Streambed Flux Measurement Informed by Distributed Temperature Sensing Leads to a Significantly Different Characterization of Groundwater Discharge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Identification of Uninformed and Informed Measurement Sites
2.3. Hydraulic Measurements
2.4. Drone Imagery Acquisition
3. Results and Discussion
3.1. Are Discharge Estimates at Informed and Uninformed Locations Significantly Different?
3.2. A Fundamentally Different View of Groundwater Discharge?
3.3. A Lower Discharge Threshold for Effective Use of FO-DTS?
3.4. Raw vs. Calibrated FO-DTS Temperature Data and Study Limitations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Briggs, M.A.; Lautz, L.K.; McKenzie, J.M. A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams. Hydrol. Process. 2012, 26, 1277–1290. [Google Scholar] [CrossRef]
- Kennedy, C.D.; Genereux, D.P.; Corbett, D.R.; Mitasova, H. Spatial and temporal dynamics of coupled groundwater and nitrogen fluxes through a streambed in an agricultural watershed. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Krause, S.; Blume, T.; Cassidy, N.J. Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients. Hydrol. Earth Syst. Sci. 2012, 16, 1775–1792. [Google Scholar] [CrossRef] [Green Version]
- Rosenberry, D.O.; Briggs, M.A.; Delin, G.; Hare, D.K. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream. Water Resour. Res. 2016, 52, 4486–4503. [Google Scholar] [CrossRef] [Green Version]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring methods for groundwater—surface water interactions: A review. Hydrol. Earth Syst. Sci. Discuss. 2006, 10, 873–887. [Google Scholar] [CrossRef]
- Chen, X. Measurement of streambed hydraulic conductivity and its anisotropy. Environ. Geol. 2000, 39, 1317–1324. [Google Scholar] [CrossRef]
- Chen, X. Streambed Hydraulic Conductivity for Rivers in South-Central Nebraska1. Jawra J. Am. Water Resour. Assoc. 2004, 40, 561–573. [Google Scholar] [CrossRef]
- Chen, X.; Song, J.; Cheng, C.; Wang, D.; Lackey, S.O. A new method for mapping variability in vertical seepage flux in streambeds. Hydrogeol. J. 2009, 17, 519–525. [Google Scholar] [CrossRef]
- Kennedy, C.D.; Genereux, D.P.; Corbett, D.R.; Mitasova, H. Design of a light-oil piezomanometer for measurement of hydraulic head differences and collection of groundwater samples. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Briggs, M.A.; Lautz, L.K.; Buckley, S.F.; Lane, J.W. Practical limitations on the use of diurnal temperature signals to quantify groundwater upwelling. J. Hydrol. 2014, 519, 1739–1751. [Google Scholar] [CrossRef]
- Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Becker, M.W.; Georgian, T.; Ambrose, H.; Siniscalchi, J.; Fredrick, K. Estimating flow and flux of ground water discharge using water temperature and velocity. J. Hydrol. 2004, 296, 221–233. [Google Scholar] [CrossRef]
- Fanelli, R.M.; Lautz, L.K. Patterns of Water, Heat, and Solute Flux through Streambeds around Small Dams. Groundwater 2008, 46, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Hatch, C.E.; Fisher, A.T.; Revenaugh, J.S.; Constantz, J.; Ruehl, C. Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Keery, J.; Binley, A.; Crook, N.; Smith, J.W.N. Temporal and spatial variability of groundwater–surface water fluxes: Development and application of an analytical method using temperature time series. J. Hydrol. 2007, 336, 1–16. [Google Scholar] [CrossRef]
- Schmidt, C.; Conant, B.; Bayer-Raich, M.; Schirmer, M. Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J. Hydrol. 2007, 347, 292–307. [Google Scholar] [CrossRef]
- Lowry, C.S.; Walker, J.F.; Hunt, R.J.; Anderson, M.P. Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Solder, J.E.; Gilmore, T.E.; Genereux, D.P.; Solomon, D.K. A Tube Seepage Meter for In Situ Measurement of Seepage Rate and Groundwater Sampling. Groundwater 2016, 54, 588–595. [Google Scholar] [CrossRef]
