Modelling the Impact on Root Water Uptake and Solute Return Flow of Different Drip Irrigation Regimes with Brackish Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Water Content and Salinity Monitoring
2.3. Crop Requirement Calculation
2.4. Modelling Approach
2.4.1. Water Flow, Solute Transport, and Root Water Uptake
2.4.2. Root Water Uptake, Osmotic Stress Effect, and Yield Calculation
2.4.3. Boundary and Initial Conditions
2.4.4. Model Calibration and Validation
2.4.5. Irrigation Management Scenarios
3. Results and Discussion
3.1. Water Content and Salinity Dynamics Evolution under Irrigation
3.2. Model Calibration and Validation
3.3. Irrigation Management Scenarios
3.3.1. Root Water Uptake and Yield Estimations
3.3.2. Impact on Solute and Water Return Flows
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Besbes, M.; Chahed, J.; Hamdane, A. Water Security, Food Security and the National Water Dependency. In National Water Security: Case Study of an Arid Country: Tunisia; Springer International Publishing: Cham, Switzerland, 2018; pp. 219–255. [Google Scholar]
- Bouksila, F.; Persson, M.; Berndtsson, R.; Bahri, A.; Hamba, I.B. Estimating soil salinity over a shallow saline water table in semiarid Tunisia. Open Hydrol. J. 2010, 4, 91–101. [Google Scholar] [CrossRef]
- Aragüés, R.; Pueyo, E.T.; Zribi, W.; Clavería, I.; Álvaro-Fuentes, J.; Faci, J. Soil Salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrig. Sci. 2015, 33, 67–79. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, L.; Bengtsson, L. Soil moisture variation and water consumption of spring wheat and their effects on crop yield under drip irrigation. Irrig. Drain. Syst. 2008, 22, 253–270. [Google Scholar] [CrossRef]
- Selim, T.; Bouksila, F.; Berndtsson, R.; Persson, M. Soil Water and Salinity Distribution under Different Treatments of Drip Irrigation. Soil Sci. Soc. Am. J. 2013, 77, 1144–1156. [Google Scholar] [CrossRef]
- Al Atiri, R. Les efforts de modernisation de l’agriculture irriguée en Tunisie. In Proceedings of the Projet Européen Inco-Wademed sur la Modernisation de L’agriculture Irriguée Dans les pays du Maghreb, Cahors, France, 6–7 Novembre 2006; pp. 19–22. [Google Scholar]
- Aragüés, R.; Medina, E.T.; Clavería, I.; Martínez-Cob, A.; Faci, J. Regulated deficit irrigation, soil salinization and soil sodification in a table grape vineyard drip-irrigated with moderately saline waters. Agric. Water Manag. 2014, 134, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Mounzer, O.; Pedrero-Salcedo, F.; Nortes, P.A.; Bayona, J.-M.; Nicolas-Nicoas, E.; Alarcon, J.J. Transient soil salinity under the combined effect of reclaimed water and regulated deficit drip irrigation of Mandarin trees. Agric. Water Manag. 2013, 120, 23–29. [Google Scholar] [CrossRef]
- Leite, K.N.; Martinez-Romero, A.; Tarjuelo, J.M.; Dominguez, A. Distribution of limited irrigation water based on optimized regulated deficit irrigation and typical metheorological year concepts. Agric. Water Manag. 2015, 148, 164–176. [Google Scholar] [CrossRef]
- Allen, M.; Barros, V.; Broome, J.; Cramer, W.; Christ, R.; Church, J.; Clarke, L.; Dahe, Q.; Dasgupta, P.; Dubash, N.; et al. IPCC Fifth Assessment Synthesis Report—Climate Change 2014 Synthesis Report; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014; p. 116. [Google Scholar]
- El Jaouhari, N.; Abouabdillah, A.; Bouabid, R.; Bourioug, M.; Aleya, L.; Chaoui, M. Assessment of sustainable deficit irrigation in a Moroccan apple orchard as a climate change adaptation strategy. Sci. Total Environ. 2018, 642, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Fei, C.; McCarl, B. Adaptation: An Agricultural Challenge. Climate 2017, 5, 56. [Google Scholar] [CrossRef]
- Smedema, L.K.; Shiati, K. Irrigation and salinity: A perspective review of the salinity hazards of irrigation development in the arid zone. Irrig. Drain. Syst. 2002, 16, 161–174. [Google Scholar] [CrossRef]
- Besbes, M.; Chahed, J.; Hamdane, A. The National Water Balance. In National Water Security: Case Study of an Arid Country: Tunisia; Springer International Publishing: Cham, Switzerland, 2018; pp. 93–123. [Google Scholar]
- DGACTA. Examen et Evaluation de la Situation Actuelle de la Salinization des Sols et Préparation d’un Plan D’action de Lutte Contre ce Fléau Dans les Périmètres Irrigués en Tunisie. Phase 2: Ebauche du Plan D’action; DGACTA, Ministère de L’agriculture et des Ressources Hydrauliques: Tunis, Tunisia, 2007.
