Evaluating the Impacts of Climate Change and Vegetation Restoration on the Hydrological Cycle over the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. VIC Model Set up and Calibration
2.2.1. Model Description
2.2.2. Model Calibration and Validation
2.3. Data Acquisition and Processing
2.3.1. Input Data
2.3.2. Other Data for Evaluation
2.4. Scenario Simulation Design and Analysis
3. Results
3.1. Evaluation of Model Performance
3.1.1. Model Calibration and Validation
3.1.2. Comparisons of Simulated ET and SM with Other Datasets
3.2. Spatiotemporal Distribution of Four Hydrologic Variables
3.2.1. Spatial Patterns
3.2.2. Temporal Variability
3.3. Impacts of Climate Change (CC) and Land Cover Change (LUCC) on Hydrologic Processes
3.3.1. Climate Change (CC)
3.3.2. Land Use and Land Cover Change (LUCC)
3.4. Contributions of Climate Change (CC) and Land Cover Change (LUCC)
4. Discussion
4.1. Hydrological Effect of Vegetation Conversion
4.2. Uncertainties and Limitations
5. Conclusions
- The ET and SM1 increased slightly during the period 1984–2015 over the entire Loess Plateau, while a decreasing trend was found in Runoff and SM2. The changes in hydrological variables across the Loess Plateau exhibits clear spatial heterogeneity, and the central loess plateau experienced an obvious increase in ET, and decrease in Runoff and SM2.
- The hydrological variables were significantly related to precipitation. The response levels of HVs to precipitation were different in the three vegetation classes.
- Vegetation conversions had a significant impact on hydrologic processes, especially conversion of cropland to woodland (cw), which causes a dramatic increase in ET and decrease in SM2. The three vegetation conversions decreased runoff and converted it to soil moisture, leading to an obvious increase in SM1 and SM2 on rainfall days, while ET, especially for cw and gw, was considerably higher than that before conversion on non-rainfall days.
- Land cover change contributed more to the variation in HVs in the Loess Plateau, while different factors were detected to control the change of hydrologic processes in six catchments. There existed a trade-off between mode and intensity of vegetation conversion versus degree of climate change.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Gauging Station | Catchment | Area (km2) | Latitude | Longitude | Calibration Period (1965–1974) | Validation Period (1975–1984) | ||
---|---|---|---|---|---|---|---|---|
NSE | BIAS (%) | NSE | BIAS (%) | |||||
Shenmu | KY | 7298 | 38°48′ | 110°30′ | 0.82 | −4.84 | 0.80 | −6.12 |
Yitang | FH | 23945 | 37°00′ | 111°50′ | 0.80 | −10.95 | 0.75 | 13.11 |
Dingjiagou | WD | 23422 | 37°33′ | 110°15′ | 0.79 | 7.13 | 0.70 | 11.08 |
Suide | DL | 3893 | 37°30′ | 110°14′ | 0.84 | 9.08 | 0.79 | 14.19 |
Jiaokouhe | BL | 17180 | 35°39′ | 109°21′ | 0.74 | 15.32 | 0.62 | 24.19 |
Yangjiaping | JH | 14124 | 35°20′ | 107°44′ | 0.67 | −14.77 | 0.71 | −12.29 |
Yuluoping | ML | 19019 | 35°20′ | 107°53′ | 0.59 | 15.35 | 0.65 | 10.28 |
Jingyuan | ZL | 10647 | 36°33′ | 104°40′ | 0.80 | 7.22 | 0.74 | 11.82 |
Gauging Station | Catchment | Area (km2) | Latitude | Longitude | Period | NSE | BIAS (%) |
---|---|---|---|---|---|---|---|
Wenjiachuan | KY | 8515 | 38°29′ | 110°45′ | 1965–1984 | 0.81 | −7.75 |
Chaizhuang | FH | 33932 | 35°48′ | 111°24′ | 1965–1984 | 0.68 | 9.19 |
Baijiachuan | WD | 29662 | 37°14′ | 110°25′ | 1965–1984 | 0.56 | 26.81 |
Zhuangtou | BL | 25154 | 35°02′ | 109°50′ | 1965–1984 | 0.74 | 14.22 |
Jingcun | JH | 40281 | 35°00′ | 108°08′ | 1965–1984 | 0.76 | −18.94 |
Fangniugou | HH | 5461 | 39°57′ | 111°33′ | 1965–1984 | 0.63 | −10.54 |
Gaojiachuan | TW | 3253 | 38°15′ | 110°29′ | 1965–1984 | 0.72 | 5.92 |
Daning | XS | 3992 | 36°28′ | 110°43′ | 1965–1984 | 0.77 | 15.36 |
References
