Moisture Sources for Precipitation and Hydrograph Components of the Sutri Dhaka Glacier Basin, Western Himalayas
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results and Discussion
4.1. Hydro-Meteorological Characteristics of the Sutri Dhaka Stream
4.2. Stable Isotope Characteristics and Its Relationship with Discharge
4.3. Local Meteoric Water Line (LMWL), d-Excess and Moisture Sources for Precipitation
4.4. Snow and Ice-Melt Contribution to the Sutri Dhaka Stream
4.4.1. Hydrograph Separation
4.4.2. Specific Ablation of Snow and Ice
4.4.3. Uncertainty in Hydrograph Separation Estimates
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AGRIS. Available online: http://agris.fao.org (accessed on 16 July 2018).
- Bolch, T.; Kulkarni, A.; Kaab, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Kaser, G.; Grosshauser, M.; Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Fureder, L.; Cauvy-Fraunie, S.; Gislason, G.M.; Jacobsen, D.; Hannah, D.M.; et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef][Green Version]
- Bookhagen, B.; Burbank, D.W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya (vol 33, art no L08405, 2006). Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Bhambri, R.; Bolch, T. Glacier mapping: A review with special reference to the Indian Himalayas. Prog. Phys. Geogr. 2009, 33, 672–704. [Google Scholar] [CrossRef]
- Casper, J.K. Global Warming Cycles: Ice Ages and Glacial Retreat; Infobase Publishing: New York City, NY, USA, 2010. [Google Scholar]
- Parry, M.; Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, MA, USA, 2007; Volume 4. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Rahaman, W.; Thamban, M.; Laluraj, C.J.T.H. Twentieth-century sea ice variability in the Weddell Sea and its effect on moisture transport: Evidence from a coastal East Antarctic ice core record. Holocene 2016, 26, 338–349. [Google Scholar] [CrossRef]
- Ahluwalia, R.S.; Rai, S.P.; Jain, S.K.; Kumar, B.; Dobhal, D.P. Assessment of snowmelt runoff modelling and isotope analysis: A case study from the western Himalaya, India. Ann. Glaciol. 2013, 54, 299–304. [Google Scholar] [CrossRef]
- Jeelani, G.; Kumar, U.S.; Kumar, B. Variation of delta O-18 and delta D in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow. J. Hydrol. 2013, 481, 157–165. [Google Scholar] [CrossRef]
- Jeelani, G.; Shah, R.A.; Fryar, A.E.; Deshpande, R.D.; Mukherjee, A.; Perrin, J. Hydrological processes in glacierized high-altitude basins of the western Himalayas. Hydrogeol. J. 2018, 26, 615–628. [Google Scholar] [CrossRef]
- Jeelani, G.; Shah, R.A.; Jacob, N.; Deshpande, R.D. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: An isotopic approach. Isot. Environ. Health Stud. 2017, 53, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Tiwari, S.K.; Verma, A.; Gupta, A.K. Tracing isotopic signatures (δD and δ18O) in precipitation and glacier melt over Chorabari Glacier–Hydroclimatic inferences for the Upper Ganga Basin (UGB), Garhwal Himalaya. J. Hydrol. Reg. Stud. 2018, 15, 68–89. [Google Scholar] [CrossRef]
- Laskar, A.H.; Bhattacharya, S.K.; Rao, D.K.; Jani, R.A.; Gandhi, N. Seasonal variation in stable isotope compositions of waters from a Himalayan river: Estimation of glacier melt contribution. Hydrol. Process. 2018, 32, 3866–3880. [Google Scholar] [CrossRef]
- Nijampurkar, V.N.; Rao, D.K. Accumulation and Flow-Rates of Ice On Chhota Shigri Glacier, Central Himalaya, Using Radio Active and Stable Isotopes. J. Glaciol. 1992, 38, 43–50. [Google Scholar] [CrossRef]
- Rai, S.P.; Thayyen, R.J.; Purushothaman, P.; Kumar, B. Isotopic characteristics of cryospheric waters in parts of Western Himalayas, India. Environ. Earth Sci. 2016, 75, 9. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, A.; Gupta, A.K.; Tiwari, S.K.; Bhambri, R.; Naithani, S. Hydroclimatic significance of stable isotopes in precipitation from glaciers of Garhwal Himalaya, Upper Ganga Basin (UGB), India. Hydrol. Process. 2018, 32, 1874–1893. [Google Scholar] [CrossRef]
