The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Model Evaluation
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kunkel, K.E.; Stevens, L.E.; Stevens, S.E.; Sun, L.; Anssen, E.; Wuebbles, D.; Redmond, K.T.; Dobson, J.G. Regional Climate Trends and Scenarios for the U.S. National Climate Assessment. NOAA Tech. Rep. NESDIS 2013, 142–146, 103. [Google Scholar]
- Yuhas, E.; Daniels, T. The US freshwater supply shortage: Experiences with desalination as part of the solution. J. Environ. Plan. Manag. 2006, 49, 571–585. [Google Scholar] [CrossRef]
- Manuel, J. Drought in the Southeast: Lessons for Water Management. Environ. Health Perspect. 2008, 116, A168–A171. [Google Scholar] [CrossRef] [PubMed]
- Price, K. Thirsty City: Politics, Greed, and the Making of Atlanta’s Water Crisis by Skye Borden. Southeast. Geogr. 2017, 57, 322–326. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. Global and Regional Scale Precipitation Patterns Associated with the El Nino Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- Dracup, J.A.; Kahya, E. The relationships between U.S. streamflow and La Nina Events. Water Resour. Res. 1994, 30, 2133–2141. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nunez, A.M.; Trimble, P.J. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef]
- Ortegren, J.T.; Knapp, P.A.; Maxwell, J.T.; Tyminski, W.P.; Soulé, P.T. Ocean-Atmosphere Influences on Low-Frequency Warm-Season Drought Variability in the Gulf Coast and Southeastern United States. J. Appl. Meteorol. Climatol. 2011, 50, 1177–1186. [Google Scholar] [CrossRef]
- Labosier, C.; Quiring, S. Hydroclimatology of the Southeastern USA. Clim. Res. 2013, 57, 157–171. [Google Scholar] [CrossRef]
- Engström, J.; Waylen, P. Drivers of long-term precipitation and runoff variability in the southeastern USA. Theor. Appl. Climatol. 2018, 131, 1133–1146. [Google Scholar] [CrossRef]
- Pinault, J.-L. Regions Subject to Rainfall Oscillation in the 5–10 Year Band. Climate 2018, 6, 2. [Google Scholar] [CrossRef]
- IPCC. IPCC Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Carter, L.M.; Jones, J.W.; Berry, L.; Burkett, V.; Murley, J.F.; Obeysekera, J.; Schramm, P.J.; Wear, D. Chapter 17: Southeast and the Caribbean. In Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Global Change Research Program; U.S. Government Printing Office: Washington, DC, USA, 2014; pp. 396–417. [Google Scholar]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Schoof, J.T. High-resolution projections of 21st century daily precipitation for the contiguous U.S. J. Geophys. Res. 2015, 120, 3029–3042. [Google Scholar] [CrossRef]
- Skeeter, W.J.; Senkbeil, J.C.; Keellings, D.J. Spatial and temporal changes in the frequency and magnitude of intense precipitation events in the southeastern United States. Int. J. Climatol. 2018. [Google Scholar] [CrossRef]
- Seager, R.; Tzanova, A.; Nakamura, J. Drought in the Southeastern United States: Causes, Variability over the Last Millennium, and the Potential for Future Hydroclimate Change. J. Clim. 2009, 22, 5021–5045. [Google Scholar] [CrossRef]
- Pederson, N.; Bell, A.R.; Knight, T.A.; Leland, C.; Malcomb, N.; Anchukaitis, K.J.; Tackett, K.; Scheff, J.; Brice, A.; Catron, B.; et al. A long-term perspective on a modern drought in the American Southeast. Environ. Res. Lett. 2012, 7, 14034. [Google Scholar] [CrossRef]
- Engström, J.; Keellings, D. Drought in the Southeastern USA: An assessment of downscaled CMIP5 models. Clim. Res. 2018, 74, 251–262. [Google Scholar] [CrossRef]
- Knutti, R. The end of model democracy? Clim. Chang. 2010, 102, 395–404. [Google Scholar] [CrossRef]
- Räisänen, J.; Palmer, T.N. A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J. Clim. 2001, 14, 3212–3226. [Google Scholar] [CrossRef]
- Sánchez, E.; Romera, R.; Gaertner, M.A.; Gallardo, C.; Castro, M. A weighting proposal for an ensemble of regional climate models over Europe driven by 1961–2000 ERA40 based on monthly precipitation probability density functions. Atmos. Sci. Lett. 2009, 10, 241–248. [Google Scholar] [CrossRef]
- Sun, F.; Roderick, M.L.; Lim, W.H.; Farquhar, G.D. Hydroclimatic projections for the Murray-Darling Basin based on an ensemble derived from Intergovernmental Panel on Climate Change AR4 climate models. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical Downscaling Using Localized Constructed Analogs (LOCA). J. Hydrometeorol. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Shepard, D.S. Computer Mapping: The SYMAP Interpolation Algorithm. In Spatial Statistics and Models; Springer: Dordrecht, The Netherlands, 1984; ISBN 978-90-481-8385-2. [Google Scholar]
- Widmann, M.; Bretherton, C.S. Validation of Mesoscale Precipitation in the NCEP Reanalysis Using a New Gridcell Dataset for the Northwestern United States. J. Clim. 2000, 13, 1936–1950. [Google Scholar] [CrossRef]
- Maurer, E.P.; Wood, A.W.; Adam, J.C.; Lettenmaier, D.P.; Nijssen, B.; Maurer, E.P.; Wood, A.W.; Adam, J.C.; Lettenmaier, D.P.; Nijssen, B. A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States. J. Clim. 2002, 15, 3237–3251. [Google Scholar] [CrossRef]
- Livneh, B.; Bohn, T.J.; Pierce, D.W.; Munoz-Arriola, F.; Nijssen, B.; Vose, R.; Cayan, D.R.; Brekke, L. A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Sci. Data 2015, 2, 150042. [Google Scholar] [CrossRef]
- Keellings, D. Evaluation of downscaled CMIP5 model skill in simulating daily maximum temperature over the southeastern United States. Int. J. Climatol. 2016, 36, 4172–4180. [Google Scholar] [CrossRef]
- Engström, J.; Waylen, P. The changing hydroclimatology of Southeastern U.S. J. Hydrol. 2017, 548, 16–23. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences; Elsevier Inc.: Amsterdam, The Netherlands, 2011; ISBN 9781849733403. [Google Scholar]
- US Department of Agriculture National Agricultural Statistics Service. Field Crops Usual Planting and Harvesting Dates. 2010. Available online: http://usda.mannlib.cornell.edu/usda/current/planting/planting-10-29-2010.pdf (accessed on 8 February 2017).
