Impact of Land Cover Types on Riverine CO2 Outgassing in the Yellow River Source Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Measurement and Laboratory Analyses
2.3. Determination of CO2 Emission
2.4. Quantification of Percent Land Coverage
3. Results
3.1. Characteristics of the Hydro-Chemical Variables
3.2. Spatial and Temporal Variations of pCO2
3.3. Spatial and Temporal Variations of FCO2
4. Discussion
4.1. Impact of Land Cover Types on Riverine pCO2 and CO2 Outgassing
4.2. Significance and Implications for Riverine Carbon Budgets
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aufdenkampe, A.K.; Mayorga, E.; Raymond, P.A.; Melack, J.M.; Doney, S.C.; Alin, S.R.; Aalto, R.E.; Yoo, K. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 2011, 9, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.H.; Bernardes, M.C.; Savoye, N.; et al. Amazon River carbon dioxide outgassing fueled by wetlands. Nature 2014, 505, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Khadka, M.B.; Martin, J.B.; Jin, J. Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment. J. Hydrol. 2014, 513, 391–402. [Google Scholar] [CrossRef]
- Hagedorn, B.; El-Kadi, A.I.; Whittier, R.B. Controls on the δ 13 C DIC and alkalinity budget of a flashy subtropical stream (Manoa River, Hawaii). Appl. Geochem. 2016, 73, 49–58. [Google Scholar] [CrossRef]
- Deirmendjian, L.; Abril, G. Carbon dioxide degassing at the groundwater-stream-atmosphere interface: Isotopic equilibration and hydrological mass balance in a sandy watershed. J. Hydrol. 2018, 558, 129–143. [Google Scholar] [CrossRef]
- Hotchkiss, E.R.; Hall, R.O., Jr.; Sponseller, R.A.; Butman, D.; Klaminder, J.; Laudon, H.; Rosvall, M.; Karlsson, J. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 2015, 8, 696–699. [Google Scholar] [CrossRef]
- Schelker, J.; Singer, G.A.; Ulseth, A.J.; Hengsberger, S.; Battin, T.J. CO2 evasion from a steep, high gradient stream network: Importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer. Limnol. Oceanogr. 2016, 61, 1826–1838. [Google Scholar] [CrossRef]
- Ran, L.; Li, L.; Tian, M.; Yang, X.; Yu, R.; Zhao, J.; Wang, L.; Lu, X.X. Riverine CO2 emissions in the Wuding River catchment on the Loess Plateau: Environmental controls and dam impoundment impact. J. Geophys. Res. Biogeosci. 2017, 122. [Google Scholar] [CrossRef]
- Lauerwald, R.; Laruelle, G.G.; Hartmann, J.; Ciais, P.; Regnier, P.A.G. Spatial patterns in CO2 evasion from the global river network. Glob. Biogeochem. Cycles 2015, 29, 534–554. [Google Scholar] [CrossRef]
- Sawakuchi, H.O.; Neu, V.; Ward, N.D.; Barros, M.; Valerio, A.; Gagne-Maynard, W.; Cunha, A.; Less, D.; Diniz, J.; Brito, C.; et al. Carbon dioxide emissions along the lower Amazon River. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef]
- Drake, T.W.; Raymond, P.A.; Spencer, R.G. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 2017, 3, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 171–184. [Google Scholar] [CrossRef]
- Crawford, J.T.; Striegl, R.G.; Wickland, K.P.; Dornblaser, M.M.; Stanley, E.H. Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska. J. Geophys. Res. Biogeosci. 2013, 118, 482–494. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.; Kosten, S.; Wallin, M.; Tranvik, L.; Jeppesen, E.; Roland, F. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nat. Geosci. 2015, 8, 933–936. [Google Scholar] [CrossRef]