- Shi, M.; Wang, S.; Argiriou, A.A.; Zhang, M.; Guo, R.; Jiao, R.; Kong, J.; Zhang, Y.; Qiu, X.; Zhou, S. Stable Isotope Composition in Surface Water in the Upper Yellow River in Northwest China. Water 2019, 11, 967. [Google Scholar] [CrossRef]
- Kurita, N.; Sugimoto, A.; Fujii, Y.; Fukazawa, T.; Makarov, V.N.; Watanabe, O.; Ichiyanagi, K.; Numaguti, A.; Yoshida, N. Isotopic composition and origin of snow over Siberia. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef][Green Version]
- Suzuki, K.; Konohira, E.; Yamazaki, Y.; Kubota, J.; Ohata, T.; Vuglinsky, V. Transport of organic carbon from the Mogot Experimental Watershed in the southern mountainous taiga of eastern Siberia. Hydrol. Res. 2006, 37, 303–312. [Google Scholar] [CrossRef][Green Version]
- Owen, L.A.; Bailey, R.M.; Rhodes, E.J.; Mitchell, W.A.; Coxon, P. Style and timing of glaciation in the Lahul Himalaya, northern India: A framework for reconstructing late Quaternary palaeoclimatic change in the western Himalayas. J. Quat. Sci. 1997, 12, 83–109. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, P.; Singh, V. Snow and glacier melt contribution in the Beas River at Pandoh Dam, Himachal Pradesh, India. Hydrol. Sci. J. 2007, 52, 376–388. [Google Scholar] [CrossRef]
- Singh, P.; Jain, S.K. Snow and glacier melt in the Satluj River at Bhakra Dam in the western Himalayan region. Hydrol. Sci. J. 2002, 47, 93–106. [Google Scholar] [CrossRef]
- Singh, P.; Jain, S.K.; Kumar, N. Estimation of snow and glacier-melt contribution to the Chenab River, Western Himalaya. Mt. Res. Dev. 1997, 17, 49–56. [Google Scholar] [CrossRef]
- Maurya, A.S.; Shah, M.; Deshpande, R.D.; Bhardwaj, R.M.; Prasad, A.; Gupta, S.K. Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrol. Process. 2011, 25, 1521–1530. [Google Scholar] [CrossRef]
- Burns, D.A. Stormflow-hydrograph separation based on isotopes: The thrill is gone—What’s next? Hydrol. Process. 2002, 16, 1515–1517. [Google Scholar] [CrossRef]
- Unnikrishna, P.V.; McDonnell, J.J.; Kendall, C. Isotope variations in a Sierra Nevada snowpack and their relation to meltwater. J. Hydrol. 2002, 260, 38–57. [Google Scholar] [CrossRef]
- Rai, S.P.; Singh, D.; Jacob, N.; Rawat, Y.S.; Arora, M.; Kumar, B. Identifying contribution of snowmelt and glacier melt to the Bhagirathi River (Upper Ganga) near snout of the Gangotri Glacier using environmental isotopes. Catena 2019, 173, 339–351. [Google Scholar] [CrossRef]
- Kumar, N.; Ramanathan, A.; Keesari, T.; Chidambaram, S.; Ranjan, S.; Soheb, M.; Tranter, M. Tracer-based estimation of temporal variation of water sources: An insight from supra- and subglacial environments. Hydrol. Sci. J. 2018, 63, 1717–1732. [Google Scholar] [CrossRef]
- Singh, A.T.; Laluraj, C.M.; Sharma, P.; Patel, L.K.; Thamban, M. Export fluxes of geochemical solutes in the meltwater stream of Sutri Dhaka Glacier, Chandra basin, Western Himalaya. Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef]
- Pratap, B.; Sharma, P.; Patel, L.; Singh, A.T.; Gaddam, V.K.; Oulkar, S.; Thamban, M. Reconciling High Glacier Surface Melting in Summer with Air Temperature in the Semi-Arid Zone of Western Himalaya. Water 2019, 11, 1561. [Google Scholar] [CrossRef]
- Sharma, P.; Patel, L.K.; Ravindra, R.; Singh, A.; Mahalinganathan, K.; Thamban, M. Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season. J. Earth Syst. Sci. 2016, 125, 459–473. [Google Scholar] [CrossRef][Green Version]
- Azam, M.F.; Wagnon, P.; Vincent, C.; Ramanathan, A.; Favier, V.; Mandal, A.; Pottakkal, J.G. Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere 2014, 8, 2195–2217. [Google Scholar] [CrossRef][Green Version]
- Pradesh, I. Central Ground Water Board. Available online: http://cgwb.gov.in/District_Profile/HP/Lahul%20Spiti.pdf (accessed on 25 October 2019).