- Perkins, S.E.; Pitman, A.J.; Sisson, S.A. Systematic differences in future 20 year temperature extremes in AR4 model projections over Australia as a function of model skill. Int. J. Climatol. 2013, 33, 1153–1167. [Google Scholar] [CrossRef]
- Zwiers, F.W.; Kharin, V.V. Changes in the extremes of the climate simulated by CGC GCM2 under CO2 doubling. J. Clim. 1998, 11, 2200–2222. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X. Intercomparison of Near-Surface Temperature and Precipitation Extremes in AMIP-2 Simulations, Reanalyses, and Observations. J. Clim. 2005, 18, 5201–5223. [Google Scholar] [CrossRef]
- Waylen, P.; Keellings, D.; Qiu, Y. Climate and health in Florida: Changes in risks of annual maximum temperatures in the second half of the twentieth century. Appl. Geogr. 2012, 33, 73–81. [Google Scholar] [CrossRef]
- Jenkinson, A. The frequency distribution of annual maximum (and minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 87, 158–171. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001; ISBN 1-85233-459-2. [Google Scholar]
- Harvey, E.J. Records of wells in the alluvium in northwestern Mississippi. Miss. Board Water Comm. Bull. 1956, 56, 130. [Google Scholar]
- Paulson, R. National Water Summary 1988–1989: Hydrologic Events and Floods and Droughts; United States Geological Survey Water-Supply Paper: Reston, VA, USA, 1991.
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Chang. 2012, 110, 669–696. [Google Scholar] [CrossRef]
- Sheffield, J.; Barrett, A.P.; Colle, B.; Fernando, D.N.; Fu, R.; Geil, K.L.; Hu, Q.; Kinter, J.; Kumar, S.; Langenbrunner, B.; et al. North American Climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J. Clim. 2013, 26, 9209–9245. [Google Scholar] [CrossRef]
- Sobolowski, S.; Pavelsky, T. Evaluation of present and future North American Regional Climate Change Assessment Program (NARCCAP) regional climate simulations over the southeast United States. J. Geophys. Res. Atmos. 2012, 117, D01101. [Google Scholar] [CrossRef]
Season | Model Name | Affiliation | Country | Skill |
---|---|---|---|---|
Warm Season | ACCESS1-3 | CSIRO (Commonwealth Scientific and Industrial Research Organization, Australia), and BOM (Bureau of Meteorology, Australia) | Australia | 0.92 |
GISS-E2-H GISS-E2-R | NASA Goddard Institute for Space Studies | United States | 0.93 | |
MIROC5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | Japan | 0.93 | |
MRI-CGCM3 | Meteorological Research Institute | Japan | 0.92 | |
Cold Season | CanESM2 | Canadian Centre for Climate Modeling and Analysis | Canada | 0.93 |
CESM1-CAM5 | National Science Foundation, Department of Energy, National Center for Atmospheric Research | United States | 0.92 | |
inmcm4 | Institute for Numerical Mathematics | Russia | 0.92 | |
IPSL-CM5A-LR IPSL-CM5A-MR | Institute Pierre-Simon Laplace | France | 0.92 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keellings, D.; Engström, J. The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models. Water 2019, 11, 259. https://doi.org/10.3390/w11020259
Keellings D, Engström J. The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models. Water. 2019; 11(2):259. https://doi.org/10.3390/w11020259
Chicago/Turabian StyleKeellings, David, and Johanna Engström. 2019. "The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models" Water 11, no. 2: 259. https://doi.org/10.3390/w11020259
APA StyleKeellings, D., & Engström, J. (2019). The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models. Water, 11(2), 259. https://doi.org/10.3390/w11020259