Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Soil Sampling and Measurements
2.3. Application of BEST Procedure and Estimation of Soil Porosity Indicators
2.4. Capacitive-Based Indicators
2.5. Data Analysis
3. Results
3.1. Basic Soil Properties
3.2. Comparison and Choice among BEST-Algorithms
3.3. Comparison between CT and NT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena. 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Bottinelli, N.; Jouquet, P.; Capowiez, Y.; Podwojewski, P.; Grimaldi, M.; Peng, X. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Tillage Res. 2015, 146, 118–124. [Google Scholar] [CrossRef]
- Tebrügge, F.; Düring, R. Reducing tillage intensity–a review of results from a long-term study in Germany. Soil Tillage Res. 1999, 53, 15–28. [Google Scholar] [CrossRef]
- Colecchia, S.A.; Rinaldi, M.; De Vita, P. Effects of tillage systems in durum wheat under rainfed Mediterranean conditions. Cereal Res. Commun. 2015, 43, 704–716. [Google Scholar] [CrossRef]
- Van de Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Marandola, D.; De Maria, M. La semina su sodo: Numeri e situazione in Italia. L’Inf. Agrar. 2013, 27, 42–46. (In Italian) [Google Scholar]
- Stubbs, T.L.; Kennedy, A.C.; Schillinger, W.F. Soil ecosystem change during the transition to no-till cropping. J. Crop Improv. 2004, 11, 105–135. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; Van Groenigen, K.J.; Lee, J.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Kertész, A.; Madarász, B. Conservation Agriculture in Europe. Int. Soil Water Conserv. Res. 2014, 2, 91–96. [Google Scholar] [CrossRef]
- Somasundaram, J.; Chaudhary, R.S.; Awanish Kumar, D.; Biswas, A.K.; Sinha, N.K.; Mohanty, M.; Hati, K.M.; Jha, P.; Sankar, M.; Patra, A.K.; et al. Effect of contrasting tillage and cropping systems on soil aggregation, carbon pools and aggregate-associated carbon in rainfed Vertisols. Eur J Soil Sci. 2018. [Google Scholar] [CrossRef]
- Giambalvo, D.; Amato, G.; Badagliacca, G.; Ingraffia, R.; Di Miceli, G.; Frenda, A.S.; Plaia, A.; Venezia, G.; Ruisi, P. Switching from conventional tillage to no-tillage: Soil N availability, Nuptake,15N fertilizer recovery, and grain yield of durum wheat. Field Crops Res. 2018, 218, 171–181. [Google Scholar] [CrossRef]
- Troccoli, A.; Maddaluno, C.; Mucci, M.; Russo, M.; Rinaldi, M. Is it appropriate to support the farmers for adopting Conservation Agriculture? Economic and environmental impact assessment. Ital. J. Agron. 2015, 10, 169–177. [Google Scholar] [CrossRef]
- Marandola, D.; Monteleone, A. I PSR 2014-2020 puntano sulla semina su sodo. L’Inf. Agrar. 2016, 2, 59–66. (In Italian) [Google Scholar]
- Lozano, L.A.; Soracco, C.G.; Buda, V.S.; Sarli, G.O.; Filgueira, R.R. Stabilization of soil hydraulic properties under a long term no-till system. Rev. Bras. Ciênc. Solo 2014, 38, 1281–1292. [Google Scholar] [CrossRef]
- Ferrara, R.M.; Mazza, G.; Muschitiello, C.; Castellini, M.; Stellacci, A.M.; Navarro, A.; Lagomarsino, A.; Vitti, C.; Rossi, R.; Rana, G. Short-term effects of conversion to no-tillage on respiration and chemical-physical properties of the soil: A case study in a wheat cropping system in semi-dry environment. Ital. J. Agrometeorol. 2017, 1, 47–58. [Google Scholar]
- Strudley, M.W.; Green, T.R.; Ascough, J.C., II. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Chandrasekhar, P.; Kreiselmeier, J.; Schwen, A.; Weninger, T.; Julich, S.; Feger, K.-H.; Schwärzel, K. Why We Should Include Soil Structural Dynamics of Agricultural Soils in Hydrological Models. Water 2018, 10, 1862. [Google Scholar] [CrossRef]
- Vogeler, I.; Rogasik, J.; Funder, U.; Panten, K.; Schnug, E. Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. Soil Tillage Res. 2009, 103, 137–143. [Google Scholar] [CrossRef]