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, S.; Fu, Q. A Drier Future? Science 2014, 343, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Frans, C.; Istanbulluoglu, E.; Mishra, V.; Munoz-Arriola, F.; Lettenmaier, D.P.; Muñoz-Arriola, F. Are climatic or land cover changes the dominant cause of runoff trends in the Upper Mississippi River Basin? Geophys. Res. Lett. 2013, 40, 1104–1110. [Google Scholar] [CrossRef]
- Greene, E.M.; Liston, G.E.; Pielke, R.A. Relationships between landscape, snowcover depletion, and regional weather and climate. Hydrol. Process. 1999, 13, 2453–2466. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef]
- Li, Q.Y.; Sun, Y.W.; Yuan, W.L.; Lyu, S.B.; Wan, F. Streamflow responses to climate change and LUCC in a semi-arid watershed of Chinese Loess Plateau. J. Arid Land 2017, 9, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Niehoff, D.; Fritsch, U.; Bronstert, A. Land-use impacts on storm-runoff generation: Scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J. Hydrol. 2002, 267, 80–93. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, S.; Liu, Y.; Liu, J.B.; Liang, W.; Miao, C.Y. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Xiao, J.F. Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China. J. Geophys. Res. Biogeosci. 2014, 119, 2261–2275. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.Y.; Fu, B.J.; Yan, J.P.; Wang, S.; Yang, Y.T.; Long, D.; Feng, M.Q. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Zhang, S.L.; Yang, H.B.; Yang, D.W.; Jayawardena, A.W. Quantifying the effect of vegetation change on the regional water balance within the Budyko framework. Geophys. Res. Lett. 2016, 43, 1140–1148. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Zhu, Y.J.; Liu, Z.P. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 2011, 151, 437–448. [Google Scholar] [CrossRef]
- Liang, H.B.; Xue, Y.Y.; Li, Z.S.; Wang, S.; Wu, X.; Gao, G.Y.; Liu, G.H.; Fu, B.J. Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau. For. Ecol. Manag. 2018, 412, 62–69. [Google Scholar] [CrossRef]
- Zhang, S.L.; Yang, D.W.; Yang, Y.T.; Piao, S.L.; Yang, H.B.; Lei, H.M.; Fu, B.J. Excessive afforestation and soil drying on China’s Loess Plateau. J. Geophys. Res. Biogeosci. 2018, 123, 923–935. [Google Scholar] [CrossRef]
- Wang, Q.X.; Fan, X.H.; Qin, Z.D.; Wang, M.B. Change trends of temperature and precipitation in the Loess Plateau Region of China, 1961–2010. Glob. Planet. Chang. 2012, 92–93, 138–147. [Google Scholar] [CrossRef]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y.; Wang, Y.F. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Glob. Planet. Chang. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Tang, Q.H.; Oki, T.; Kanae, S.; Hu, H.P. Hydrological cycles change in the Yellow River basin during the last half of the twentieth century. J. Clim. 2008, 21, 1790–1806. [Google Scholar] [CrossRef]
- Wang, F.; Hessel, R.; Mu, X.M.; Maroulis, J.; Zhao, G.J.; Geissen, V.; Ritsema, C. Distinguishing the impacts of human activities and climate variability on runoff and sediment load change based on paired periods with similar weather conditions: A case in the Yan River, China. J. Hydrol. 2015, 527, 884–893. [Google Scholar] [CrossRef]
- Feng, X.M.; Cheng, W.; Fu, B.J.; Lu, Y.H. The role of climatic and anthropogenic stresses on long-term runoff reduction from the Loess Plateau, China. Sci. Total Environ. 2016, 571, 688–698. [Google Scholar] [CrossRef]
- Gao, G.Y.; Fu, B.J.; Wang, S.; Liang, W.; Jiang, X. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Y.; Duan, K.Q.; Fu, S.Y.; Gou, F.; Liang, W.; Yan, J.W.; Zhang, W.B. Partitioning climate and human contributions to changes in mean annual streamflow based on the Budyko complementary relationship in the Loess Plateau, China. Sci. Total Environ. 2019, 665, 579–590. [Google Scholar] [CrossRef]
