bollero, G.; Darmody, R.; Simmons, F.; Bullock, D. No-till corn/soybean systems including winter cover crops. Soil Sci. Soc. Am. J. 2006, 70, 1936–1944. [Google Scholar] [CrossRef]
- Dozier, I.A.; Behnke, G.D.; Davis, A.S.; Nafziger, E.D.; Villamil, M.B. Tillage and cover cropping effects on soil properties and crop production in Illinois. Agron. J. 2017, 109, 1261–1270. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Kessavalou, A.; Walters, D.T. Winter rye as a cover crop following soybean under conservation tillage. Agron. J. 1997, 89, 68–74. [Google Scholar] [CrossRef]
- Meisinger, J.; Ricigliano, K. Nitrate leaching from winter cereal cover crops using undisturbed soil-column lysimeters. J. Environ. Qual. 2017, 46, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, A.; Smith, R.; Cahn, M. Winter-killed cereal rye cover crop influence on nitrate leaching in intensive vegetable production systems. HortTechnology 2014, 24, 502–511. [Google Scholar] [CrossRef]
- Rasse, D.P.; Ritchie, J.T.; Peterson, W.R.; Wei, J.; Smucker, A.J. Rye cover crop and nitrogen fertilization effects on nitrate leaching in inbred maize fields. J. Environ. Qual. 2000, 29, 298–304. [Google Scholar] [CrossRef]
- Brandi-Dohrn, F.M.; Hess, M.; Selker, J.S.; Dick, R.P.; Kauffman, S.M.; Hemphill, D.D. Nitrate leaching under a cereal rye cover crop. J. Environ. Qual. 1997, 26, 181–188. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Spargo, J.T.; Curran, W.S.; Reberg-Horton, S.C.; Ryan, M.R.; Schomberg, H.H.; Ackroyd, V.J. Characterizing cereal rye biomass and allometric relationships across a range of fall available nitrogen rates in the eastern united states. Agron. J. 2017, 109, 1520–1531. [Google Scholar] [CrossRef]
- Sievers, T.; Cook, R.L. Aboveground and root decomposition of cereal rye and hairy vetch cover crops. Soil Sci. Soc. Am. J. 2018, 82, 147–155. [Google Scholar] [CrossRef]
- Kaspar, T.; Bakker, M. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield. J. Soil Water Conserv. 2015, 70, 353–364. [Google Scholar] [CrossRef]
- Chapman, H.; Liebig, G.; Rayner, D. A lysimeter investigation of nitrogen gains and losses under various systems of covercropping and fertilization, and a discussion of error sources. Calif. Agric. 1949, 19, 57–128. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.J. Nitrogen losses from Alabama soils in lysimeters as influenced by various systems of green manure crop management. Agron. J. 1942, 34, 574–585. [Google Scholar] [CrossRef]
- McCracken, D.V.; Smith, M.S.; Grove, J.H.; Blevins, R.L.; MacKown, C.T. Nitrate leaching as influenced by cover cropping and nitrogen source. Soil Sci. Soc. Am. J. 1994, 58, 1476–1483. [Google Scholar] [CrossRef]
- Muñoz, J.D.; Steibel, J.P.; Snapp, S.; Kravchenko, A.N. Cover crop effect on corn growth and yield as influenced by topography. Agric. Ecosyst. Environ. 2014, 189, 229–239. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Pulido, D.; Fenton, T.; Colvin, T.; Karlen, D.; Jaynes, D.; Meek, D. Relationship of corn and soybean yield to soil and terrain properties. Agron. J. 2004, 96, 700–709. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Bullock, D.G. Correlation of corn and soybean grain yield with topography and soil properties. Agron. J. 2000, 92, 75–83. [Google Scholar] [CrossRef]
- Beehler, J.; Fry, J.; Negassa, W.; Kravchenko, A. Impact of cover crop on soil carbon accrual in topographically diverse terrain. J. Soil Water Conserv. 2017, 72, 272–279. [Google Scholar] [CrossRef]
