Migration of Pharmaceuticals from the Warta River to the Aquifer at a Riverbank Filtration Site in Krajkowo (Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BF | bank filtrate |
HW | horizontal well |
References
- Kovačević, S.; Radišić, M.; Laušević, M.; Dimkić, M. Occurrence and behavior of selected pharmaceuticals during riverbank filtration in The Republic of Serbia. Environ. Sci. Pollut. Res. 2017, 24, 2075–2088. [Google Scholar] [CrossRef] [PubMed]
- Dragon, K.; Górski, J.; Kruć, R.; Drożdżyński, D.; Grischek, T. Removal of Natural Organic Matter and Organic Micropollutants during Riverbank Filtration in Krajkowo, Poland. Water 2018, 10, 1457. [Google Scholar] [CrossRef]
- Hiscock, K.M.; Grischek, T. Attenuation of groundwater pollution by bank filtration. J. Hydrol. 2002, 266, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Maeng, S.K.; Ameda, E.; Sharma, S.K.; Grutzmacher, G.; Amy, G.L. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge. Water Res. 2010, 44, 4003–4014. [Google Scholar] [CrossRef] [PubMed]
- Forizs, T.; Berecz, Z.; Molnar, Z.; Suveges, M. Origin of shallow groundwater of Csepel Island (south of Budapest. Hungary. River Danube): Isotopic and chemical approach. Hydrol. Process. 2005, 19, 3299–3312. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A.; Franchino, E. Nitrates contamination of groundwater in the western Po Plain (Italy): The effects of groundwater and surface water interactions. Environ. Earth Sci. 2016, 75, 240. [Google Scholar] [CrossRef]
- Heberer, T.; Mechlinski, A.; Fanck, B.; Knappe, A.; Massmann, G.; Pekdeger, A.; Fritz, B. Field Studies on the Fate and Transportof Pharmaceutical Residues in Bank Filtration. Groundw. Monit. Remediat. 2004, 24, 70–77. [Google Scholar] [CrossRef]
- Schmidt, C.K.; Lange, F.T.; Brauch, H.J. Characteristics and evaluation of natural attenuation processes for organic micropollutant removal during riverbank filtration. Water Supply 2007, 7, 1–7. [Google Scholar] [CrossRef]
- Maeng, S.K.; Salinas Rodriguez, C.N.A.; Sharma, S.K. Removal of Pharmaceuticals by Bank Filtration and Artifical Recharge and Recovery. Compr. Anal. Chem. 2013, 62, 435–451. [Google Scholar]
- Wang, L.; Ying, G.G.; Zhao, J.L.; Yang, X.B.; Chen, F. Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of north China. Sci. Total Environ. 2010, 408, 3139–3147. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, R.; Wang, Y.; Pan, X. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities. Mar. Environ. Res. 2012, 78, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.F.; Dai, M.C.; Zhang, Y.L.; Surampalli, R.Y. A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China. Environ. Monit. Assess. 2011, 173, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Tamtam, F.; Mercier, F.; Le Bot, B.; Eurin, J.; Dinh, Q.T. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci. Total Environ. 2008, 393, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Shala, L.; Foster, G.D. Surface water concentrations and loading budgets of pharmaceuticals and other domestic-use chemicals in an urban watershed (Washington, DC, USA). Arch. Environ. Contam. Toxicol. 2010, 58, 551–561. [Google Scholar] [CrossRef]
- Szymonik, A.; Lach, J.; Malińska, K. Fate and removal of pharmaceuticals and illegal drugs present in drinking water and wastewater. Ecol. Chem. Eng. S 2017, 24, 65–85. [Google Scholar] [CrossRef]
- Hamann, E.; Stuyfzand, P.J.; Greskowiak, J.; Timmer, H.; Massmann, G. The fate of organicmicropollutants during long-term/long-distance river bank filtration. Sci. Total Environ. 2016, 545–546, 629–640. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dąbrowska, A.; Vieno, N.; Kronberg, L.; Nawrocki, J. Occurrence of Acidic Pharmaceuticals in the Warta River in Poland. Chem. Anal. 2007, 52, 289–303. [Google Scholar]
- Górski, J.; Dragon, K.; Kaczmarek, P. Nitrate pollution in the Warta River (Poland) between 1958 and 2016: Trend and causes. Environ. Sci. Pollut. Res. 2019, 26, 2038–2046. [Google Scholar] [CrossRef]
