The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Model Evaluation
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kunkel, K.E.; Stevens, L.E.; Stevens, S.E.; Sun, L.; Anssen, E.; Wuebbles, D.; Redmond, K.T.; Dobson, J.G. Regional Climate Trends and Scenarios for the U.S. National Climate Assessment. NOAA Tech. Rep. NESDIS 2013, 142–146, 103. [Google Scholar]
- Yuhas, E.; Daniels, T. The US freshwater supply shortage: Experiences with desalination as part of the solution. J. Environ. Plan. Manag. 2006, 49, 571–585. [Google Scholar] [CrossRef]
- Manuel, J. Drought in the Southeast: Lessons for Water Management. Environ. Health Perspect. 2008, 116, A168–A171. [Google Scholar] [CrossRef] [PubMed]
- Price, K. Thirsty City: Politics, Greed, and the Making of Atlanta’s Water Crisis by Skye Borden. Southeast. Geogr. 2017, 57, 322–326. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. Global and Regional Scale Precipitation Patterns Associated with the El Nino Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- Dracup, J.A.; Kahya, E. The relationships between U.S. streamflow and La Nina Events. Water Resour. Res. 1994, 30, 2133–2141. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nunez, A.M.; Trimble, P.J. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef]
- Ortegren, J.T.; Knapp, P.A.; Maxwell, J.T.; Tyminski, W.P.; Soulé, P.T. Ocean-Atmosphere Influences on Low-Frequency Warm-Season Drought Variability in the Gulf Coast and Southeastern United States. J. Appl. Meteorol. Climatol. 2011, 50, 1177–1186. [Google Scholar] [CrossRef]
- Labosier, C.; Quiring, S. Hydroclimatology of the Southeastern USA. Clim. Res. 2013, 57, 157–171. [Google Scholar] [CrossRef]
- Engström, J.; Waylen, P. Drivers of long-term precipitation and runoff variability in the southeastern USA. Theor. Appl. Climatol. 2018, 131, 1133–1146. [Google Scholar] [CrossRef]
- Pinault, J.-L. Regions Subject to Rainfall Oscillation in the 5–10 Year Band. Climate 2018, 6, 2. [Google Scholar] [CrossRef]
- IPCC. IPCC Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Carter, L.M.; Jones, J.W.; Berry, L.; Burkett, V.; Murley, J.F.; Obeysekera, J.; Schramm, P.J.; Wear, D. Chapter 17: Southeast and the Caribbean. In Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Global Change Research Program; U.S. Government Printing Office: Washington, DC, USA, 2014; pp. 396–417. [Google Scholar]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Schoof, J.T. High-resolution projections of 21st century daily precipitation for the contiguous U.S. J. Geophys. Res. 2015, 120, 3029–3042. [Google Scholar] [CrossRef]
- Skeeter, W.J.; Senkbeil, J.C.; Keellings, D.J. Spatial and temporal changes in the frequency and magnitude of intense precipitation events in the southeastern United States. Int. J. Climatol. 2018. [Google Scholar] [CrossRef]
- Seager, R.; Tzanova, A.; Nakamura, J. Drought in the Southeastern United States: Causes, Variability over the Last Millennium, and the Potential for Future Hydroclimate Change. J. Clim. 2009, 22, 5021–5045. [Google Scholar] [CrossRef]
- Pederson, N.; Bell, A.R.; Knight, T.A.; Leland, C.; Malcomb, N.; Anchukaitis, K.J.; Tackett, K.; Scheff, J.; Brice, A.; Catron, B.; et al. A long-term perspective on a modern drought in the American Southeast. Environ. Res. Lett. 2012, 7, 14034. [Google Scholar] [CrossRef] [Green Version]
- Engström, J.; Keellings, D. Drought in the Southeastern USA: An assessment of downscaled CMIP5 models. Clim. Res. 2018, 74, 251–262. [Google Scholar] [CrossRef]
- Knutti, R. The end of model democracy? Clim. Chang. 2010, 102, 395–404. [Google Scholar] [CrossRef]
- Räisänen, J.; Palmer, T.N. A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J. Clim. 2001, 14, 3212–3226. [Google Scholar] [CrossRef]
- Sánchez, E.; Romera, R.; Gaertner, M.A.; Gallardo, C.; Castro, M. A weighting proposal for an ensemble of regional climate models over Europe driven by 1961–2000 ERA40 based on monthly precipitation probability density functions. Atmos. Sci. Lett. 2009, 10, 241–248. [Google Scholar] [CrossRef]
- Sun, F.; Roderick, M.L.; Lim, W.H.; Farquhar, G.D. Hydroclimatic projections for the Murray-Darling Basin based on an ensemble derived from Intergovernmental Panel on Climate Change AR4 climate models. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical Downscaling Using Localized Constructed Analogs (LOCA). J. Hydrometeorol. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Shepard, D.S. Computer Mapping: The SYMAP Interpolation Algorithm. In Spatial Statistics and Models; Springer: Dordrecht, The Netherlands, 1984; ISBN 978-90-481-8385-2. [Google Scholar]
- Widmann, M.; Bretherton, C.S. Validation of Mesoscale Precipitation in the NCEP Reanalysis Using a New Gridcell Dataset for the Northwestern United States. J. Clim. 2000, 13, 1936–1950. [Google Scholar] [CrossRef]
- Maurer, E.P.; Wood, A.W.; Adam, J.C.; Lettenmaier, D.P.; Nijssen, B.; Maurer, E.P.; Wood, A.W.; Adam, J.C.; Lettenmaier, D.P.; Nijssen, B. A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States. J. Clim. 2002, 15, 3237–3251. [Google Scholar] [CrossRef]
- Livneh, B.; Bohn, T.J.; Pierce, D.W.; Munoz-Arriola, F.; Nijssen, B.; Vose, R.; Cayan, D.R.; Brekke, L. A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Sci. Data 2015, 2, 150042. [Google Scholar] [CrossRef] [Green Version]
- Keellings, D. Evaluation of downscaled CMIP5 model skill in simulating daily maximum temperature over the southeastern United States. Int. J. Climatol. 2016, 36, 4172–4180. [Google Scholar] [CrossRef]
- Engström, J.; Waylen, P. The changing hydroclimatology of Southeastern U.S. J. Hydrol. 2017, 548, 16–23. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences; Elsevier Inc.: Amsterdam, The Netherlands, 2011; ISBN 9781849733403. [Google Scholar]
- US Department of Agriculture National Agricultural Statistics Service. Field Crops Usual Planting and Harvesting Dates. 2010. Available online: http://usda.mannlib.cornell.edu/usda/current/planting/planting-10-29-2010.pdf (accessed on 8 February 2017).