- Marlet, S.; Bouksila, F.; Bahri, A. Water and Salt Balance at Irrigation Scheme Scale: A Comprehensive Approach for Salinity Assessment in a Saharan Oasis. Agric. Water Manag. 2009, 96, 1311–1322. [Google Scholar] [CrossRef]
- Aragüés, R.; Tanji, K.K.; Quílez, D.; Alberto, F.; Faci, J.; Machín, J.; Arrué, J.L. Calibration and verification of an irrigation return flow hydrosalinity model. Irrig. Sci. 1985, 6, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Yakirevich, A.; Weisbrod, N.; Kuznetsov, M.; Rivera Villarreyes, C.A.; Benavent, I.; Chavez, A.M.; Ferrando, D. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: A study of the Alto Piura aquifer, Peru. J. Hydrol. 2013, 482, 25–39. [Google Scholar] [CrossRef]
- Slama, F. Field Experimentation and Modelling of Salts Transfer in Korba Coastal Plain: Impact of Seawater Intrusion and Irrigation Practices. Ph.D. Thesis, University of Neuchatel, Neuchâtel, Switzerland, 2010. [Google Scholar]
- Causapé, J.; Quìlez, D.; Aragüès, R. Irrigation efficiency and quality of irrigation return flows in the Ebro river basin: An overview. Environ. Monit. Assess. 2006, 117, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Causapé, J.; Quılez, D.; Araqüés, R. Assessment of irrigation and environmental quality at the hydrological basin level II. Salt and nitrate loads in irrigation return flows. Agric. Water Manag. 2004, 70, 211–228. [Google Scholar]
- Kanzari, S.; Hachicha, M.; Bouhlila, R.; Battle-Sales, J. Characterization and modeling of water movement and salts transfer in a semi-arid region of Tunisia (Bou Hajla, Kairouan): Salinization risk of soils and aquifers. Comput. Electron. Agric. 2012, 86, 34–42. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, C.; Wu, J.; Huang, J. Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis. J. Arid Land 2014, 6, 44–58. [Google Scholar] [CrossRef]
- Ramos, T.B.; Šimùnek, J.; González, M.G.; Martins, J.C.; Prazeres, A.; Pereira, L.S. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manag. 2012, 111, 87–104. [Google Scholar] [CrossRef]
- Mallants, D.; Van Genuchten, M.; Simunek, J.J.; Jacques, D.; Seetharam, S. Leaching of Contaminants to Groundwater. In Dealing with Contaminated Sites. From Theory to Practical Applications; Swartjes, F.A., Ed.; Springer: Berlin, Germany, 2010; pp. 787–850. [Google Scholar]
- Šimùnek, J.; Šejna, M.; Saito, H.; Sakai, M.; Van Genuchten, M.T. The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.0; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2008; p. 315. [Google Scholar]
- Ramos, T.B.; Šimùnek, J.; González, M.G.; Martins, J.C.; Prazeres, A.; Castanheira, N.L.; Pereira, L.S. Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters. J. Hydrol. 2011, 407, 129–144. [Google Scholar] [CrossRef]
- Li, H.; Yi, J.; Zhang, J.; Zhao, Y.; Si, B.; Hill, R.; Cui, L.; Liu, X. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China. Water 2015, 7, 2382. [Google Scholar] [CrossRef]
