A Method for Fast Evaluation of Potential Consequences of Dam Breach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catastrophe Evaluation Method
2.1.1. Catastrophe Theory
2.1.2. Common Catastrophe Evaluation Model
2.2. Consequences Evaluation of Dam Breach
2.2.1. Principles for Indices Identification
2.2.2. Evaluation Index System
2.2.3. Standardization of Indices
2.3. Evaluation Procedures
- (1)
- Defining the values of all indices based on statistics and on-site investigation.
- (2)
- Standardizing the indices according to their characteristics.
- (3)
- Calculating the catastrophe value hierarchically by using the recursive method according to the corresponding mutation types.
3. Results
3.1. Validation of the Method
3.2. Implementation of the Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peng, M.; Zhang, L.M. Dynamic decision making for dam-break emergency management—Part 1: Theoretical framework. Nat. Hazards Earth Syst. 2013, 13, 425–437. [Google Scholar] [CrossRef]
- Judi, D.R.; Mcpherson, T.N.; Burian, S.J. Impacts of elevation data spatial resolution on two-dimensional dam break flood simulation and consequence assessment. J. Water Resour. Plan. Manag. 2015, 140, 194–200. [Google Scholar] [CrossRef]
- Ge, W.; Li, Z.; Liang, R.Y.; Li, W.; Cai, Y. Methodology for establishing risk criteria for dams in developing countries, case study of China. Water Resour. Manag. 2017, 31, 4063–4074. [Google Scholar] [CrossRef]
- Li, W.; Li, Z.; Ge, W.; Wu, S. Risk Evaluation model of life loss caused by dam-break flood and its application. Water 2019, 11, 1359. [Google Scholar] [CrossRef]
- Viseu, T.; de Almeida, A.B. Dam-break risk management and hazard mitigation. WIT Trans. State Art Sci. Eng. 2009, 36, 211–239. [Google Scholar]
- Wu, M.; Ge, W.; Li, Z.; Wu, Z.; Zhang, H.; Li, J.; Pan, Y. Improved set pair analysis and its application to environmental impact evaluation of dam break. Water 2019, 11, 821. [Google Scholar] [CrossRef]
- Brown, C.A.; Graham, W.J. Assessing the threat to life from dam failure. J. Am. Water Resour. Assoc. 1988, 24, 1303–1309. [Google Scholar] [CrossRef]
- DeKay, M.L.; McClelland, G.H. Predicting loss of life in cases of dam failure and flash flood. Risk Anal. 1993, 13, 193–205. [Google Scholar] [CrossRef]
- Assaf, H.; Hartford, D.N.D. A virtual reality approach to public protection and emergency preparedness planning in dam safety analysis. In Proceedings of the Canadian Dam Association Conference, Victoria, BC, Canada, 6–10 October 2002. [Google Scholar]
- Aboelata, M.; Bowles, D.S. LIFESim: A tool for estimating and reducing life-loss resulting from dam and levee failures. In Proceedings of the Association of State Dam Safety Officials (Dam Safety 2008), association of State Dam Safety Officials, Indian Wells, CA, America, 7–11 September 2008. [Google Scholar]
- Jonkman, S.N.; Vrijling, J.K.; Vrouwenvelder, A.C.W.M. Methods for the estimation of loss of life due to floods: A literature review and a proposal for a new method. Nat. Hazards 2008, 46, 353–389. [Google Scholar] [CrossRef]
- Serrano-Lombillo, A.; Morales-Torres, A.; García-Kabbabe, L.A. Consequence Estimation in Risk Analysis. In Risk Analysis. Dam Safety, Dam Security and Critical Infrastructure Management; Escuder-Bueno, I., Matheu, E., Altarejos-García, L., Castillo-Rodríguez, J.T., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 107–112. [Google Scholar]
- Peng, M.; Zhang, L.M. Analysis of human risks due to dam-break floods—Part 1: A new model based on Bayesian networks. Nat. Hazards 2012, 64, 903–933. [Google Scholar] [CrossRef]
- Sun, R.R.; Wang, X.L.; Zhou, Z.Y.; Ao, X.F.; Sun, X.P.; Song, M.R. Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing—Part I: Model development. Nat. Hazards 2014, 73, 1547–1568. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Wang, X.L.; Sun, R.R.; Ao, X.F.; Sun, X.P.; Song, M.R. Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing—Part II: Model application and results. Nat. Hazards 2014, 72, 675–700. [Google Scholar] [CrossRef]
- Cleary, P.W.; Prakash, M.; Mead, S.; Lemiale, V.; Robinson, G.K.; Ye, F.H.; Ouyang, S.D.; Tang, X.M. A scenario-based risk framework for determining consequences of different failure modes of earth dams. Nat. Hazards 2015, 75, 1489–1530. [Google Scholar] [CrossRef]