- Massmann, G.; Sultenfuß, J.; Dunnbier, U.; Knappe, A.; Taute, T.; Pekdeger, A. Investigation of groundwater residence times during bank filtration in Berlin: A multi-tracer approach. Hydrol. Process. 2008, 22, 788–801. [Google Scholar] [CrossRef]
- Górski, J.; Dragon, K.; Kruć, R. A comparison of river water treatment efficiency in different types of wells. Geologos 2018, 24, 245–251. [Google Scholar] [CrossRef]
- Massmann, G.; Greskowiak, J.; Dunnbier, U.; Zuehlke, S.; Knappe, A.; Pekdeger, A. The impact of variable temperatures on the redox conditions and the behaviour of pharmaceutical residues during artificial recharge. J. Hydrol. 2006, 328, 141–156. [Google Scholar] [CrossRef]
- Nagy-Kovács, Z.; László, B.; Fleit, E.; Czihat-Mártonné, K.; Till, G.; Börnick, H.; Adomat, Y.; Grischek, T. Behavior of Organic Micropollutants during River Bank Filtration in Budapest, Hungary. Water 2018, 10, 1861. [Google Scholar] [CrossRef]
- Koreje, K.O.; Demeestere, K.; De Wispelaere, P.; Vergeynst, L. From multi-residue screening to target analysis of pharmaceuticals in water: Development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya. Sci. Total Environ. 2012, 437, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Nödler, K.; Licha, T.; Fischer, S.; Wagner, B. A case study on the correlation of micro-contaminants and potassium in the Leine River (Germany). Appl. Geochem. 2011, 26, 2172–2180. [Google Scholar] [CrossRef]
- Loos, R.; Wollgast, J.; Huber, T.; Hanke, G. Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Anal. Bioanal. Chem. 2007, 387, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Madureira, V.T.; Barreiro, J.C.; Rocha, M.J.; Rocha, E. Spatiotemporal distribution of pharmaceuticals in the Douro River estuary (Portugal). Sci. Total Environ. 2010, 408, 5513–5520. [Google Scholar] [CrossRef]
- Burke, V.; Schneider, L.; Greskowiak, J.; Zerball-van Baar, P.; Sperlich, A.; Dünnbier, U.; Massmann, G. Trace Organic Removal during River Bank Filtration for Two Types of Sediment. Water 2018, 10, 1736. [Google Scholar] [CrossRef]
- Driezum, I.H.; Derx, J.; Oudega, T.J.; Zessner, M.; Naus, F.L.; Saracevic, E.; Kirschner, A.K.T.; Sommer, R.; Farnleitner, A.H.; Blaschke, A.P. Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration. Sci. Total Environ. 2019, 649, 212–223. [Google Scholar] [CrossRef]
- Grünheid, S.; Amy, G.; Jekel, M. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res. 2005, 39, 3219–3228. [Google Scholar] [CrossRef]
- Pedeger, A.; Massmann, G.; Ohm, B.; Pühringer, S.; Richter, D.; Engemann, N.; Gruß, S. Hydrogeological-Hydrogeochemical Processes during Bank Filtration and Groundwater Recharge Using a Multi-Tracer Approach; NASRI: Berlin, Germany, 2006. [Google Scholar]
Sampling Points | Location | Distance from the River Bank (m) | Depth of the Well Screen (m) | Contribution of River Water to Total Water Balance in Well (%) | Residence Time (days) |
---|---|---|---|---|---|
Warta River | - | - | - | - | - |
Horizontal well-HW | Drains under river bottom | - | 5 m below river bottom | 100 | 1 |
Observation well 177b/1 | Floodplain | 38 | 12.5–14.5 | 100 | 24 |
Vertical well 19L | Floodplain | 64 | 24.0–32.0 | 65–85 | 40 |
Vertical well 1AL | Floodplain | 82 | 16.5–32.5 | 65–85 | 50 |
Observation well 78b/1s | Higher terrace | 250 | 18.0–28.0 | 60 | 150 |
Parameters | LOQ | Parameters | LOQ | Parameters | LOQ |
---|---|---|---|---|---|
Carbamazepine | <10 | Saccharin | <50 | Alfuzosin | <10 |
Erythromycin | <10 | Gabapentin | <10 | Bisoprolol | <10 |
Sulfamethoxazol | <10 | Tramadol | <10 | Celiprolol | <10 |
Iopromide | <50 | Clarithromycin | <10 | Citalopram | <20 |
Ibuprofen | <20 | Roxithromycin | <10 | Clindamycin | <10 |
Diclofenac | <20 | Azithromycin | <10 | Cyclophosphamide | <10 |
Iopamidol | <50 | Carbamazepine-DH | <10 | Diltiazem | <10 |
Atenolol | <10 | Oxcarbazepine | <10 | Fexofenadine | <10 |
Caffein | <100 | Ibuprofen-2-hydroxy | <30 | Fluconazole | <10 |