- Reichert, J.M.; Rosa, V.T.; Vogelmann, E.S.; Rosa, D.P.; Horn, R.; Reinert, D.J.; Sattler, A.; Denardin, J.E. Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic. Soil Tillage Res. 2016, 158, 123–136. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R. The importance of long-term experiments in agriculture: Their management to ensure continued crop production and soil fertility; the Rothamsted experiment. Eur. J. Soil Sci. 2018, 69, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kadono, A.; Lal, R.; Dick, W. Long-term tillage and crop rotations for 47–49 years influences hydrological properties of two soils in Ohio. Soil Sci. Soc. Am. J. 2012, 76, 2195–2207. [Google Scholar] [CrossRef]
- Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy. Eur. J. Agron. 2016, 77, 188–198. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wienhold, B.J.; Jin, V.L.; Schmer, M.R.; Kibet, L.C. Long-term tillage impact on soil hydraulic properties. Soil Tillage Res. 2017, 170, 38–42. [Google Scholar] [CrossRef]
- Chang, C.; Lindwall, C.W. Effects of tillage and crop rotation on physical properties of a loam soil. Soil Tillage Res. 1992, 22, 383–389. [Google Scholar] [CrossRef]
- Lipiec, J.; Kus´, J.; Słowin´ ska-Jurkirwicz, A.; Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Till. Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Azooz, R.H.; Arshad, M.A. Soil water drying and recharge rates as affected by tillage under continuous barley and barley–canola cropping systems in northwestern Canada. Can. J. Soil Sci. 2001, 81, 45–52. [Google Scholar] [CrossRef]
- Castellini, M.; Pirastru, M.; Niedda, M.; Ventrella, D. Comparing physical quality of tilled and no-tilled soils in an almond orchard in southern Italy. Ital. J. Agron. 2013, 8, 149–157. [Google Scholar] [CrossRef]
- Ciollaro, G.; Lamaddalena, N. Effect of tillage on the hydraulic properties of a vertic soil. J. Agric. Eng. Res. 1998, 71, 147–155. [Google Scholar] [CrossRef]
- Lassabatère, L.; Angulo-Jaramillo, R.; Ugalde, J.M.S.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan estimation of soil transfer parameters through infiltration experiments: BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Iovino, M.; Provenzano, G.; Sgroi, A. Testing different approaches to characterize Burundian soils by the BEST procedure. Geoderma 2011, 162, 141–150. [Google Scholar] [CrossRef]
- Castellini, M.; Di Prima, S.; Iovino, M. An assessment of the BEST procedure to estimate the soil water retention curve: A comparison with the evaporation method. Geoderma 2018, 320, 82–94. [Google Scholar] [CrossRef]
- Siltecho, S.; Hammecker, C.; Sriboonlue, V.; Clermont-Dauphin, C.; Trelo-ges, V.; Antonino, A.C.D.; Angulo-Jaramillo, R. Use of field and laboratory methods for estimating unsaturated hydraulic properties under different land uses. Hydrol. Earth Syst. Sci. 2015, 19, 1193–1207. [Google Scholar] [CrossRef]
- Castellini, M.; Iovino, M.; Pirastru, M.; Niedda, M.; Bagarello, V. Use of BEST procedure to assess soil physical quality in the Baratz Lake catchment (Sardinia, Italy). Soil Sci. Soc. Am. J. 2016, 80, 742–755. [Google Scholar] [CrossRef]
- Souza, R.; Souza, E.; Netto, A.M.; de Almeida, A.Q.; Júnior, G.B.; Silva, J.R.I.; de Sousa Lima, J.R.; Antonino, A.C.D. Assessment of the physical quality of a Fluvisol in the Brazilian semiarid region. Geoderma Reg. 2017, 10, 175–182. [Google Scholar] [CrossRef]
- Cullotta, S.; Bagarello, V.; Baiamonte, G.; Gugliuzza, G.; Iovino, M.; La Mela Veca, D.S.; Maetzke, F.; Palmeri, V.; Sferlazza, S. Comparing different methods to determine soil physical quality in a mediterranean forest and pasture land. Soil Sci. Soc. Am. J. 2016, 80, 1038–1056. [Google Scholar] [CrossRef]
- Lozano-Baez, S.E.; Cooper, M.; Ferraz, S.F.B.; Ribeiro Rodrigues, R.; Pirastru, M.; Di Prima, S. Previous land use affects the recovery of soil hydraulic properties after forest restoration. Water 2018, 10, 453. [Google Scholar] [CrossRef]