- Kennedy, C.D.; Genereux, D.P.; Mitasova, H.; Corbett, D.R.; Leahy, S. Effect of sampling density and design on estimation of streambed attributes. J. Hydrol. 2008, 355, 164–180. [Google Scholar] [CrossRef]
- Conant, B. Delineating and Quantifying Ground Water Discharge Zones Using Streambed Temperatures. Groundwater 2004, 42, 243–257. [Google Scholar] [CrossRef]
- Gilmore, T.E.; Genereux, D.P.; Solomon, D.K.; Solder, J.E.; Kimball, B.A.; Mitasova, H.; Birgand, F. Quantifying the fate of agricultural nitrogen in an unconfined aquifer: Stream-based observations at three measurement scales. Water Resour. Res. 2016, 52, 1961–1983. [Google Scholar] [CrossRef] [Green Version]
- Matheswaran, K.; Blemmer, M.; Rosbjerg, D.; Boegh, E. Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS). Hydrol. Process. 2014, 28, 1422–1435. [Google Scholar] [CrossRef]
- González-Pinzón, R.; Ward, A.S.; Hatch, C.E.; Wlostowski, A.N.; Singha, K.; Gooseff, M.N.; Haggerty, R.; Harvey, J.W.; Cirpka, O.A.; Brock, J.T. A field comparison of multiple techniques to quantify groundwater–surface-water interactions. Freshw. Sci. 2015, 34, 139–160. [Google Scholar] [CrossRef]
- Sebok, E.; Duque, C.; Kazmierczak, J.; Engesgaard, P.; Nilsson, B.; Karan, S.; Frandsen, M. High-resolution distributed temperature sensing to detect seasonal groundwater discharge into Lake Væng, Denmark. Water Resour. Res. 2013, 49, 5355–5368. [Google Scholar] [CrossRef]
- Hare, D.K.; Briggs, M.A.; Rosenberry, D.O.; Boutt, D.F.; Lane, J.W. A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water. J. Hydrol. 2015, 530, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, J.R.; Sebok, E.; Duque, C.; Tetzlaff, D.; Engesgaard, P.K. Detecting groundwater discharge dynamics from point-to-catchment scale in a lowland stream: Combining hydraulic and tracer methods. Hydrol. Earth Syst. Sci. 2015, 19, 1871–1886. [Google Scholar] [CrossRef]
- Briggs, M.A.; Harvey, J.W.; Hurley, S.T.; Rosenberry, D.O.; McCobb, T.; Werkema, D.; Lane, J.W., Jr. Hydrogeochemical controls on brook trout spawning habitats in a coastal stream. Hydrol. Earth Syst. Sci. 2018, 22, 6383–6398. [Google Scholar] [CrossRef] [Green Version]
- Browne, B.A.; Guldan, N.M. Understanding long-term baseflow water quality trends using a synoptic survey of the ground water-surface water interface, Central Wisconsin. J. Environ. Qual. 2005, 34, 825–835. [Google Scholar] [CrossRef]
- Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R. Transport and fate of nitrate at the ground-water/surface-water interface. J. Environ. Qual. 2008, 37, 1034–1050. [Google Scholar] [CrossRef]
- Stelzer, R.; Drover, D.; Eggert, S.; Muldoon, M. Nitrate retention in a sand plains stream and the importance of groundwater discharge. Biogeochemistry 2011, 103, 91–107. [Google Scholar] [CrossRef]
- Kennedy, C.D.; Genereux, D.P.; Corbett, D.R.; Mitasova, H. Relationships among groundwater age, denitrification, and the coupled groundwater and nitrogen fluxes through a streambed. Water Resour. Res. 2009, 45, W09402. [Google Scholar] [CrossRef]
- Gilmore, T.E.; Genereux, D.P.; Solomon, D.K.; Solder, J.E. Groundwater transit time distribution and mean from streambed sampling in an agricultural coastal plain watershed, North Carolina, USA. Water Resour. Res. 2016, 52, 2025–2044. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Duff, J.H.; Saad, D.A.; Spahr, N.E.; Wolock, D.M. Vulnerability of streams to legacy nitrate sources. Environ. Sci. Technol. 2013, 47, 3623–3629. [Google Scholar] [CrossRef] [PubMed]
- Böhlke, J.K.; Denver, J.M. Combined use of groundwater dating, chemical and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, atlantic coastal plain, Maryland. Water Resour. Res. 1995, 31, 2319. [Google Scholar] [CrossRef]
- Gosselin, D.C.; Drda, S.; Harvey, F.E.; Goeke, J. Hydrologic Setting of Two Interdunal Valleys in the Central Sand Hills of Nebraska. Groundwater 1999, 37, 924–933. [Google Scholar] [CrossRef]
- Gosselin, D.C.; (University of Nebraska, Lincoln, NE, USA). Personal communication, 4 October 2016.