- Serikova, S.; Pokrovsky, O.S.; Ala-Aho, P.; Kazantsev, V.; Kirpotin, S.N.; Kopysov, S.G.; Krickov, I.V.; Laudon, H.; Manasypov, R.M.; Shirokova, L.S.; et al. High riverine CO2 emissions at the permafrost boundary of Western Siberia. Nat. Geosci. 2018, 11, 825–829. [Google Scholar] [CrossRef]
- Rocher-Ros, G.; Sponseller, R.A.; Lidberg, W.; Mörth, C.; Giesler, R. Landscape process domains drive patterns of CO2 evasion from river networks. Limnol. Oceanogr. Lett. 2019, 4, 87–95. [Google Scholar] [CrossRef]
- Ryu, J.-S.; Jacobson, A.D. CO2 evasion from the Greenland Ice Sheet: A new carbon climate feedback. Chem. Geol. 2012, 320–321, 80–95. [Google Scholar] [CrossRef]
- Qu, B.; Aho, K.S.; Li, C.; Kang, S.; Sillanpää, M.; Yan, F.; Raymond, P.A. Greenhouse gases emissions in rivers of the Tibetan Plateau. Sci. Rep. 2017, 7, 16573. [Google Scholar] [CrossRef]
- Ran, L.; Lu, X.X.; Yang, H.; Li, L.; Yu, R.; Sun, H.; Han, J. CO2 outgassing from the Yellow River network and its implications for riverine carbon cycle. J. Geophys. Res. Biogeosci. 2015, 120, 1334–1347. [Google Scholar] [CrossRef]
- Ulseth, A.J.; Bertuzzo, E.; Singer, G.A.; Schelker, J.; Battin, T.J. Climate-induced changes in spring snowmelt impact ecosystem metabolism and carbon fluxes in an alpine stream network. Ecosystems 2018, 21, 373–390. [Google Scholar] [CrossRef]
- Peter, H.; Singer, G.A.; Preiler, C.; Chifflard, P.; Steniczka, G.; Battin, T.J. Scales and drivers of temporal pCO2 dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 2014, 119, 1078–1091. [Google Scholar] [CrossRef]
- Hood, E.; Battin, T.J.; Fellman, J.; O’neel, S.; Spencer, R.G. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 2015, 8, 91–96. [Google Scholar] [CrossRef]
- Alin, S.R.; Maria, D.F.F.L.R.; Salimon, C.I.; Richey, J.E.; Holtgrieve, G.W.; Krusche, A.V.; Snidvongs, V. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J. Geophys. Res. Biogeosci. 2011, 116, 248–255. [Google Scholar] [CrossRef]
- Raymond, P.A.; Zappa, C.J.; Butman, D.; Bott, T.L.; Potter, J.; Mulholland, P.; Laursen, A.E.; McDowell, W.H.; Newbold, D. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2012, 2, 41–53. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Meybeck, M.; He, D.; Xia, X.; Zhang, L. Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Lu, L.; Li, Z. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory. Int. J. Geogr. Inf. Sci. 2012, 26, 169–191. [Google Scholar] [CrossRef]
- Wang, T. 1:4000000 Map of the Glaciers, Frozen Ground and Deserts in China; Science Press: Beijing, China, 2006. [Google Scholar]
- Kang, Y.; Zhang, L.; Zhang, J.; Chen, Q.; Xu, J. Analysis of Change of Precipitation, Temperature and Streamflow in the Source Region of the Yellow River in Recent 50 Years. YELLOW RIVER 2015, 37, 9–12. (In Chinese) [Google Scholar]
- Shi, M.; Lan, Y.; Shen, Y.; Tian, H.; Wang, X.; La, C.; Ma, H. Analyses of multiple time scale variation characteristics of pan evaporation and mutation in the source regions of the Yellow River from 1961 to 2014. J. Glaciol. Geocryol. 2018, 40, 666–675. (In Chinese) [Google Scholar]
- Li, L.; Shen, H.; Dai, S.; Xiao, J.; Shi, X. Response to Climate Change and Prediction of Runoff in the Source Region of Yellow River. Acta Geogr. Sin. 2011, 66, 1261–1269. (In Chinese) [Google Scholar]
- Yang, J.; Ding, Y.; Liu, S.; Lu, A.; Chen, R. Glacier change and its effect on surface runoff in the source regions of the Yangtze and Yellow rivers. J. Nat. Resour. 2003, 18, 595–602. (In Chinese) [Google Scholar]
- Hunt, C.W.; Salisbury, J.E.; Vandemark, D. Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in new England and New Brunswick rivers. Biogeosciences 2011, 8, 3069–3076. [Google Scholar] [CrossRef]
- Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai-Haase, C.; Bastviken, D.; Flury, S.; McGinnis, D.F.; Maeck, A.; et al. Technical note: Drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters. Biogeosciences 2015, 12, 7013–7024. [Google Scholar] [CrossRef]
- Frankignoulle, M. Field measurement of air-sea CO2 exchange. Opt. Int. J. Light Electron Opt. 1988, 33, 313–322. [Google Scholar]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. Guide to Best Practices for Ocean CO2 Measurements; Pices Special Publication: Sidney, BC, Canada, 2007. [Google Scholar]
- Weiss, R.F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar] [CrossRef]
- Lueker, T.; Dickson, A.; Keeling, C. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 2000, 70, 105–119. [Google Scholar] [CrossRef]
- Jähne, B.; Heinz, G.; Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. Ocean. 1987, 92, 10767–10776. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. Ocean. 1992, 97, 7373–7382. [Google Scholar] [CrossRef]
- Zappa, C.J.; Mcgillis, W.R.; Raymond, P.A.; Edson, J.B.; Hintsa, E.J.; Zemmelink, H.J.; Dacey, J.W.R.; Ho, D.T. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys. Res. Lett. 2007, 34, 373. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; Cram101 Textbook Outlines to Accompany; Wiley: Hoboken, NJ, USA, 1996; Volume 179, p. 277. [Google Scholar]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Battin, T.J.; Kaplan, L.A.; Findlay, S.; Hopkinson, C.S.; Marti, E.; Packman, A.I.; Newbold, J.D.; Sabater, F. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 2008, 1, 95–100. [Google Scholar] [CrossRef]
- Wang, J.T. Climatic Geomorphology of the Anyemaqen Mountains. J. Glaciol. Geocryol. 1988, 10, 161–171. (In Chinese) [Google Scholar]
- Sorribas, M.V.; Motta Marques, D.; Castro, N.M.d.R.; Fan, F.M. Fluvial carbon export and CO2 efflux in representative nested headwater catchments of the eastern La Plata River Basin. Hydrol. Process. 2017, 31, 995–1006. [Google Scholar] [CrossRef]
- Smits, A.P.; Schindler, D.E.; Holtgrieve, G.W.; Jankowski, K.J.; French, D.W. Watershed geomorphology interacts with precipitation to influence the magnitude and source of CO2 emissions from Alaskan streams. J. Geophys. Res. Biogeosci. 2017, 122, 1903–1921. [Google Scholar] [CrossRef]
- Wu, X.; Wang, N.; Li, Q.; Chen, L.; Jiang, X. Lonic Compositions of Surface Snow in the Yehelong Glacier of Anyemaqen Mountains in the Headwaters of Yellow River. J. Glaciol. Geocryol. 2008, 30, 415–420. (In Chinese) [Google Scholar]
- Wu, L.; Huh, Y.; Qin, J.; Gu, D.; Lee, S. Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau. Geochim. Cosmochim. Acta 2005, 69, 5279–5294. [Google Scholar] [CrossRef]
- Wu, W.; Xu, S.; Yang, J.; Yin, H. Silicate weathering and CO2, consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet plateau. Chem. Geol. 2008, 249, 307–320. [Google Scholar] [CrossRef]
- Hodson, A.; Anesio, A.M.; Ng, F.; Watson, R.; Sattler, B. A glacier respires: Quantifying the distribution and respiration CO2 flux of cryoconite across an entire arctic supraglacial ecosystem. J. Geophys. Res. Biogeosci. 2007, 112, G04S36. [Google Scholar] [CrossRef]
- Hood, E.; Fellman, J.; Spencer, R.; Hernes, P.; Edwards, R.; Amore, D.; Scoot, D. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 2009, 462, 1044–1047. [Google Scholar] [CrossRef]