- Bagarello, V.; Castellini, M.; Di Prima, S.; Iovino, M. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma 2014, 213, 492–501. [Google Scholar] [CrossRef]
- Di Prima, S.; Concialdi, P.; Lassabatere, L.; Angulo-Jaramillo, R.; Pirastru, M.; Cerdà, A.; Keesstra, S. Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration. Catena 2018, 167, 373–384. [Google Scholar] [CrossRef]
- Mubarak, I.; Mailhol, J.C.; Angulo-Jaramillo, R.; Ruelle, P.; Boivin, P.; Khaledian, M. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma 2009, 150, 158–165. [Google Scholar] [CrossRef]
- Souza, E.S.; Antonino, A.C.D.; Heck, R.J.; Montenegro, S.M.G.L.; Lima, J.R.S.; Sampaio, E.V.S.B.; Jaramillo, R.A.; Vauclin, M. Effect of crusting on the physical and hydraulic properties of a soil cropped with castor beans (Ricinus communis L.) in the north eastern region of Brazil. Soil Tillage Res. 2014, 141, 55–61. [Google Scholar] [CrossRef]
- Villarreal, R.; Soracco, C.G.; Lozano, L.A.; Melani, E.M.; Sarli, G.O. Temporal variation of soil sorptivity under conventional and no-till systems determined by a simple laboratory method. Soil Tillage Res. 2017, 168, 92–98. [Google Scholar] [CrossRef]
- Somasundaram, J.; Reeves, S.; Wang, W.; Heenan, M.; Dalal, R. Impact of 47 years of no tillage and stubble retention on soil aggregation and carbon distribution in a Vertisol. Land Degrad. Dev. 2017, 28, 1589–1602. [Google Scholar] [CrossRef]
- Iovino, M.; Castellini, M.; Bagarello, V.; Giordano, G. Using static and dynamic indicators to evaluate soil physical quality in a Sicilian area. Land Degrad. Dev. 2016, 27, 200–210. [Google Scholar] [CrossRef]
- Di Prima, S.; Rodrigo-Comino, J.; Novara, A.; Iovino, M.; Pirastru, M.; Keesstra, S.; Cerda, A. Assessing soil physical quality of citrus orchards under tillage, herbicide and organic managements. Pedosphere 2018, 28, 463–477. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle-size analysis. Methods of Soil Analysis, Physical Methods. Soil Sci. Soc. Am. 2002, 255–293. [Google Scholar]
- Vitti, C.; Stellacci, A.M.; Leogrande, R.; Mastrangelo, M.; Cazzato, E.; Ventrella, D. Assessment of organic carbon in soils: A comparison between the Springer–Klee wet digestion and the dry combustion methods in Mediterranean soils (Southern Italy). Catena 2016, 137, 113–119. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Barca, E.; Iovino, M. Application of multivariate analysis techniques for selecting soil physical quality indicators: A case study in long-term field experiments in Apulia (southern Italy). Soil Sci. Soc. Am. J. 2019. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, T. Hydraulic properties of porous media. In Hydrology Papers 3; Colorado State University: Fort Collins, Colorado, 1964; 27p. [Google Scholar]
- Burdine, N.T. Relative permeability calculation from pore size distribution data. Petr. Trans. Am. Inst. Min. Metall. Eng. 1953, 198, 71–77. [Google Scholar] [CrossRef]
- Haverkamp, R.; Debionne, S.; Viallet, P.; Angulo-Jaramillo, R.; de Condappa, D. Soil properties and moisture movement in the unsaturated zone. In The Handbook of Groundwater Engineering; Delleur, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–59. [Google Scholar]
- Haverkamp, R.; Ross, P.J.; Smettem, K.R.J.; Parlange, J.Y. Threedimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resour. Res. 1994, 30, 2931–2935. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Estimating the water retention shape parameter from sand and clay content. Soil Sci. Soc. Am. J. 2007, 71, 1105–1110. [Google Scholar] [CrossRef]
- Xu, X.; Kiely, G.; Lewis, C. Estimation and analysis of soil hydraulic properties through infiltration experiments: Comparison of BEST and DL fitting methods. Soil Use Manag. 2009, 25, 354–361. [Google Scholar] [CrossRef]