- Zhao, G.J.; Tian, P.; Mu, X.M.; Jiao, J.Y.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Gao, Z.L.; Zhang, L.; Zhang, X.P.; Cheng, L.; Potter, N.; Cowan, T.; Cai, W.J. Long-term streamflow trends in the middle reaches of the Yellow River Basin: Detecting drivers of change. Hydrol. Process. 2016, 30, 1315–1329. [Google Scholar] [CrossRef]
- Li, B.Q.; Liang, Z.M.; Zhang, J.Y.; Wang, G.Q.; Zhao, W.M.; Zhang, H.Y.; Wang, J.; Hu, Y.M. Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China. Theor. Appl. Climatol. 2018, 131, 845–855. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.; Wang, S.H.; Ciais, P.; Zeng, Z.Z.; Lu, Y.H.; Zeng, Y.; Li, Y. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Li, S.; Liang, W.; Fu, B.J.; Lu, Y.H.; Fu, S.Y.; Wang, S.; Su, H.M. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total Environ. 2016, 569, 1032–1039. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.; Jia, F.; Mo, B. Spatial variations of shallow and deep soil moisture in the semi-arid Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 3199–3217. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.L.; Fu, B.J.; Lü, Y.H.; Chang, R.Y.; Wang, S.; Wang, Y.F.; Su, C.H. The multi-scale spatial variance of soil moisture in the semi-arid Loess Plateau of China. J. Soils Sediments 2012, 12, 694–703. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.J.; Wei, S.P.; Shao, M.A.; Li, Y. Soil desiccation for Loess soils on natural and regrown areas. For. Ecol. Manag. 2008, 255, 2467–2477. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Gao, G.Y.; Liu, Y.; Zhou, J. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. Catena 2013, 101, 122–128. [Google Scholar] [CrossRef]
- Jia, Y.H.; Shao, M.A. Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of China. J. Hydrol. 2014, 519, 523–531. [Google Scholar] [CrossRef]
- Jia, X.X.; Shao, M.A.; Zhu, Y.J.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Tian, F.; Feng, X.M.; Zhang, L.; Fu, B.J.; Wang, S.; Lv, Y.H.; Wang, P. Effects of revegetation on soil moisture under different precipitation gradients in the Loess Plateau, China. Hydrol. Res. 2017, 48, 1378–1390. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Shao, H.B. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 2010, 381, 9–17. [Google Scholar] [CrossRef]
- Zhang, C.C.; Shao, M.A.; Jia, X.X. Spatial continuity and local conditions determine spatial pattern of dried soil layers on the Chinese Loess Plateau. J. Soils Sediments 2017, 17, 2030–2039. [Google Scholar] [CrossRef]
- Jia, Y.H.; Li, T.C.; Shao, M.A.; Hao, J.H.; Wang, Y.Q.; Jia, X.X.; Zeng, C.; Fu, X.L.; Liu, B.X.; Gan, M.; et al. Disentangling the formation and evolvement mechanism of plants-induced dried soil layers on China’s Loess Plateau. Agric. For. Meteorol. 2019, 269, 57–70. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, F.F.; Chen, Y.; Dixon, R.N.M. Estimating effects of plantation expansion and climate variability on streamflow for catchments in Australia. Water Resour. Res. 2011. [Google Scholar] [CrossRef]
- Wu, J.W.; Miao, C.Y.; Zhang, X.M.; Yang, T.T.; Duan, Q.Y. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef]
- Zhu, X.A.; Li, Y.S.; Peng, X.A.; Zhang, S.G. Soils of the loess region in China. Geoderma 1983, 29, 237–255. [Google Scholar]
- Wang, Y.Q.; Shao, M.A.; Liu, Z.P. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess Plateau. Geoderma 2013, 193–194, 300–310. [Google Scholar] [CrossRef]
- Li, Y.S.; Huang, M.B. Pasture yield and soil water depletion of continuous growing alfalfa in the Loess Plateau of China. Agric. Ecosyst. Environ. 2008, 124, 24–32. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Chang. 1996, 13, 195–206. [Google Scholar] [CrossRef]
- Nijssen, B.; Schnur, R.; Lettenmaier, D.P. Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–1993. J. Clim. 2001, 14, 1790–1808. [Google Scholar] [CrossRef]