- Singh, G.; Schoonover, J.E.; Williard, K.W.; Kaur, G.; Crim, J. Carbon and Nitrogen pools in deep soil horizons at different landscape positions. Soil Sci. Soc. Am. J. 2018, 82, 1512–1525. [Google Scholar] [CrossRef]
- Muñoz, J.D.; Kravchenko, A. Deriving the optimal scale for relating topographic attributes and cover crop plant biomass. Geomorphology 2012, 179, 197–207. [Google Scholar] [CrossRef]
- Ladoni, M.; Kravchenko, A.N.; Robertson, G.P. Topography mediates the influence of cover crops on soil nitrate levels in row crop agricultural systems. PLoS ONE 2015, 10, e0143358. [Google Scholar] [CrossRef] [PubMed]
- Ladoni, M.; Basir, A.; Robertson, P.G.; Kravchenko, A.N. Scaling-up: Cover crops differentially influence soil carbon in agricultural fields with diverse topography. Agric. Ecosyst. Environ. 2016, 225, 93–103. [Google Scholar] [CrossRef]
- Han, Z.; Walter, M.T.; Drinkwater, L.E. Impact of cover cropping and landscape positions on nitrous oxide emissions in northeastern us agroecosystems. Agric. Ecosyst. Environ. 2017, 245, 124–134. [Google Scholar] [CrossRef]
- Negassa, W.; Price, R.F.; Basir, A.; Snapp, S.S.; Kravchenko, A. Cover crop and tillage systems effect on soil co2 and n2o fluxes in contrasting topographic positions. Soil Tillage Res. 2015, 154, 64–74. [Google Scholar] [CrossRef]
- Schoeneberger, P.; Wysocki, D.; Benham, E. Field Book for Describing and Sampling Soils, version 3.0; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2012; p. 36. [Google Scholar]
- Staff, S.S. Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov (accessed on 11 January 2018).
- Illinois Geospatial Data Clearinghouse. Available online: https://clearinghouse.isgs.illinois.edu/ (accessed on 13 December 2017).
- Jenness, J. Topographic Position Index (TPI) v. 1.2; Jenness Enterprises: Flagstaff, AZ, USA, 2006. [Google Scholar]
- Evans, D.A.; Williard, K.W.; Schoonover, J.E. Comparison of terrain indices and landform classification procedures in low-relief agricultural fields. J. Geospat. Appl. Nat. Resour. 2016, 1, 1–13. [Google Scholar]
- Singh, G.; Williard, K.W.; Schoonover, J.E. Spatial relation of apparent soil electrical conductivity with crop yields and soil properties at different topographic positions in a small agricultural watershed. Agronomy 2016, 6, 57. [Google Scholar] [CrossRef]
- Venterea, R.T.; Hyatt, C.R.; Rosen, C.J. Fertilizer management effects on nitrate leaching and indirect nitrous oxide emissions in irrigated potato production. J. Environ. Qual. 2011, 40, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Kaur, G.; Williard, K.; Schoonover, J.; Kang, J. Monitoring of water and solute transport in the vadose zone: A review. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef]
- Carrick, S.; Fraser, P.; Dennis, S.; Knight, T.; Tabley, F. Challenges for Leachate Monitoring from Alluvial Sedimentary Soils; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2013. [Google Scholar]
- Wang, Q.; Cameron, K.; Buchan, G.; Zhao, L.; Zhang, E.; Smith, N.; Carrick, S. Comparison of lysimeters and porous ceramic cups for measuring nitrate leaching in different soil types. N. Z. J. Agric. Res. 2012, 55, 333–345. [Google Scholar] [CrossRef] [Green Version]