- Yilmaz, D.; Lassabatère, L.; Angulo-Jaramillo, R.; Deneele, D.; Legret, M. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J. 2010, 9, 107–116. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Iovino, M. Comparing alternative algorithms to analyze the Beerkan infiltration experiment. Soil Sci. Soc. Am. J. 2014, 78, 724–736. [Google Scholar] [CrossRef]
- Di Prima, S. Automatic analysis of multiple Beerkan infiltration experiments for soil Hydraulic Characterization. In Proceedings of the 1st CIGR Inter-Regional Conference on Land and Water Challenges, Bari, Italy, 10–14 September 2013; p. 127. [Google Scholar] [CrossRef]
- Watson, K.; Luxmoore, R. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci. Soc. Am. J. 1986, 50, 578–582. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Ankeny, R.; Horton, M.D.; Kanwar, R.S. Spatial analysis of hydraulic conductivity measured using disc infiltrometers. Water Resour. Res. 1994, 30, 2489–2498. [Google Scholar] [CrossRef]
- Warrick, A.W. Appendix 1: Spatial variability. In Environmental Soil Physics; Hillel, D., Ed.; Academic Press: San Diego, CA, USA, 1998; pp. 655–675. [Google Scholar]
- Lee, D.M.; Reynolds, W.D.; Elrick, D.E.; Clothier, B.E. A comparison of three field methods for measuring saturated hydraulic conductivity. Can. J. Soil Sci. 1985, 65, 563–573. [Google Scholar] [CrossRef]
- Bagarello, V.; Castellini, M.; Iovino, M.; Sgroi, A. Testing the concentric-disk tension infiltrometer for field measurements of soil hydraulic conductivity. Geoderma 2010, 158, 427–435. [Google Scholar] [CrossRef]
- Castellini, M.; Ventrella, D. Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in southern Italy. Soil Tillage Res. 2012, 124, 47–56. [Google Scholar] [CrossRef]
- Angulo-Jaramillo, R.; Bagarello, V.; Iovino, M.; Lassabatere, L. (Eds.) Saturated soil hydraulic conductivity. In Infiltration Measurements for Soil Hydraulic Characterization; Springer: Cham, Switzerland, 2016; pp. 43–180. [Google Scholar]
- Elrick, D.E.; Reynolds, W.D. Methods for analyzing constant-head well permeameter data. Soil Sci. Soc. Am. J. 1992, 56, 320–323. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.G.; Wang, Q.J.; Fan, J.; Horton, R. Temporal changes of soil hydraulic properties under different land uses. Geoderma 2009, 149, 355–366. [Google Scholar] [CrossRef]
- Moret, D.; Arrúe, J.L. Dynamics of soil hydraulic properties during fallow as affected by tillage. Soil Tillage Res. 2007, 96, 103–113. [Google Scholar] [CrossRef]
- Alletto, L.; Coquet, Y. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma 2009, 152, 85–94. [Google Scholar] [CrossRef]
- Schwen, A.; Bodner, G.; Scholl, P.; Buchan, G.D.; Loiskandl, W. Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil Tillage Res. 2011, 113, 89–98. [Google Scholar] [CrossRef]
- Castellini, M.; Niedda, M.; Pirastru, M.; Ventrella, D. Temporal changes of soil physical quality under two residue management systems. Soil Use Manag. 2014, 30, 423–434. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Rhoton, F.E. Influence of time on soil response to no-till practices. Soil Sci. Soc. Am. J. 2000, 64, 700–709. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Till. Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Dang, Y.P.; Moody, P.W.; Bell, M.J.; Seymour, N.P.; Dalal, R.C.; Freebairn, D.M. Strategic tillage in no till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil Tillage Res. 2015, 152, 115–123. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, S.; Huo, Z.; Song, X. Application of the SWAP model to simulate the field water cycle under deficit irrigation in Beijing, China. Math. Comp. Model. 2011, 54, 1044–1052. [Google Scholar] [CrossRef]
- Shelia, V.; Šimůnek, J.; Boote, K.; Hoogenbooom, G. Coupling DSSAT and HYDRUS-1D for simulations of soil water dynamics in the soil-plant-atmosphere system. J. Hydrol. Hydromech. 2018, 66, 232–245. [Google Scholar] [CrossRef]