- Sheffield, J. A simulated soil moisture based drought analysis for the United States. J. Geophys. Res. 2004. [Google Scholar] [CrossRef]
- Xie, Z.H.; Yuan, F.; Duan, Q.Y.; Zheng, J.; Liang, M.L.; Chen, F. Regional parameter estimation of the VIC land surface model: Methodology and application to river basins in China. J. Hydrometeorol. 2007, 8, 447–468. [Google Scholar] [CrossRef]
- Sheffield, J.; Livneh, B.; Wood, E. Representation of terrestrial hydrology and large-scale drought of the continental United States from the North American regional reanalysis. J. Hydrometeorol. 2012, 13, 856–876. [Google Scholar] [CrossRef]
- Byun, K.; Chiu, C.-M.; Hamlet, A.F. Effects of 21st century climate change on seasonal flow regimes and hydrologic extremes over the Midwest and Great Lakes region of the US. Sci. Total Environ. 2019, 650, 1261–1277. [Google Scholar] [CrossRef]
- Cherkauer, K.A.; Lettenmaier, D.P. Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res. Atmos. 1999, 104, 19599–19610. [Google Scholar] [CrossRef]
- Zhao, R.J. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar]
- Todini, E. The ARNO rainfall-runoff model. J. Hydrol. 1996, 175, 339–382. [Google Scholar] [CrossRef]
- Liang, X.; Xie, Z.H. A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Adv. Water Resour. 2001, 24, 1173–1193. [Google Scholar] [CrossRef]
- Liang, X.; Xie, Z.; Huang, M. A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model. J. Geophys. Res. 2003. [Google Scholar] [CrossRef]
- Lohmann, D.; Nolte-Holube, R.; Raschke, E. A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus Ser. Dyn. Meteorol. Oceanogr. 1996, 48, 708–721. [Google Scholar] [CrossRef]
- Lohmann, D.; Raschke, E.; Nijssen, B.; Lettenmaier, D.P. Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J. 1998, 43, 131–141. [Google Scholar] [CrossRef]
- Zhang, X.J.; Tang, Q.h.; Pan, M.; Tang, Y. A Long-term land surface hydrologic fluxes and states dataset for China. J. Hydrometeorol. 2014, 15, 2067–2084. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.X.; Wang, Q.C.; Zhang, L.L.; Zhou, B.R.; Hao, Z.C.; Su, F.G. Climate change on the northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms. J. Clim. 2013, 26, 85–109. [Google Scholar] [CrossRef]
- Xie, X.H.; Liang, S.L.; Yao, Y.J.; Jia, K.; Meng, S.S.; Li, J. Detection and attribution of changes in hydrological cycle over the Three-North region of China: Climate change versus afforestation effect. Agric. For. Meteorol. 2015, 203, 74–87. [Google Scholar] [CrossRef]
- Liu, J.Y.; Tian, H.Q.; Liu, M.L.; Zhuang, D.F.; Melillo, J.M.; Zhang, Z.X. China’s changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophys. Res. Lett. 2005. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Su, B.; Wang, A.Q.; Wang, G.J.; Wang, Y.J.; Jiang, T. Spatiotemporal variations of soil moisture in the Tarim River basin, China. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 122–130. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, L.; Chen, Y.Y.; Zhao, L.; Qin, J.; Lu, H.; Tang, W.J.; Han, M.L.; Ding, B.H.; Fang, N. Land surface model calibration through microwave data assimilation for improving soil moisture simulations. J. Hydrol. 2016, 533, 266–276. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z.B. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, sep15956. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Fu, B.J.; Feng, X.M.; Zeng, Y.; Liu, Y.; Chang, R.Y.; Sun, G.; Wu, B.F. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar]
- Mao, D.; Cherkauer, K.A. Impacts of land-use change on hydrologic responses in the Great Lakes region. J. Hydrol. 2009, 374, 71–82. [Google Scholar] [CrossRef]
- Yang, D.W.; Shao, W.W.; Yeh, P.J.F.; Yang, H.B.; Kanae, S.; Oki, T. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour. Res. 2009. [Google Scholar] [CrossRef]