- Dahnke, W.; Johnson, G.V. Testing soils for available nitrogen. In Soil Testing and Plant Analysis; Westerman, R.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; Volume 3, pp. 128–139. [Google Scholar]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Schabenberger, O. Sas for Mixed Models, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2006. [Google Scholar]
- Shipley, P.R.; Messinger, J.; Decker, A. Conserving residual corn fertilizer nitrogen with winter cover crops. Agron. J. 1992, 84, 869–876. [Google Scholar] [CrossRef]
- Meisinger, J.; Hargrove, W.; Mikkelsen, R.; Williams, J.; Benson, V. Effects of cover crops on groundwater quality. In Cover Crops for Clean Water; Hargrove, W., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 1991; pp. 793–799. [Google Scholar]
- Meisinger, J.; Shipley, P.; Decker, A. Using winter cover crops to recycle nitrogen and reduce leaching. In Conservation Tillage for Agriculture in the 1990’s Proceeding 1990 Southern Region Conservation Tillage Conference; Mueller, J., Wagger, M., Eds.; North Carolina State University: Raleigh, NC, USA, 1990; Volume 90. [Google Scholar]
- Kaspar, T.; Jaynes, D.; Parkin, T.; Moorman, T.; Singer, J. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water. Agric. Water Manag. 2012, 110, 25–33. [Google Scholar] [CrossRef]
- Singh, G.; Williard, K.W.; Schoonover, J.E. Cover crops and tillage influence on nitrogen dynamics in plant-soil-water pools. Soil Sci. Soc. Am. J. 2018, 82, 1572–1582. [Google Scholar] [CrossRef]
- Lacey, C.; Armstrong, S. The efficacy of winter cover crops to stabilize soil inorganic nitrogen after fall-applied anhydrous ammonia. J. Environ. Qual. 2015, 44, 442–448. [Google Scholar] [CrossRef]
- Clark, A.J.; Decker, A.M.; Meisinger, J.J. Seeding rate and kill date effects on hairy vetch-cereal rye cover crop mixtures for corn production. Agron. J. 1994, 86, 1065–1070. [Google Scholar] [CrossRef]
- Kuo, S.; Sainju, U.; Jellum, E. Winter cover cropping influence on nitrogen in soil. Soil Sci. Soc. Am. J. 1997, 61, 1392–1399. [Google Scholar] [CrossRef]
- Holderbaum, J.; Decker, A.; Messinger, J.; Mulford, F.; Vough, L. Fall-seeded legume cover crops for no-tillage corn in the humid east. Agron. J. 1990, 82, 117–124. [Google Scholar] [CrossRef]
- McVay, K.; Budde, J.; Fabrizzi, K.; Mikha, M.; Rice, C.; Schlegel, A.; Peterson, D.; Sweeney, D.; Thompson, C. Management effects on soil physical properties in long-term tillage studies in Kansas. Soil Sci. Soc. Am. J. 2006, 70, 434–438. [Google Scholar] [CrossRef]
- Sariyildiz, T.; Anderson, J.; Kucuk, M. Effects of tree species and topography on soil chemistry, litter quality, and decomposition in northeast turkey. Soil Biol. Biochem. 2005, 37, 1695–1706. [Google Scholar] [CrossRef]
- Zotarelli, L.; Avila, L.; Scholberg, J.; Alves, B. Benefits of vetch and rye cover crops to sweet corn under no-tillage. Agron. J. 2009, 101, 252–260. [Google Scholar] [CrossRef]
- Ebelhar, S.; Frye, W.; Blevins, R. Nitrogen from legume cover crops for no-tillage corn. Agron. J. 1984, 76, 51–55. [Google Scholar] [CrossRef]
- Timlin, D.; Pachepsky, Y.; Snyder, V.; Bryant, R. Spatial and temporal variability of corn grain yield on a hillslope. Soil Sci. Soc. Am. J. 1998, 62, 764–773. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Porter, P.M.; Baker, J.M. Winter rye cover crop management influences on soil water, soil nitrate, and corn development. Agron. J. 2011, 103, 316–323. [Google Scholar] [CrossRef]