- Singer, G.; Fasching, C.; Wilhelm, L.; Niggemann, J.; Steier, P.; Dittmar, T.; Battin, T. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat. Geosci. 2012, 5, 710–714. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, N.; Grace, J.; Yang, M.; Lu, C.; Geng, X.; Lei, G.; Zhu, W.; Deng, Y. Impact of Groundwater Table and Plateau Zokors (Myospalax baileyi) on Ecosystem Respiration in the Zoige Peatlands of China. PLoS ONE 2014, 9, e115542. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gao, P. Impact of natural gullies on groundwater hydrology in the Zoige peatland, China. J. Hydrol. Reg. Stud. 2019, 21, 25–39. [Google Scholar] [CrossRef]
- Lin, X.; Wang, S.; Ma, X.; Xu, G.; Luo, C.; Li, T.; Jiang, G.; Xie, Z. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol. Biochem. 2009, 41, 718–725. [Google Scholar] [CrossRef]
- Marescaux, A.; Thieu, V.; Garnier, J. Carbon dioxide, methane and nitrous oxide emissions from the human-impacted Seine watershed in France. Sci. Total Environ. 2018, 643, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yang, J.; Xu, S.; Yin, H. Geochemistry of the headwaters of the Yangtze River, TongtianHe and Jinsha Jiang: Silicate weathering and CO2 consumption. Appl. Geochem. 2008, 23, 3712–3727. [Google Scholar] [CrossRef]
- Marx, A.; Dusek, J.; Jankovec, J.; Sanda, M.; Vogel, T.; Geldern, R.V.; Hartmann, J.; Barth, J.A.C. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective. Rev. Geophys. 2017, 55, 560–585. [Google Scholar] [CrossRef]
- Xu, H.; Yang, T. Spatial -Temporal Variation Characteristics of Vegetation Annual NPP and Responses to Climatic Factors in the Source Region of the Yellow River. Resour. Sci. 2013, 35, 2024–2031. (In Chinese) [Google Scholar]
- Matthews, C.J.; St Louis, V.L.; Hesslein, R.H. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environ. Sci. Technol. 2003, 37, 772. [Google Scholar] [CrossRef]
- Kokic, J.; Wallin, M.B.; Chmiel, H.E.; Denfeld, B.A.; Sobek, S. Carbon dioxide evasion from headwater systems strongly contributes to the total export of carbon from a small boreal lake catchment. J. Geophys. Res. Biogeosci. 2015, 120, 13–28. [Google Scholar] [CrossRef]
- Butman, D.; Raymond, P.A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 2011, 4, 839–842. [Google Scholar] [CrossRef]
- Teodoru, C.R.; Giorgio, P.A.D.; Prairie, Y.T.; Camire, M. Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada. Glob. Biogeochem. Cycles 2009, 23, 1–11. [Google Scholar] [CrossRef]
- Dyson, K.E.; Billett, M.F.; Dinsmore, K.J.; Harvey, F.; Thomson, A.M.; Piirainen, S.; Kortelainen, P. Release of aquatic carbon from two peatland catchments in E. Finland during the spring snowmelt period. Biogeochemistry 2010, 103, 125–142. [Google Scholar] [CrossRef]
- Dinsmore, K.J.; Smart, R.P.; Billett, M.F.; Holden, J.; Baird, A.J.; Chapman, P.J. Greenhouse gas losses from peatland pipes: A major pathway for loss to the atmosphere? J. Geophys. Res. Biogeosci. 2011, 116, 1–12. [Google Scholar] [CrossRef]
- Wang, G.; Hu, H.; Li, T. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 2009, 375, 438–449. [Google Scholar] [CrossRef]
- Zhang, F.; Li, H.; Li, Y.; Guo, X.; Dai, L.; Lin, L.; Cao, G.; Li, Y.; Zhou, H. Strong seasonal connectivity between shallow groundwater and soil frost in a humid alpine meadow, northeastern Qinghai-Tibetan Plateau. J. Hydrol. 2019, 574, 926–935. [Google Scholar] [CrossRef]
- Duvert, C.; Butman, D.E.; Marx, A.; Ribolzi, O.; Hutley, L.B. CO2 evasion along streams driven by groundwater inputs and geomorphic controls. Nat. Geosci. 2018, 11, 813–818. [Google Scholar] [CrossRef]