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Islam, T. Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrol. Process. 2014, 28, 4419–4432. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sinha, N.; Chattopadhyay, R.; Sengupta, S.; Mohan, P.M.; Datye, A. Atmospheric controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Coplen, T.; De Bièvre, P.; Krouse, H.; Vocke, R., Jr.; Gröning, M.; Rozanski, K. Ratios for light-element isotopes standardized for better interlaboratory comparison. Eos Trans. Am. Geophys. Union 1996, 77, 255. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Taylor, S.; Feng, X.H.; Williams, M.; McNamara, J. How isotopic fractionation of snowmelt affects hydrograph separation. Hydrol. Process. 2002, 16, 3683–3690. [Google Scholar] [CrossRef]
- He, Y.; Pang, H.; Theakstone, W.; Zhang, D.; Lu, A.; Song, B.; Yuan, L.; Ning, B. Spatial and temporal variations of oxygen isotopes in snowpacks and glacial runoff in different types of glacial area in western China. Ann. Glaciol. 2006, 43, 269–274. [Google Scholar] [CrossRef][Green Version]
- Gibson, J.J.; Price, J.S.; Aravena, R.; Fitzgerald, D.F.; Maloney, D. Runoff generation in a hypermaritime bog-forest upland. Hydrol. Process. 2000, 14, 2711–2730. [Google Scholar] [CrossRef]
- Throckmorton, H.M.; Newman, B.D.; Heikoop, J.M.; Perkins, G.B.; Feng, X.; Graham, D.E.; O’Malley, D.; Vesselinov, V.V.; Young, J.; Wullschleger, S.D.; et al. Active layer hydrology in an arctic tundra ecosystem: Quantifying water sources and cycling using water stable isotopes. Hydrol. Process. 2016, 30, 4972–4986. [Google Scholar] [CrossRef]
- Rao, S.; Rao, M.; Ramasastri, K.; Singh, R. A study of sedimentation in Chenab basin in western Himalayas. Hydrol. Res. 1997, 28, 201–216. [Google Scholar] [CrossRef]
- Østrem, G.; Brugman, M. Glacier Mass Balance Measurement Techniques: A Manual for Field and Office Work. Available online: https://wgms.ch/downloads/Oestrem_Brugman_GlacierMassBalanceMeasurements_1991.pdf (accessed on 25 October 2019).
- Mernild, S.H.; Pelto, M.; Malmros, J.K.; Yde, J.C.; Knudsen, N.T.; Hanna, E. Identification of snow ablation rate, ELA, AAR and net mass balance using transient snowline variations on two Arctic glaciers. J. Glaciol. 2013, 59, 649–659. [Google Scholar] [CrossRef][Green Version]
- Draxler, R.R.; Rolph, G.D. Hysplit (hybrid single-particle lagrangian integrated trajectory) model access via NOAA ARL ready website. Silver Spring MD 2011, 8, 26. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. Noaa’s Hysplit Atmospheric Transport And Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; Elsevier: Amsterdam, The Netherlands, 2006; Volume 92. [Google Scholar]
- Wang, Y.; Zhang, X.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef]
- Zhou, S.; Nakawo, M.; Hashimoto, S.; Sakai, A. The effect of refreezing on the isotopic composition of melting snowpack. Hydrol. Process. 2008, 22, 873–882. [Google Scholar] [CrossRef]