Ketoprofen | <10 | Ibuprofen-carboxy | <20 | Fluoxentine | <10 |
Metoprolol | <10 | Diclofenac-4-hydroxy | <20 | Iomeprol | <50 |
Peniciline G | <10 | Naproxene-O-desmeth | <20 | Irbesartan | <10 |
Sulfamerazine | <10 | Venlafaxine | <10 | Ivermectin | <10 |
Sulfamethazin | <10 | Sertraline | <10 | Lamotrigine | <10 |
Sulfapyridin | <10 | Ranitidine | <10 | Lovastatin | <10 |
Trimetoprim | <10 | Iohexol | <50 | Memantine | <20 |
Furosemide | <10 | Carbamazepine-2-hydr | <10 | Mirtazapine | <10 |
Gemfibrozil | <50 | Clofibric acid | <10 | Phenazone | <10 |
Hydrochlorothiazide | <10 | Cotinine | <20 | Primidone | <10 |
Naproxene | <50 | Paraxanthine | <100 | Propranolol | <10 |
Triclocarban | <10 | Bisfenol B | <50 | Propyphenazone | <10 |
Triclosan | <20 | Bisfenol S | <50 | Simvastatin | <10 |
Chloramphenicol | <20 | Oxypurinol | <50 | Sotalol | <10 |
Bezafibrate | <10 | Tiamulin | <10 | Telmisartan | <20 |
Warfarin | <10 | Acebutolol | <10 | Valsartan | <10 |
September 2017 | May 2018 | June 2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LOQ | Warta 1AL 78b/1s | Warta 1AL 78b/1s | Warta 1AL 78b/1s | ||||||||
Antibiotics | Sulfamethoxazole | <10 | 43 | 15 | <LOQ | 306 | 20 | <LOQ | 24 | 16 | <LOQ |
X-ray agents | Iopromide | <30 | <LOQ | <LOQ | <LOQ | 413 | <LOQ | <LOQ | 79 | <LOQ | <LOQ |
Iohexol | <10 | 120 | <LOQ | <LOQ | 217 | <LOQ | <LOQ | 485 | 146 | 184 | |
Iomeprol | <39 | <LOQ | <LOQ | <LOQ | 156 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
Psychotropic | Carbamazepine | <10 | 110 | 145 | 81 | 208 | 73 | 9 | 91 | 77 | 75 |
Beta-blockers | Metoprolol | <100 | <LOQ | <LOQ | <LOQ | 26 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Anti-inflammatory | Diclofenac | <10 | 43 | 99 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Naproxene | <10 | 39 | <LOQ | <LOQ | 31 | 21 | <LOQ | <LOQ | <LOQ | <LOQ | |
Antidiabetic | Metmorfina | <50 | 88 | <LOQ | <LOQ | 79 | <LOQ | <LOQ | 55 | <LOQ | <LOQ |
Benzotriazole | 1H-Benzotriazole | <80 | 140 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
LOQ | July 2018 | August 2018 | October 2018 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Warta | HW | 177b/1 | 19L | 1AL | 78b/1s | Warta | HW | 177b/1 | 19L | 1AL | 78b/1s | Warta | HW | 177b/1 | 19L | 1AL | 78b/1s | |||
Antibiotics | Clindamycin | <10 | 12.7 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 12.2 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Penicillin G | <10 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 13 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 17.1 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
Sulfamethoxazole | <10 | 29.3 | 27.1 | 15.9 | <LOQ | 15 | <LOQ | 18.8 | 17.1 | 12.4 | <LOQ | <LOQ | <LOQ | 37.7 | 21.8 | 10.1 | <LOQ | 10.5 | <LOQ | |
X-ray Agents | Iohexol | <50 | 120 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 90 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Iopromide | <50 | 149 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 59.8 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 105 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
Psychotropic, Anticonvulsant, Antiepileptic | Carbamazepine | <10 | 130 | 179 | 161 | 112 | 110 | 83.1 | 132 | 131 | 131 | 88.6 | 99 | 63.6 | 135 | 134 | 148 | 135 | 123 | 80.3 |
Gabapentin | <10 | 97 | 53.3 | 18.7 | 13 | 14 | 21.3 | 55.6 | 27 | 25.2 | 12.6 | 13.8 | 15.6 | 81.5 | 61.7 | 13.5 | <LOQ | 10.2 | 24 | |
Lamotrigine | <10 | 35.8 | 54 | 29.1 | 15 | 21 | <LOQ | 36.1 | 44.9 | 26.7 | 15.6 | 16.6 | <LOQ | 45.1 | 42.6 | 38.3 | 24.6 | 25.2 | <LOQ | |
Primidone | <10 | <LOQ | 12.4 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 10.4 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 10.2 | 11.6 | <LOQ | <LOQ | <LOQ | |
Beta-blockers, Cardiac Drugs | Metoprolol | <10 | 11.9 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 19.6 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Sotalol | <10 | 23.3 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 14.3 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 50.3 | 14.1 | <LOQ | <LOQ | <LOQ | <LOQ | |