- Strock, J.; Porter, P.; Russelle, M. Cover cropping to reduce nitrate loss through subsurface drainage in the northern us corn belt. J. Environ. Qual. 2004, 33, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Ball-Coelho, B.; Roy, R. Overseeding rye into corn reduces NO3 leaching and increases yields. Can. J. Soil Sci. 1997, 77, 443–451. [Google Scholar] [CrossRef]
- Kaspar, T.; Jaynes, D.; Parkin, T.; Moorman, T. Rye cover crop and gamagrass strip effects on no concentration and load in tile drainage. J. Environ. Qual. 2007, 36, 1503–1511. [Google Scholar] [CrossRef]
- Ruffo, M.L.; Bullock, D.G.; Bollero, G.A. Soybean yield as affected by biomass and nitrogen uptake of cereal rye in winter cover crop rotations. Agron. J. 2004, 96, 800–805. [Google Scholar] [CrossRef]
- Singh, G. Effect of Cover Crops on Nutrient Dynamics and Soil Properties in Corn-Soybean Rotation in Southern Illinois. Ph.D. Thesis, Southern Illinois University, Carbondale, IL, USA, 2018. [Google Scholar]
- Singh, G.; Schoonover, J.E.; Williard, K.W. Cover crops for managing stream water quantity and improving stream water quality of non-tile drained paired watersheds. Water 2018, 10, 521. [Google Scholar] [CrossRef]
- Yeo, I.-Y.; Lee, S.; Sadeghi, A.M.; Beeson, P.C.; Hively, W.D.; McCarty, G.W.; Lang, M.W. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model. Hydrol. Earth Syst. Sci. 2014, 18, 5239–5253. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Feria, R.A.; Dietzel, R.; Liebman, M.; Helmers, M.J.; Archontoulis, S.V. Rye cover crop effects on maize: A system-level analysis. Field Crops Res. 2016, 196, 145–159. [Google Scholar] [CrossRef]
- Baker, J.; Timmons, D. Fertilizer management effects on leaching of labeled nitrogen for no-till corn in field lysimeters. J. Environ. Qual. 1994, 23, 305–310. [Google Scholar] [CrossRef]
- Kuo, S.; Huang, B.; Bembenek, R. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching. Sci. World J. 2001, 1, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Aronsson, H.; Torstensson, G. Measured and simulated availability and leaching of nitrogen associated with frequent use of catch crops. Soil Use Manag. 1998, 14, 6–13. [Google Scholar] [CrossRef]
2015 | 2016 | 2017 | 2018 | |||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J | F | M | A | M | J | J | A | S | O | N | D | J | F | M | A | M | J | J | A | S | O | N | D | J | F | M | A | M | J | J | A | S | O | N | D | J | F | M | A | M | J | J | A | S | O | N | D | |
Treatment | ||||||||||||||||||||||||||||||||||||||||||||||||
CC | Corn | Cereal rye | Soybean | Hairy vetch | Corn | Cereal rye | ||||||||||||||||||||||||||||||||||||||||||
No CC | Corn | No CC | Soybean | No CC | Corn | No CC | ||||||||||||||||||||||||||||||||||||||||||
Soil Solution Collection Events | 8 | 16 | 10 | 16 | 7 | 13 |
Crop | N-Fertilizer Application | Planting | Biomass Collection 1 | Harvest/Termination 2 | Soil Sampling |
---|---|---|---|---|---|
Corn | 30 April 2015 | 3 May 2015 | 10 September 2015 | 1 October 2015 | 8 October 2015 |
Cereal rye | - | 5 October 2015 | 15 April 2016 | 18 April 2016 | 13 April 2016 |
Soybean | - | 16 June 2016 | 27 September 2016 | 25 October 2016 | 25 October 2016 |
Hairy vetch | - | 26 October 2016 | 12 May 2017 | 12 May 2017 | 12 April 2017 |
Corn | 3 May 2017 | 19 May 2017 | 13 September 2017 | 6 October 2017 | 9 October 2017 |
Cereal rye | - | 13 October 2017 | 7 May 2018 | 10 May 2018 | 18 April 2018 |
Source of Variation | df | N Uptake | |||||
---|---|---|---|---|---|---|---|
2015–2016 | 2016–2017 | 2017–2018 | |||||