- González, M.G.; Ramos, T.B.; Carlesso, R.; Paredes, P.; Petry, M.T.; Martins, J.D.; Aires, N.b.P.; Pereira, L.S. Modelling soil water dynamics of full and deficit drip irrigated maize cultivated under a rain shelter. Biosyst. Eng. 2015, 132, 1–18. [Google Scholar] [CrossRef]
- Kallali, H.; Anane, M.; Jellali, S.; Tarhouni, J. GIS-based multi-criteria analysis for potential wastewater aquifer recharge sites. Desalination 2007, 215, 111–119. [Google Scholar] [CrossRef]
- Moussa, A.B.; Zouari, K.; Marc, V. Hydrochemical and isotope evidence of groundwater salinization processes on the coastal plain of Hammamet—Nabeul, north-eastern Tunisia. Phys. Chem. Earth Parts A/B/C 2011, 36, 167–178. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. Soil Sci. 1954, 78, 154. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water-FAO Irrigation and Drainage Paper 33; FAO-Food and Agriculture Organization of the United Nations: Rome, Italy, 1979; p. 193. [Google Scholar]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Hilhorst, M.A. A Pore Water Conductivity Sensor. Soil Sci. Soc. Am. J. 2000, 64, 1922–1925. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO-Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; p. 293. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–521. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.; Kolinska-Malinka, K.; Zaradny, H. Simulation of field water uptake by plants using a soil water dependent root extraction function. J. Hydrol. 1976, 31, 13–26. [Google Scholar] [CrossRef]
- Maas, E.V. Crop salt tolerance. In Agricultural Salinity Assessment and Management ASCE Manuals and Report on Engineering Practice; Amercia Social Civil Eng: New York, NY, USA, 1990; Volume 71, pp. 262–304. [Google Scholar]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar]
- Ben-Gal, A.; Karlberg, L.; Jansson, P.-E.; Shani, U. Temporal robustness of linear relationships between production and transpiration. Plant Soil 2003, 251, 211–218. [Google Scholar] [CrossRef]
- Oster, J.D.; Letey, J.; Vaughan, P.; Wu, L.; Qadir, M. Comparison of transient state models that include salinity and matric stress effects on plant yield. Agric. Water Manag. 2012, 103, 167–175. [Google Scholar] [CrossRef]
- Gharbi, F.; El Fahem, M. Conditions de compétitivité des semences de pomme de terre produites en Tunisie. Biotechnol. Agron. Soc. Environ. 2004, 8, 187–198. [Google Scholar]
- Liu, Q.; Yang, Z.; Cui, B.; Tao, S. The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrol. Process. 2010, 24, 2171–2181. [Google Scholar] [CrossRef]
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef]