Telmisartan | <20 | 140 | 62.5 | <LOQ | <LOQ | <LOQ | <LOQ | 132 | 52 | <LOQ | <LOQ | <LOQ | <LOQ | 136 | 60.5 | <LOQ | <LOQ | <LOQ | <LOQ | |
Valsartan | <10 | 61.1 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 23 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 28.9 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
Drugs, e.g., Caffeine | Caffeine | <100 | 154 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 1350 | <LOQ | 140 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Continine | <20 | 30.9 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 50.8 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
Saccharin | <50 | 111 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 360 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
Paraxanthine | <100 | 163 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 1470 | <LOQ | 104 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
Analgesics, anti-Inflammatory | Diclofenac | <20 | 24.5 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 37.4 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Tramadol | <10 | 76.1 | 73.7 | 35.9 | 19 | 22 | <LOQ | 52 | 38.1 | 27.4 | 17 | 20.5 | <LOQ | 83.8 | 64.4 | 35.3 | 24.4 | 27.9 | <LOQ | |
Antifungal and Antibacterial | Fluconazole | <10 | 35.6 | 48.4 | 21.5 | 12 | 21 | <LOQ | 32.5 | 42.1 | 20.2 | 10.4 | 19.6 | <LOQ | 51.7 | 51.6 | 29.2 | 15 | 21.5 | <LOQ |
Sulfapyridine | <10 | <LOQ | 10.7 | 14.2 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 11.7 | <LOQ | <LOQ | <LOQ | 10.8 | 11.2 | 13 | <LOQ | <LOQ | <LOQ | |
Antihistamine | Fexofenadine | <10 | 40.7 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 28.9 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 33.2 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Xanthine Oxidase Inhibit | Oxypurinol | <50 | 388 | 1350 | 503 | 237 | 345 | <LOQ | 610 | 1100 | 486 | 130 | 228 | <LOQ | 1050 | 1010 | 652 | 260 | 317 | <LOQ |
HW | 177b/1 | 19L | 1AL | 78b/1s | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VII | VIII | X | VII | VIII | X | VII | VIII | X | VII | VIII | X | VII | VIII | X | |
2018 | 2018 | 2018 | 2018 | 2018 | |||||||||||
Carbamazepine | −37.7 | 0.8 | 0.7 | −23.8 | 0.8 | −9.6 | 13.8 | 32.9 | 0 | 15.4 | 25.0 | 26.7 | 36.1 | 51.8 | 40.5 |
Sulfamethoxazole | 7.5 | 9.0 | 42.2 | 45.7 | 34.0 | 73.2 | 100 | 100 | 100 | 48.8 | 100 | 100 | 100 | 100 | 100 |
Gabapentin | 45.1 | 51.4 | 24.3 | 80.7 | 54.7 | 83.4 | 86.5 | 77.3 | 100 | 85.2 | 75.2 | 83.1 | 78.0 | 71.9 | 70.6 |
Tramadol | 3.2 | 26.7 | 23.2 | 52.8 | 47.3 | 57.9 | 75.6 | 67.3 | 70.9 | 70.6 | 60.6 | 75.5 | 100 | 100 | 100 |
Oxypurinol | −247.9 | −80.3 | 3.8 | −29.6 | 20.3 | 37.9 | 38.9 | 78.7 | 75.2 | 11.1 | 62.6 | 78.3 | 100 | 100 | 100 |
Fluconazole | −36.0 | −29.5 | 0.2 | 39.6 | 37.8 | 43.5 | 65.7 | 68.0 | 71.0 | 40.7 | 39.7 | 62.1 | 100 | 100 | 100 |
Lamotrigine | −50.8 | −24.4 | 5.5 | 18.7 | 26.0 | 15.1 | 58.1 | 56.8 | 45.5 | 40.5 | 54.0 | 63.2 | 100 | 100 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruć, R.; Dragon, K.; Górski, J. Migration of Pharmaceuticals from the Warta River to the Aquifer at a Riverbank Filtration Site in Krajkowo (Poland). Water 2019, 11, 2238. https://doi.org/10.3390/w11112238
Kruć R, Dragon K, Górski J. Migration of Pharmaceuticals from the Warta River to the Aquifer at a Riverbank Filtration Site in Krajkowo (Poland). Water. 2019; 11(11):2238. https://doi.org/10.3390/w11112238
Chicago/Turabian StyleKruć, Roksana, Krzysztof Dragon, and Józef Górski. 2019. "Migration of Pharmaceuticals from the Warta River to the Aquifer at a Riverbank Filtration Site in Krajkowo (Poland)" Water 11, no. 11: 2238. https://doi.org/10.3390/w11112238
APA StyleKruć, R., Dragon, K., & Górski, J. (2019). Migration of Pharmaceuticals from the Warta River to the Aquifer at a Riverbank Filtration Site in Krajkowo (Poland). Water, 11(11), 2238. https://doi.org/10.3390/w11112238