- Ventrella, D.; Charfeddine, M.; Giglio, L.; Castellini, M. Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern Italy: Optimum sowing and transplanting time for winter durum wheat and tomato. Ital. J. Agron. 2012, 7, 109–115. [Google Scholar] [CrossRef]
- Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: Yield analysis and soil fertility. Ital. J. Agron. 2012, 7, 100–108. [Google Scholar] [CrossRef]
Soil Physical Indicator | Reference Value | Mean Optimal Value |
---|---|---|
Macroporosity, Pmac (cm3 cm−3) | 0.04 ≤ Pmac ≤ 0.10 optimal Pmac < 0.04 aeration limited soil Pmac > 0.10 water limited soil | Pmac = 0.07 |
Air capacity, AC (cm3 cm−3) | 0.10 ≤ AC ≤ 0.26 optimal AC < 0.10 aeration limited soil AC > 0.26 water limited soil | AC = 0.18 |
Relative field capacity, RFC (dimensionless) | 0.6 ≤ RFC ≤ 0.7 optimal RFC < 0.6 water limited soil RFC > 0.7 aeration limited soil | RFC = 0.65 |
Plant available water capacity, PAWC (cm3 cm−3) | PAWC ≥ 0.20 ideal 0.15 ≤ PAWC < 0.20 good 0.10 ≤ PAWC < 0.15 limited PAWC < 0.10 poor | PAWC = 0.20 |
Site (Soil Management) | cl (%) | si (%) | sa (%) | USDA |
---|---|---|---|---|
Gravina (CT) | 34.9 | 34.7 | 30.4 | clay-loam |
Gravina (NT) | 42.9 | 21.5 | 35.5 | clay |
Candela (CT) | 50.3 | 21.8 | 27.8 | clay |
Candela (NT) | 55.0 | 24.5 | 20.5 | clay |
TOC | BD | θs | θi | |
---|---|---|---|---|
Gravina CT | 1.518 a (7.6) | 1.1396 a (9.7) | 0.5699 a (9.7) | 0.1781 a * (9.3) |
Gravina NT | 1.614 a (13.5) | 1.3007 b (7.4) | 0.5092 b (7.4) | 0.2156 a (13.8) |
Candela CT | 1.248 a (4.7) | 1.2876 a (16.2) | 0.5141 a (16.2) | 0.2489 a (23.3) |
Candela NT | 1.514 b (14.1) | 1.3299 a (15.0) | 0.4982 a (15.0) | 0.2807 a (26.1) |
Variable | S (mm s−1) | Ks (mm h−1) | ||||||
---|---|---|---|---|---|---|---|---|
Algorithm | Intercept | Steady | Intercept | Steady | ||||
Statistic | GM | CV | GM | CV | GM | CV | GM | CV |
Gravina CT | 1.429 aA | 38.3 | 1.277 bA | 35.7 | 96.932 aA | 53.8 | 77.496 bA | 53.7 |
Gravina NT | 1.589 aA | 53.7 | 1.460 bA | 53.5 | 136.112 aA | 113.0 | 114.945 bA | 115.4 |
Candela CT | 2.759 aA | 41.9 | 2.130 bA | 44.7 | 230.167 aA | 104.5 | 137.105 bA | 121.3 |
Candela NT | 2.771 aA | 31.2 | 2.299 bA | 32.4 | 297.889 aA | 85.6 | 205.223 bA | 100.4 |
Variable | Site | Statistics | |||
---|---|---|---|---|---|
Min | Max | Mean | CV% | ||
ts | Gravina CT | 458 | 6415 | 1417 | 113.9 |
Gravina NT | 153 | 3962 | 868 | 111.0 | |
Candela CT | 87 | 811 | 345 | 76.9 | |
Candela NT | 65 | 1182 | 259 | 119.3 | |
I(ts) | Gravina CT | 102 | 136 | 119 | 7.6 |
Gravina NT | 68 | 136 | 118 | 17.8 | |
Candela CT | 102 | 147 | 133 | 9.7 | |
Candela NT | 102 | 147 | 132 | 10.4 | |
tend | Gravina CT | 750 | 8795 | 2311 | 93.8 |
Gravina NT | 234 | 8750 | 1683 | 133.6 | |
Candela CT | 141 | 1501 | 590 | 81.8 | |
Candela NT | 79 | 1775 | 414 | 111.6 |
Site-Soil Management | Pmac | AC | RFC | PAWC |
---|---|---|---|---|
G-CT | 0.080 | 0.253 | 0.606 | 0.173 |
G-NT | 0.079 | 0.204 | 0.655 | 0.173 |
= | = | = | = | |
C-CT | 0.136 | 0.297 | 0.498 | 0.035 |
C-NT | 0.049 | 0.137 | 0.749 | 0.104 |
≠ | ≠ | = | = |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water 2019, 11, 484. https://doi.org/10.3390/w11030484
Castellini M, Fornaro F, Garofalo P, Giglio L, Rinaldi M, Ventrella D, Vitti C, Vonella AV. Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water. 2019; 11(3):484. https://doi.org/10.3390/w11030484
Chicago/Turabian StyleCastellini, Mirko, Francesco Fornaro, Pasquale Garofalo, Luisa Giglio, Michele Rinaldi, Domenico Ventrella, Carolina Vitti, and Alessandro Vittorio Vonella. 2019. "Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat" Water 11, no. 3: 484. https://doi.org/10.3390/w11030484
APA StyleCastellini, M., Fornaro, F., Garofalo, P., Giglio, L., Rinaldi, M., Ventrella, D., Vitti, C., & Vonella, A. V. (2019). Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water, 11(3), 484. https://doi.org/10.3390/w11030484