- Nasr, Z.; Zairi, A.; Bechir, B.N.; Oueslati, T. Détermination de la consommation en eau journaliére par bilan d’énergie des cultures annuelles (blé et pomme de terre). Evolution avec la biomasse et application au pilotage des irrigations. Ann. Inrgref. 2000, 114–125. [Google Scholar]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Phogat, V.; Pitt, T.; Cox, J.W.; Šimùnek, J.; Skewes, M.A. Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages. Agric. Water Manag. 2018, 201, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Wegehenkel, M.; Beyrich, F. Modelling hourly evapotranspiration and soil water content at the grass-covered boundary-layer field site Falkenberg, Germany. Hydrol. Sci. J. 2014, 59, 376–394. [Google Scholar] [CrossRef] [Green Version]
- Nagaz, K.; Masmoudi, M.M.; Ben Mechlia, N. Soil Salinity and Yield of Drip-Irrigated Potato under Different Irrigation Regimes with Saline Water in Arid Conditions of Southern Tunisia. J. Agron. 2007, 6, 324. [Google Scholar]
- Slama, F.; Gargouri-Ellouze, E.; Bouhlila, R. Impact of rainfall structure on modelling solute leaching in soil and groundwater. In Proceedings of the Congress on Groundwater and Global Change in the Western Mediterranean, Granada, Spain, 6–9 November 2017. [Google Scholar]
- Bouksila, F.; Bahri, A.; Berndtsson, R.; Persson, M.; Rozema, J.; van der Zee, S. Assessment of Soil Salinization Risks under Irrigation with Brackish Water in Semiarid Tunisia. Environ. Exp. Bot. 2013, 92, 176–185. [Google Scholar] [CrossRef]
- Milnes, E.; Renard, P. The problem of salt recycling and seawater intrusion in coastal irrigated plains: An example from the Kiti aquifer (Southern Cyprus). J. Hydrol. 2004, 288, 327–343. [Google Scholar] [CrossRef]
- Nachabe, M.H.; Ahuja, L.R.; Butters, G. Bromide transport under sprinkler and flood irrigation for no-till soil condition. J. Hydrol. 1999, 214, 8–17. [Google Scholar] [CrossRef]
Particle Size Distribution (%) | ||||
---|---|---|---|---|
Soil Depth (m) | Clay (d < 2 μm) | Silt (2≤ d < 50 μm) | Sand (50 ≤ μm d < 2 mm) | Bulk Density (g·cm−3) |
0–0.2 | 4 | 25 | 70 | 1.41 |
0.2–0.4 | 15 | 11 | 73 | 1.52 |
0.4–0.6 | 16 | 12 | 71 | 1.69 |
0.6–0.8 | 19 | 11 | 70 | 1.73 |
0.8–1.0 | 17 | 11 | 70 | 1.81 |
Main Scenarios | Detailed Scenarios | |
---|---|---|
Root water uptake and yield predictions | T1 | Irrigation with 70% crop water requirement (ETc) |
T2 | Irrigation with 100% crop water requirement (ETc) | |
T3 | Irrigation with 237% crop water requirement (ETc) | |
T1S | Irrigation with 70% crop water requirement (ETc) and Salinity stress effect | |
T2S | Irrigation with 100% crop water requirement (ETc) and Salinity stress effect | |
T3S | Irrigation with 237% crop water requirement (ETc) and Salinity stress effect | |
Leaching scenarios (661days) | T1R | Irrigation with 70% ETc and atmospheric Boundary Conditions extended to December 2016 |
T2R | Irrigation with 100% ETc and atmospheric Boundary Conditions extended to December 2016 | |
T3R | Irrigation with 237% ETc and atmospheric Boundary Conditions extended to December 2016 |
Calibration | Validation | ||||
---|---|---|---|---|---|