- Wang, L.X.; Wei, X.H.; Bishop, K.; Reeves, A.D.; Ursino, N.; Winkler, R. Vegetation changes and water cycle in a changing environment. Hydrol. Earth Syst. Sci. 2018, 22, 1731–1734. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.D.; Wei, W.; Fu, B.J.; Lu, Y.H. Soil and water conservation on the Loess Plateau in China: Review and perspective. Prog. Phys. Geogr. Earth Environ. 2007, 31, 389–403. [Google Scholar] [CrossRef]
- Mu, X.M.; Xu, X.X.; Wang, W.L.; Wen, Z.M.; Du, F. Impact of artificial forest on soil moisture of the deep soil layer on loess plateau. Acta Pedol. Sin. 2003, 40, 210–217. [Google Scholar]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol. Earth Syst. Sci. 2007, 11, 983–995. [Google Scholar] [CrossRef]
- Li, D.; Pan, M.; Cong, Z.T.; Zhang, L.; Wood, E. Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res. 2013, 49, 969–976. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yu, P.T.; Xiong, W.; Shen, Z.X.; Guo, M.C.; Shi, Z.J.; Du, A.P.; Wang, L.M. Water-yield reduction after afforestation and related processes in the semiarid Liupan Mountains, Northwest China. J. Am. Water Resour. Assoc. 2008, 44, 1086–1097. [Google Scholar] [CrossRef]
- Chen, H.S.; Shao, M.A.; Li, Y.Y. Soil desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Zhai, R.; Tao, F.; Xu, Z. Spatial–temporal changes in runoff and terrestrial ecosystem water retention under 1.5 and 2 °C warming scenarios across China. Earth Syst. Dyn. 2018, 9, 717–738. [Google Scholar] [CrossRef]
- Pan, Z.T.; Takle, E.; Segal, M.; Arritt, R. Simulation of potential impacts of man-made land use changes on US Summer climate under various synoptic regimes. J. Geophys. Res. Atmos. 1999, 104, 6515–6528. [Google Scholar] [CrossRef]
- Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F. Potential climatic impacts of vegetation change: A regional modeling study. J. Geophys. Res. Atmos. 1996, 101, 7409–7418. [Google Scholar] [CrossRef]
Scenario | Vegetation Parameters | Forcing Data | Objectives | |
---|---|---|---|---|
1984–1999 | 2000–2015 | |||
Scenario0 (S0) | Veg1990 | Veg2010 | Real 1984–2015 | Base line |
Scenario1 (S1) | Veg1990 | Veg2010 | Detrended 1984–2015 | To identify the effect of CC |
Scenario2 (S2) | Veg1990 | Veg1990 | Real 1984–2015 | To identify the effect of LUCC |
Scenario3 (S3) | Veg1990 | Veg1990 | Detrended 1984–2015 | To identify the co-effect of CC and LUCC |
HVs | Vegetation | Precipitation | Temperature |
---|---|---|---|
ET | uc | 0.84 ** | −0.1 |
ug | 0.88 ** | −0.17 | |
uw | 0.78 ** | −0.2 | |
Runoff | uc | 0.97 ** | 0.08 |
ug | 0.95 ** | 0.01 | |
uw | 0.95 ** | 0.17 | |
SM1 | uc | 0.82 ** | −0.33 |
ug | 0.87 ** | −0.33 | |
uw | 0.77 ** | −0.55 | |
SM2 | uc | 0.76 ** | −0.32 |
ug | 0.78 ** | −0.29 | |
uw | 0.80 ** | −0.45 ** |
Hydrological Variables | ET | Runoff | SM1 | SM2 | |
---|---|---|---|---|---|
PPT | uc | | |||
ug | |||||
uw | |||||
Tem | uc | | |||
ug | |||||
uw |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Kang, T.; Bu, J.; Chen, J.; Gao, Y. Evaluating the Impacts of Climate Change and Vegetation Restoration on the Hydrological Cycle over the Loess Plateau, China. Water 2019, 11, 2241. https://doi.org/10.3390/w11112241
Yang S, Kang T, Bu J, Chen J, Gao Y. Evaluating the Impacts of Climate Change and Vegetation Restoration on the Hydrological Cycle over the Loess Plateau, China. Water. 2019; 11(11):2241. https://doi.org/10.3390/w11112241
Chicago/Turabian StyleYang, Shuai, Tingting Kang, Jingyi Bu, Jiahao Chen, and Yanchun Gao. 2019. "Evaluating the Impacts of Climate Change and Vegetation Restoration on the Hydrological Cycle over the Loess Plateau, China" Water 11, no. 11: 2241. https://doi.org/10.3390/w11112241
APA StyleYang, S., Kang, T., Bu, J., Chen, J., & Gao, Y. (2019). Evaluating the Impacts of Climate Change and Vegetation Restoration on the Hydrological Cycle over the Loess Plateau, China. Water, 11(11), 2241. https://doi.org/10.3390/w11112241