- Johnson, M.S.; Lehmann, J.; Riha, S.J.; Krusche, A.V.; Richey, J.E.; Ometto, J.P.H.B.; Couto, E.G. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys. Res. Lett. 2008, 35, L17401. [Google Scholar] [CrossRef]
- Duvert, C.; Bossa, M.; Tyler, K.J.; Wynn, J.G.; Munksgaard, N.C.; Bird, M.I.; Setterfield, S.A.; Hutley, L.B. Groundwater-Derived DIC and Carbonate Buffering Enhance Fluvial CO2 Evasion in Two Australian Tropical Rivers. J. Geogr. Res. Biogeosci. 2019, 124, 312–327. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Z.; Ma, X.; Wang, G. Division of Organic Carbon Reserves of Peatlands in China. Wetl. Sci. 2012, 10, 156–163. (In Chinese) [Google Scholar]
- Geeraert, N.; Omengo, F.O.; Borges, A.V.; Govers, G.; Bouillon, S. Shifts in the carbon dynamics in a tropical lowland river system (Tana River, Kenya) during flooded and non-flooded conditions. Biogeochemistry 2017, 132, 141–163. [Google Scholar] [CrossRef] [Green Version]
- Looman, A.; Santos, I.R.; Tait, D.R.; Webb, J.R.; Sullivan, C.A.; Maher, D.T. Carbon cycling and exports over diel and flood-recovery time scales in a subtropical rainforest headwater stream. Sci. Total Environ. 2016, 550, 645–657. [Google Scholar] [CrossRef] [PubMed]
Land Cover Type | pH | DIC | DO | DOC |
---|---|---|---|---|
Permafrost | −0.308 * (n = 18) | 0.113 (n = 17) | 0.0003 (n = 20) | 0.2480 * (n = 18) |
Glacier | −0.057 (n = 18) | 0.026 (n = 15) | 0.039 (n = 20) | 0.575 ** (n = 17) |
Peatland | −0.19 * (n = 37) | 0.109 (n = 34) | 0.03 (n = 38) | 0.022 (n = 34) |
Grassland | −0.135 * (n = 43) | 0.071 (n = 40) | 0.001 (n = 43) | −0.121 * (n = 38) |
River/Region | Method | pCO2 (μatm) | CO2 Efflux (mmol m−2 d−1) | Source |
---|---|---|---|---|
YRSR | Floating Chamber | 771 ± 380 | 135 ± 175 | This study |
YRSR | Empirical model | 214 ± 79 ppm | −50.4 ± 25.6 | Ran et al. [20] |
YRSR | Empirical model | 1083 ± 348 | 521 ± 309 | Qu et al. [19] |
Middle reach of Yellow River | Empirical model | 2338 ± 974 ppm | 1015 ± 501 | Ran et al. [20] |
Lower reach of Yellow River | Empirical model | 3687 ± 1638 ppm | 886 ± 339 | Ran et al. [20] |
Headwater in Alaska | Floating Chamber | 570 to 2600 | 450 | Crowford et al. [14] |
Headwater in Uruguay | Empirical model | 385 to 3962 | 1002 to 4225 | Sorribas et al. [46] |
Headwater in Sweden | Empirical model | 920 to 6401 | 408 to 5358 | Kokic et al. [62] |
Boreal streams | Empirical model | 1300 ppm | 128 | Aufdenkampe et al. [1] |
Global rivers | Empirical model | 2400 | 359 | Lauerwald et al. [10] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, M.; Yang, X.; Ran, L.; Su, Y.; Li, L.; Yu, R.; Hu, H.; Lu, X.X. Impact of Land Cover Types on Riverine CO2 Outgassing in the Yellow River Source Region. Water 2019, 11, 2243. https://doi.org/10.3390/w11112243
Tian M, Yang X, Ran L, Su Y, Li L, Yu R, Hu H, Lu XX. Impact of Land Cover Types on Riverine CO2 Outgassing in the Yellow River Source Region. Water. 2019; 11(11):2243. https://doi.org/10.3390/w11112243
Chicago/Turabian StyleTian, Mingyang, Xiankun Yang, Lishan Ran, Yuanrong Su, Lingyu Li, Ruihong Yu, Haizhu Hu, and Xi Xi Lu. 2019. "Impact of Land Cover Types on Riverine CO2 Outgassing in the Yellow River Source Region" Water 11, no. 11: 2243. https://doi.org/10.3390/w11112243
APA StyleTian, M., Yang, X., Ran, L., Su, Y., Li, L., Yu, R., Hu, H., & Lu, X. X. (2019). Impact of Land Cover Types on Riverine CO2 Outgassing in the Yellow River Source Region. Water, 11(11), 2243. https://doi.org/10.3390/w11112243