- Vogt, T.; Schneider, P.; Hahn-Woernle, L.; Cirpka, O.A. Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. J. Hydrol. 2010, 380, 154–164. [Google Scholar] [CrossRef]
- Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.; van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B. Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour. Res. 2006, 42, W12202. [Google Scholar] [CrossRef]
- Selker, J.; van de Giesen, N.; Westhoff, M.; Luxemburg, W.; Parlange, M.B. Fiber optics opens window on stream dynamics. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Tyler, S.W.; Selker, J.S.; Hausner, M.B.; Hatch, C.E.; Torgersen, T.; Thodal, C.E.; Schladow, S.G. Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour. Res. 2009, 45, 11. [Google Scholar] [CrossRef]
- Genereux, D.P.; Leahy, S.; Mitasova, H.; Kennedy, C.D.; Corbett, D.R. Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. J. Hydrol. 2008, 358, 332–353. [Google Scholar] [CrossRef]
- Gilmore, T.E.; Genereux, D.P.; Solomon, D.K.; Farrell, K.M.; Mitasova, H. Quantifying an aquifer nitrate budget and future nitrate discharge using field data from streambeds and well nests. Water Resour. Res. 2016, 52, 9046–9065. [Google Scholar] [CrossRef]
- Domanksi, M.; Quinn, D.; Day-Lewis, F.; Briggs, M.A.; Werkema, D.; Lane, J. DTSGUI: A Python program to process and visualize fiber-optic distributed temperature sensing data. Groundwater. (under review).
- Harvey, M.C.; Hare, D.K.; Hackman, A.; Davenport, G.; Haynes, A.B.; Helton, A.; Lane, J.W.; Briggs, M.A. Evaluation of Stream and Wetland Restoration Using UAS-Based Thermal Infrared Mapping. Water 2019, 11, 1568. [Google Scholar] [CrossRef]
This Study | Quashnet River [4] | |||||
---|---|---|---|---|---|---|
All | Uninformed a | Informed a | All | Ambient a | Cool a | |
Median (m·day−1) | 0.13 | 0.05 b | 0.21 b | 0.40 | 0.17 | 0.83 |
Mean (m·day−1) | 0.18 | 0.12 | 0.27 | 0.58 | 0.19 | 1.07 |
Standard Deviation (m·day−1) | 0.20 | 0.14 | 0.25 | 0.74 | 0.33 | 0.81 |
Coeffiecient of Variation (%) | 110 | 113 | 91 | 126 | 174 | 76 |
Min (m·day−1) | <0.01 | <0.01 | <0.01 | −0.55 | −0.55 | 0.20 |
Max (m·day−1) | 0.95 | 0.48 | 0.95 | 3.0 | 0.93 | 3.0 |
Measurements (-) | 50 | 30 | 20 | 29 | 16 | 13 |
All | Uninformed | Informed | ||||
---|---|---|---|---|---|---|
i (m·m−1) | Kv (m·day−1) | i (m∙m−1) | Kv (m·day−1) | i (m·m−1) | Kv (m·day−1) | |
Median | 0.018 | 6.8 | 0.017 | 3.5 a | 0.023 | 11.1 a |
Mean | 0.023 | 8.6 | 0.020 | 6.0 | 0.028 | 12.4 |
Standard Deviation | 0.023 | 8.5 | 0.013 | 6.3 | 0.032 | 10.0 |
Coefficient of Variation | 99% | 99% | 65% | 105% | 115% | 80% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilmore, T.E.; Johnson, M.; Korus, J.; Mittelstet, A.; Briggs, M.A.; Zlotnik, V.; Corcoran, S. Streambed Flux Measurement Informed by Distributed Temperature Sensing Leads to a Significantly Different Characterization of Groundwater Discharge. Water 2019, 11, 2312. https://doi.org/10.3390/w11112312
Gilmore TE, Johnson M, Korus J, Mittelstet A, Briggs MA, Zlotnik V, Corcoran S. Streambed Flux Measurement Informed by Distributed Temperature Sensing Leads to a Significantly Different Characterization of Groundwater Discharge. Water. 2019; 11(11):2312. https://doi.org/10.3390/w11112312
Chicago/Turabian StyleGilmore, Troy E., Mason Johnson, Jesse Korus, Aaron Mittelstet, Marty A. Briggs, Vitaly Zlotnik, and Sydney Corcoran. 2019. "Streambed Flux Measurement Informed by Distributed Temperature Sensing Leads to a Significantly Different Characterization of Groundwater Discharge" Water 11, no. 11: 2312. https://doi.org/10.3390/w11112312
APA StyleGilmore, T. E., Johnson, M., Korus, J., Mittelstet, A., Briggs, M. A., Zlotnik, V., & Corcoran, S. (2019). Streambed Flux Measurement Informed by Distributed Temperature Sensing Leads to a Significantly Different Characterization of Groundwater Discharge. Water, 11(11), 2312. https://doi.org/10.3390/w11112312