Water flow | Soil depth (m) | R2 | RMSE (m3·m−3) | R2 | RMSE (m3·m−3) |
0.05 | 0.91 | 0.009 | 0.93 | 0.010 | |
0.25 | 0.93 | 0.005 | 0.85 | 0.007 | |
0.45 | 0.83 | 0.005 | 0.69 | 0.010 | |
0.90 | 0.85 | 0.003 | 0.75 | 0.005 | |
Solute transport | Soil depth (m) | R2 | RMSE (dSm−1) | R2 | RMSE (dSm−1) |
0.05 | 0.800 | 0.280 | 0.650 | 0.600 | |
0.25 | 0.700 | 0.190 | 0.810 | 0.160 | |
0.90 | 0.980 | 0.040 | 0.850 | 0.070 |
Depth (m) | Θr (m3·m−3) | θs (m3·m−3) | α (m−1) | n (-) | Ks (m·day−1) | λ (m) |
---|---|---|---|---|---|---|
0–0.2 | 0.036 | 0.3938 | 3.32 | 1.69 | 2 | 0.005 |
0.2–0.4 | 0.0555 | 0.3947 | 4 | 1.60 | 1 | 0.006 |
0.4–0.6 | 0.0515 | 0.3571 | 3.14 | 1.50 | 0.28 | 0.004 |
0.6–0.8 | 0.051 | 0.3416 | 4 | 1.23 | 0.125 | 0.004 |
0.8–1.0 | 0.0507 | 0.3388 | 1 | 1.40 | 0.68 | 0.004 |
Scenario | Net Rainfall (mm) | Net Irrigation (mm) | Δ Soil Storage (mm) | Percolation (mm) | Actual Evaporation (mm) | Actual Transpiration (mm) | Input (mm) | Output (mm) | Water Balance Error (%) | Water Balance Error computed by HYDRUS-1D (%) |
---|---|---|---|---|---|---|---|---|---|---|
R | I | ΔS | P | E | Tac | R + I | E + Tac + P+ ΔS | |||
T1 | 20 | 235 | −170 | 96 | 120 | 203 | 255 | 249 | 2.33 | 0.93 |
T2 | 20 | 336 | −129 | 96 | 130 | 255 | 356 | 353 | 0.83 | 0.36 |
T3 | 20 | 825 | 327 | 96 | 138 | 263 | 845 | 824 | 2.48 | 1.91 |
R | I | ΔS | P | E | Tac | R + I | E + Tac + P + S | |||
T1S | 20 | 235 | −143 | 96 | 129 | 173 | 255 | 255 | 0.15 | 0.045 |
T2S | 20 | 336 | −105 | 96 | 138 | 225 | 356 | 355 | 0.33 | 0.064 |
T3S | 20 | 825.07 | 327.20 | 96.43 | 137.50 | 262.92 | 845.07 | 824.05 | 2.49 | 1.91 |
R | I | ΔS | P | E | Tac | R + I | E + Tac + P + S | |||
T1R | 638 | 235 | −180 | 260 | 587 | 203 | 873 | 869 | 0.40 | 0.09 |
T2R | 638 | 336 | −165 | 260 | 619 | 255 | 974 | 970 | 0.40 | 0.054 |
T3R | 638 | 825 | −13 | 520 | 694 | 263 | 1463 | 1464 | −0.08 | 0.027 |
Scenario | Calculated (HYDRUS1-D) Relative Yield Yr (%) | Observed Relative Yield Yr (%) |
---|---|---|
T1 | 64.2 | 52.6 |
T2 | 80.29 | 71 |
T3 | 85.5 | |
T1S | 54.2 | 52.6 |
T2S | 70 | 71 |
T3S | 85.5 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slama, F.; Zemni, N.; Bouksila, F.; De Mascellis, R.; Bouhlila, R. Modelling the Impact on Root Water Uptake and Solute Return Flow of Different Drip Irrigation Regimes with Brackish Water. Water 2019, 11, 425. https://doi.org/10.3390/w11030425
Slama F, Zemni N, Bouksila F, De Mascellis R, Bouhlila R. Modelling the Impact on Root Water Uptake and Solute Return Flow of Different Drip Irrigation Regimes with Brackish Water. Water. 2019; 11(3):425. https://doi.org/10.3390/w11030425
Chicago/Turabian StyleSlama, Fairouz, Nessrine Zemni, Fethi Bouksila, Roberto De Mascellis, and Rachida Bouhlila. 2019. "Modelling the Impact on Root Water Uptake and Solute Return Flow of Different Drip Irrigation Regimes with Brackish Water" Water 11, no. 3: 425. https://doi.org/10.3390/w11030425