- Perkins, S.E.; Pitman, A.J.; Sisson, S.A. Systematic differences in future 20 year temperature extremes in AR4 model projections over Australia as a function of model skill. Int. J. Climatol. 2013, 33, 1153–1167. [Google Scholar] [CrossRef]
- Zwiers, F.W.; Kharin, V.V. Changes in the extremes of the climate simulated by CGC GCM2 under CO2 doubling. J. Clim. 1998, 11, 2200–2222. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X. Intercomparison of Near-Surface Temperature and Precipitation Extremes in AMIP-2 Simulations, Reanalyses, and Observations. J. Clim. 2005, 18, 5201–5223. [Google Scholar] [CrossRef]
- Waylen, P.; Keellings, D.; Qiu, Y. Climate and health in Florida: Changes in risks of annual maximum temperatures in the second half of the twentieth century. Appl. Geogr. 2012, 33, 73–81. [Google Scholar] [CrossRef]
- Jenkinson, A. The frequency distribution of annual maximum (and minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 87, 158–171. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001; ISBN 1-85233-459-2. [Google Scholar]
- Harvey, E.J. Records of wells in the alluvium in northwestern Mississippi. Miss. Board Water Comm. Bull. 1956, 56, 130. [Google Scholar]
- Paulson, R. National Water Summary 1988–1989: Hydrologic Events and Floods and Droughts; United States Geological Survey Water-Supply Paper: Reston, VA, USA, 1991.
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Chang. 2012, 110, 669–696. [Google Scholar] [CrossRef]
- Sheffield, J.; Barrett, A.P.; Colle, B.; Fernando, D.N.; Fu, R.; Geil, K.L.; Hu, Q.; Kinter, J.; Kumar, S.; Langenbrunner, B.; et al. North American Climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J. Clim. 2013, 26, 9209–9245. [Google Scholar] [CrossRef]
- Sobolowski, S.; Pavelsky, T. Evaluation of present and future North American Regional Climate Change Assessment Program (NARCCAP) regional climate simulations over the southeast United States. J. Geophys. Res. Atmos. 2012, 117, D01101. [Google Scholar] [CrossRef]
Season | Model Name | Affiliation | Country | Skill |
---|---|---|---|---|
Warm Season | ACCESS1-3 | CSIRO (Commonwealth Scientific and Industrial Research Organization, Australia), and BOM (Bureau of Meteorology, Australia) | Australia | 0.92 |
GISS-E2-H GISS-E2-R | NASA Goddard Institute for Space Studies | United States | 0.93 | |
MIROC5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | Japan | 0.93 | |
MRI-CGCM3 | Meteorological Research Institute | Japan | 0.92 | |
Cold Season | CanESM2 | Canadian Centre for Climate Modeling and Analysis | Canada | 0.93 |
CESM1-CAM5 | National Science Foundation, Department of Energy, National Center for Atmospheric Research | United States | 0.92 | |
inmcm4 | Institute for Numerical Mathematics | Russia | 0.92 | |
IPSL-CM5A-LR IPSL-CM5A-MR | Institute Pierre-Simon Laplace | France | 0.92 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keellings, D.; Engström, J. The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models. Water 2019, 11, 259. https://doi.org/10.3390/w11020259
Keellings D, Engström J. The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models. Water. 2019; 11(2):259. https://doi.org/10.3390/w11020259
Chicago/Turabian StyleKeellings, David, and Johanna Engström. 2019. "The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models" Water 11, no. 2: 259. https://doi.org/10.3390/w11020259
APA StyleKeellings, D., & Engström, J. (2019). The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models. Water, 11(2), 259. https://doi.org/10.3390/w11020259