- Stichler, W.; Schotterer, U.; Frohlich, K.; Ginot, P.; Kull, C.; Gaggeler, H.; Pouyaud, B. Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes. J. Geophys. Res. Atmos. 2001, 106, 22613–22620. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. Clim. Chang. Cont. Isot. Rec. 1993, 78, 1–36. [Google Scholar]
- Wu, J.-K.; Ding, Y.-J.; Yang, J.-H.; Liu, S.-W.; Zhou, J.-X.; Qin, X. Spatial variation of stable isotopes in different waters during melt season in the Laohugou Glacial Catchment, Shule River basin. J. Mt. Sci. 2016, 13, 1453–1463. [Google Scholar] [CrossRef]
- Jeelani, G.; Deshpande, R.D.; Shah, R.A.; Hassan, W. Influence of southwest monsoons in the Kashmir Valley, western Himalayas. Isot. Environ. Health Stud. 2017, 53, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, Z.; Joswiak, D.R. From precipitation to runoff: Stable isotopic fractionation effect of glacier melting on a catchment scale. Hydrol. Process. 2014, 28, 3341–3349. [Google Scholar] [CrossRef]
- Lone, S.A.; Jeelani, G.; Deshpande, R.D.; Mukherjee, A. Stable isotope (delta O-18 and delta D) dynamics of precipitation in a high altitude Himalayan cold desert and its surroundings in Indus river basin, Ladakh. Atmos. Res. 2019, 221, 46–57. [Google Scholar] [CrossRef]
- Kumar, A.; Gokhale, A.A.; Shukla, T.; Dobhal, D.P. Hydroclimatic influence on particle size distribution of suspended sediments evacuated from debris-covered Chorabari Glacier, upper Mandakini catchment, central Himalaya. Geomorphology 2016, 265, 45–67. [Google Scholar] [CrossRef]
- Khan, A.A.; Pant, N.C.; Sarkar, A.; Tandon, S.K.; Thamban, M.; Mahalinganathan, K. The Himalayan cryosphere: A critical assessment and evaluation of glacial melt fraction in the Bhagirathi basin. Geosci. Front. 2017, 8, 107–115. [Google Scholar] [CrossRef][Green Version]
- Pfahl, S.; Sodemann, H. What controls deuterium excess in global precipitation? Clim. Past 2014, 10, 771–781. [Google Scholar] [CrossRef][Green Version]
- Bazemore, D.E.; Eshleman, K.N.; Hollenbeck, K.J. The role of soil water in stormflow generation in a forested headwater catchment: Synthesis of natural tracer and hydrometric evidence. J. Hydrol. 1994, 162, 47–75. [Google Scholar] [CrossRef]
- Genereux, D. Quantifying uncertainty in tracer-based hydrograph separations. Water Resour. Res. 1998, 34, 915–919. [Google Scholar] [CrossRef]
- Funk, M.; Morelli, R.; Stahel, W. Mass balance of Griesgletscher 1961-1994: Different methods of determination. With 10 figures. Z. Gletsch. Glazialgeol. 1997, 33, 41–56. [Google Scholar]
- Jansson, P. Effect of uncertainties in measured variables on the calculated mass balance of Storglaciaren. Geogr. Ann. Ser. A Phys. Geogr. 1999, 81A, 633–642. [Google Scholar] [CrossRef]
Sr. No | Sample Type | Sampling Time | No. of Samples (n) |
---|---|---|---|
1 | Glacier snowpack | 1 July 2015 | 5 |
17 October 2015 | 3 | ||
2 | Fresh Snow | 21–24 September 2015 | 15 |
3 | Glacier Ice | 1 July 2015 | 9 |
4 | Sutri Dhaka Stream | 7 July 2015 to 9 October 2015 | 133 |
5 | Rainwater at Sutri Dhaka | 7 July 2015 to 9 October 2015 | 9 |