Corn | Cereal Rye | Soybean | Hairy Vetch | Corn | Cereal Rye | ||
p-Values | |||||||
Treatment 1 | 1 | 0.7983 | 0.1284 | 0.7649 | <0.0001 | 0.4211 | 0.2845 |
Topography 2 | 2 | <0.0001 | <0.0001 | 0.1304 | 0.0233 | 0.0085 | <0.0001 |
Treatment * Topography | 2 | 0.0051 | 0.0007 | 0.0753 | 0.0005 | 0.2064 | <0.0001 |
Source of Variation | df | 2015–2016 | 2016–2017 | 2017–2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Corn | Cereal Rye | Soybean | Hairy Vetch | Corn | Cereal Rye | ||||||||
NO3-N | NH4-N | NO3-N | NH4-N | NO3-N | NH4-N | NO3-N | NH4-N | NO3-N | NH4-N | NO3-N | NH4-N | ||
p-Values | |||||||||||||
Treatment 1 | 1 | 0.8471 | 0.0419 | 0.6145 | 0.0055 | 0.0454 | 0.1363 | 0.7001 | 0.0011 | 0.2601 | 0.1069 | 0.2895 | 0.0041 |
Topography 2 | 2 | 0.0129 | 0.2859 | 0.0001 | 0.8638 | 0.0005 | 0.8765 | 0.3335 | 0.9625 | 0.0052 | 0.0469 | 0.1006 | 0.4278 |
Treatment * Topography | 2 | 0.4684 | 0.1142 | 0.3091 | 0.6043 | 0.7250 | 0.0062 | 0.1043 | 0.1428 | 0.0239 | 0.162 | 0.0002 | 0.6421 |
Source of Variation | df | 2015–2016 | 2016–2017 | 2017–2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Corn | Cereal Rye | Soybean | Hairy Vetch | Corn | Cereal Rye | ||||||||
NO3-N | TN | NO3-N | TN | NO3-N | TN | NO3-N | TN | NO3-N | TN | NO3-N | TN | ||
p-Values | |||||||||||||
Treatment 1 | 1 | 0.0974 | 0.4981 | 0.0121 | 0.0175 | 0.0008 | 0.0175 | <0.0001 | <0.0001 | 0.5008 | 0.9183 | <0.0001 | 0.0002 |
Topography 2 | 2 | <0.0001 | <0.0001 | 0.0085 | 0.4640 | 0.0136 | 0.0025 | 0.9493 | 0.6832 | 0.0039 | 0.0072 | 0.1456 | 0.3742 |
Treatment * Topography | 2 | 0.0008 | 0.0062 | 0.9107 | 0.2747 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Treatment | Topography | N Uptake | |||||
---|---|---|---|---|---|---|---|
2015–2016 | 2016–2017 | 2017–2018 | |||||
Corn | Cereal Rye | Soybean | Hairy Vetch | Corn | Cereal Rye | ||
kg ha−1 | |||||||
CC watersheds | 189.35 | 19.19 | 206.54 | 94.03a | 256.09 | 15.41 | |
No CC watersheds | 185.10 | 17.74 | 200.92 | 13.76b | 229.00 | 14.14 | |
Shoulder | 251.97a | 24.79a | 222.40 | 70.50a | 256.14a | 23.15a | |
Backslope | 183.28b | 13.42b | 202.50 | 50.47b | 202.50b | 12.02b | |
Footslope | 126.43c | 17.17a | 186.29 | 40.73b | 269.00a | 9.59b | |
CC watersheds | Shoulder | 289.37a | 28.52a | 244.19a | 125.95a | 260.08 | 27.02a |
CC watersheds | Backslope | 177.81b | 15.24bc | 208.19ab | 92.98ab | 238.36 | 14.57bc |
CC watersheds | Footslope | 100.88c | 13.78bc | 167.24b | 63.17b | 269.82 | 4.62d |
No CC watersheds | Shoulder | 214.57b | 21.06ab | 200.62ab | 15.05dc | 252.19 | 19.29b |
No CC watersheds | Backslope | 188.75b | 11.60c | 196.81ab | 7.96d | 166.63 | 9.46c |
No CC watersheds | Footslope | 151.98bc | 20.56ab | 205.33ab | 18.28c | 268.18 | 14.56bc |
Treatment | Topography | 2015–2016 | 2016–2017 | 2017–2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Corn | Cereal Rye | Soybean | Hairy Vetch | Corn | Cereal Rye | ||||||||
NO3-N | NH4-N | NO3-N | NH4-N | NO3-N | NH4-N | NO3-N | NH4-N | NO3-N | NH4-N | NO3-N | NH4-N | ||
kg ha−1 | |||||||||||||
CC watersheds | 8.85 | 32.43a | 2.36 | 23.61a | 18.68b | 20.08 | 1.45 | 33.57a | 23.38 | 17.51 | 1.53 | 26.70a | |
No CC watersheds | 7.26 | 26.48b | 2.60 | 18.58b | 21.90a | 17.95 | 1.26 | 24.31b | 19.32 | 13.87 | 2.05 | 22.04b | |
Shoulder | 10.49a | 30.45 | 3.76a | 21.38 | 20.20ab | 18.70 | 1.64 | 29.02 | 34.69a | 14.08b | 1.79 | 24.17 | |