Parameter | Rain (n = 9) | Fresh Snow (n = 15) | Snow Pack (n = 8) | Ice (n = 9) | Sutri Dhaka Stream (n = 133) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | 1 SD | Mean | 1 SD | Mean | 1 SD | Mean | 1 SD | Mean | 1 SD | |
δ18O (‰) | −11.2 | 3.2 | −20.3 | 0.2 | −10.1 | 0.7 | −13.6 | 1.25 | −14.4 | 0.5 |
δ2H (‰) | −81.6 | 26.5 | −145.8 | 1.4 | −67.7 | 5.5 | −91.2 | 10.4 | −98.5 | 3.9 |
d-excess (‰) | 8.1 | 5.4 | 17.1 | 0.7 | 13.2 | 2.5 | 18 | 1.4 | 17.1 | 0.9 |
Glacier/Region | Latitude | Longitude | Altitude (m) | LMWL | R2 | n | Reference |
---|---|---|---|---|---|---|---|
Sutri Dhaka Glacier | 32°22′49″ N | 77°33′05″ E | 4500–6200 | δ2H = 6.5 (±1.2) * δ18O −1.2 (±12.3) (SP) | 0.99 | 8 | Present Study |
δ2H = 7.3 (±0.2) *δ18O + 4.1 (±5.1) (SF) | 0.98 | 17 | |||||
δ2H = 8.1 (±0.4) * δ18O + 20.3 (±5.6) (GI) | 0.97 | 11 | |||||
δ2H = 7.1 (±0.2) * δ18O + 5.04 (±2.7) (SR) | 0.94 | 65 | |||||
δ2H = 7.7 (±0.6) * δ18O + 6.18 (±7.1) (R) | 0.95 | 9 | |||||
Chota Shigri Glacier | 32°16′48″ N | 77°34′ 48″ E | 4050–6263 | δ2H = 7.8 * δ18O + 25 (SP) | 0.99 | 10 | [32] |
δ2H = 6.3 * δ18O + 3.6 (GI) | 0.76 | 15 | |||||
δ2H = 7.9 * δ18O + 21.4 (R) | |||||||
Chorabari Glacier | 30°46′20.58″ N | 79°02′59.381″ E | 4400–6200 | δ2H = 8.1 * δ18O + 24.1(SF) | 0.9 | 45 | [16] |
δ2H = 7.7 * δ18O + 21.2 (GI) | 1 | 13 | |||||
δ2H = 6.51 * δ18O − 0.0 (SR) | 0.8 | 116 | |||||
δ2H = 7.98 * δ18O + 16.8 (R) | 0.98 | 35 | |||||
QS and Glacier no.12, T.P | 39°26.4″ N | 96°32.5″ E | 4260–5481 | δ2H = 8.2* δ18O + 21.68 (SP) | 0.95 | [57] | |
δ2H = 7.7 * δ18O + 15.7 (GI) | 0.83 | ||||||
δ2H = 7.8 * δ18O + 16.8 (R) | 0.95 | ||||||
Kashmir Drass and Ladakh Zanskar | 32°50′–34°18′ N | 74°45′–78°20′ E | 3250–4345 | δ2H = 8.2 * δ18O + 23.8 (SR) | [19] | ||
δ2H = 6.6 * δ18O − 1 (SR) | |||||||
δ2H = 9.5 * δ18O + 38.7 (GI) | |||||||
Jammu and Kashmir | 33°20′–34°15′ N | 74°30′–75°35′ E | 1592–3248 | δ2H = 7.6* δ18O + 11.8 (R) | [13,14,58] | ||
δ2H = 7.6 * δ18O + 15 (SP) | 0.95 | 39 | |||||
δ2H = 6.7 * δ18O + 8.1 (SR) | 0.87 | 155 | |||||
Nam Co Basin, T.P | 30°39″ N | 90°38″ E | 4730 | δ2H = 8.3 * δ18O + 7.8 (SP/GI) | 0.98 | [59] | |
δ2H = 7.6* δ18O − 2.30 (SR) | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.T.; Rahaman, W.; Sharma, P.; Laluraj, C.M.; Patel, L.K.; Pratap, B.; Gaddam, V.K.; Thamban, M. Moisture Sources for Precipitation and Hydrograph Components of the Sutri Dhaka Glacier Basin, Western Himalayas. Water 2019, 11, 2242. https://doi.org/10.3390/w11112242
Singh AT, Rahaman W, Sharma P, Laluraj CM, Patel LK, Pratap B, Gaddam VK, Thamban M. Moisture Sources for Precipitation and Hydrograph Components of the Sutri Dhaka Glacier Basin, Western Himalayas. Water. 2019; 11(11):2242. https://doi.org/10.3390/w11112242
Chicago/Turabian StyleSingh, Ajit T., Waliur Rahaman, Parmanand Sharma, C. M. Laluraj, Lavkush K. Patel, Bhanu Pratap, Vinay Kumar Gaddam, and Meloth Thamban. 2019. "Moisture Sources for Precipitation and Hydrograph Components of the Sutri Dhaka Glacier Basin, Western Himalayas" Water 11, no. 11: 2242. https://doi.org/10.3390/w11112242