Backslope | 7.22ab | 30.70 | 1.92b | 21.22 | 16.18b | 19.52 | 1.15 | 28.75 | 17.76b | 17.61a | 2.10 | 25.43 | |
Footslope | 6.46b | 27.21 | 1.76b | 20.69 | 24.50a | 18.82 | 1.27 | 29.06 | 14.59b | 15.38ab | 1.48 | 23.52 | |
CC watersheds | Shoulder | 11.67 | 36.15 | 3.96 | 23.37 | 18.33 | 22.85a | 2.09 | 33.71 | 33.76a | 14.86 | 2.17ab | 26.28 |
CC watersheds | Backslope | 8.03 | 33.40 | 1.43 | 24.50 | 15.43 | 20.33ab | 1.13 | 31.51 | 26.12ab | 18.94 | 1.20b | 27.20 |
CC watersheds | Footslope | 6.86 | 27.73 | 1.68 | 22.97 | 22.28 | 17.06ab | 1.14 | 35.49 | 10.24b | 18.72 | 1.21b | 26.63 |
No CC watersheds | Shoulder | 9.32 | 24.75 | 3.55 | 19.40 | 22.07 | 14.56b | 1.18 | 24.34 | 29.61ab | 13.30 | 1.41b | 22.06 |
No CC watersheds | Backslope | 6.42 | 27.99 | 2.41 | 17.94 | 16.93 | 18.70ab | 1.18 | 25.98 | 9.40b | 16.29 | 2.99a | 23.65 |
No CC watersheds | Footslope | 6.05 | 26.69 | 1.84 | 18.41 | 26.71 | 20.57ab | 1.40 | 22.62 | 18.93ab | 12.03 | 1.74b | 20.40 |
Treatment | Topography | 2015–2016 | 2016–2017 | 2017–2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Corn | Cereal Rye | Soybean | Hairy Vetch | Corn | Cereal Rye | ||||||||
NO3-N | TN | NO3-N | TN | NO3-N | TN | NO3-N | TN | NO3-N | TN | NO3-N | TN | ||
mg L−1 | |||||||||||||
CC watersheds | 4.76 | 6.31 | 1.16b | 1.3b | 2.56b | 2.8b | 1.89b | 2.38b | 15.19 | 19.21 | 3.76b | 4.78b | |
No CC watersheds | 3.46 | 3.65 | 3.7a | 3.7a | 5.25a | 5.61a | 5.43a | 6.01a | 5.00 | 5.98 | 4.97a | 5.49a | |
Shoulder | 9.37a | 11.07a | 3.18a | 3.2 | 4.61a | 5.01a | 3.27 | 3.75 | 13.8a | 15.32a | 6.73 | 7.60 | |
Backslope | 1.52b | 2.1b | 1.92b | 1.92 | 2.09b | 2.13b | 3.12 | 3.61 | 12.07ab | 16.45a | 2.23 | 2.94 | |
Footslope | 1.44b | 1.77b | 2.19b | 2.37 | 5.02ab | 5.48a | 4.58 | 5.23 | 4.42b | 6.02b | 4.10 | 4.40 | |
CC watersheds | Shoulder | 12.61a | 15.82a | 1.46 | 1.61 | 5.11b | 5.48b | 2.4b | 2.82bc | 23.52a | 26.15a | 9.50a | 10.78a |
CC watersheds | Backslope | 1.58b | 2.34bc | 1.11 | 1.16 | 1.84bc | 1.87bc | 2.53b | 3.17b | 19.25a | 27.42a | 1.28bc | 1.71b |
CC watersheds | Footslope | 0.10b | 0.77c | 0.92 | 1.14 | 0.73c | 1.06c | 0.73c | 1.16c | 2.81b | 4.04b | 0.49c | 0.92b |
No CC watersheds | Shoulder | 6.14ab | 6.33ab | 4.9 | 4.8 | 4.11bc | 4.55bc | 4.14b | 4.68b | 4.08ab | 4.49ab | 3.95ab | 4.41a |
No CC watersheds | Backslope | 1.46b | 1.85bc | 2.74 | 2.69 | 2.34bc | 2.39bc | 3.71ab | 4.05b | 4.89ab | 5.47ab | 3.25ab | 4.17a |
No CC watersheds | Footslope | 2.79b | 2.77bc | 3.47 | 3.6 | 9.3a | 9.9a | 8.44a | 9.3a | 6.02a | 7.99a | 7.71ab | 7.81a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, G.; Williard, K.; Schoonover, J.; Nelson, K.A.; Kaur, G. Cover Crops and Landscape Position Effects on Nitrogen Dynamics in Plant-Soil-Water Pools. Water 2019, 11, 513. https://doi.org/10.3390/w11030513
Singh G, Williard K, Schoonover J, Nelson KA, Kaur G. Cover Crops and Landscape Position Effects on Nitrogen Dynamics in Plant-Soil-Water Pools. Water. 2019; 11(3):513. https://doi.org/10.3390/w11030513
Chicago/Turabian StyleSingh, Gurbir, Karl Williard, Jon Schoonover, Kelly A. Nelson, and Gurpreet Kaur. 2019. "Cover Crops and Landscape Position Effects on Nitrogen Dynamics in Plant-Soil-Water Pools" Water 11, no. 3: 513. https://doi.org/10.3390/w11030513
APA StyleSingh, G., Williard, K., Schoonover, J., Nelson, K. A., & Kaur, G. (2019). Cover Crops and Landscape Position Effects on Nitrogen Dynamics in Plant-Soil-Water Pools. Water, 11(3), 513. https://doi.org/10.3390/w11030513