- Li, Z.K.; Li, W.; Ge, W. Weight analysis of influencing factors of dam break risk consequences. Nat. Hazards. Earth Sys. 2018, 18, 3355–3362. [Google Scholar] [CrossRef] [Green Version]
- Magilligan, F.J.; James, A.L.; Lecce, S.A.; Dietrich, J.T.; Kupfer, J.A. Geomorphic responses to extreme rainfall, catastrophic flooding, and dam failures across an urban to rural landscape. Ann. Am. Assoc. Geogr. 2019, 109, 709–725. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; Zhu, J.; Song, Y.; Hu, Y.; Ye, L. Spatiotemporal simulation and risk analysis of dam-break flooding based on cellular automata. Int. J. Geogr. Inf. Sci. 2013, 27, 2043–2059. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, Z.Y.; Sun, R.R.; Zhou, S.S. Fuzzy hierarchy comprehensive evaluation on dam-break risk analysis. Adv. Mater. Res. 2012, 383, 2151–2155. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Tan, Y.S. Risk assessment of earth dam overtopping and its application research. Nat. Hazards 2014, 74, 717–736. [Google Scholar] [CrossRef]
- Liu, X.S.; Xiao, H.U.; Wang, T.L. Rapid assessment of flood loss based on neural network ensemble. Trans. Nonferrous Met. Soc. 2014, 24, 2636–2641. [Google Scholar] [CrossRef]
- Huang, D.J.; Yu, Z.B.; Li, Y.P.; Han, D.W.; Zhao, L.L.; Chu, Q. Calculation method and application of loss of life caused by dam break in China. Nat. Hazards 2017, 85, 39–57. [Google Scholar] [CrossRef]
- Thom, R. Structural stability, catastrophe theory, and applied mathematics. SIAM Rev. 1977, 19, 189–201. [Google Scholar] [CrossRef]
- Sadeghfam, S.; Hassanzadeh, Y.; Nadiri, A.A.; Zarghami, M. Localization of groundwater vulnerability assessment using catastrophe theory. Water Resour. Manag. 2016, 30, 4585–4601. [Google Scholar] [CrossRef]
- Mogaji, K.A.; San Lim, H. Development of a GIS-based catastrophe theory model (modified DRASTIC model) for groundwater vulnerability assessment. Earth Sci. Inform. 2017, 10, 339–356. [Google Scholar] [CrossRef]
- Al-Abadi, A.M.; Shahid, S.; Al-Ali, A.K. A GIS-based integration of catastrophe theory and analytical hierarchy process for mapping flood susceptibility: A case study of Teeb area, Southern Iraq. Environ. Earth Sci. 2016, 75, 687. [Google Scholar] [CrossRef]
- Wang, Y.; Weidmann, U.A.; Wang, H. Using catastrophe theory to describe railway system safety and discuss system risk concept. Saf. Sci. 2017, 91, 269–285. [Google Scholar] [CrossRef]
- Liang, X.; Wu, J.H.; Zhong, H.B. Quantitative analysis of non-equilibrium phase transition process by the catastrophe theory. Phys. Fluids 2017, 29, 085108. [Google Scholar] [CrossRef]
- Thom, R. Structural Stability and Morphogenesis; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- The Ministry of Water Resources of the People’s Republic of China. SL 252-2017, Standard for Rank Classification and Flood Protection Criteria of Water and Hydropower Projects; China Planning Press: Beijing, China, 2017.
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China; General Administration of Quality Supervision. Inspection and Quarantine of the People’s Republic of China. GB 50201-2014, Standard for Flood Control; China Planning Press: Beijing, China, 2014.
- RESCDAM. The Use of Physical Models in Dam-Break Flood Analysis: Rescue Actions Based on Dam-Break Flood Analysis; Final Report of Helsinki University of Technology; Helsinki University of Technology: Helsinki, Finland, 2000. [Google Scholar]
Type | Sketch Map | Potential Function |
---|---|---|
Folding catastrophe | | F(x) = x3/3 + ax |
Cusp catastrophe | | F(x) = x4/4 + ax2/2 + bx |
Swallowtail catastrophe | | F(x) = x5/5 + ax3/3 + bx2/2 + cx |
Butterfly catastrophe | | F(x) = x6/6 + ax4/4 + bx3/3 + cx2/2 + dx |
Characteristics | Small Type II | Small Type I | Medium Type | Large Type II | Large Type I |
---|---|---|---|---|---|
CR/million m3 | [0.1,1) | [1,10) | [10,100) | [100,1000) | [1000,∞) |
PR/million person | [0,0.05) | [0.05,0.2) | [0.2,0.5) | [0.5,1.5) | [1.5,∞) |
ER/million person | [0,0.1) | [0.1,0.4) | [0.4,1.0) | [1.0,3.0) | [3.0,∞) |
Indices | Slight [0,0.2) | General [0.2,0.4) | Moderate [0.4,0.6) | Serious [0.6,0.8) | Extremely Serious [0.8,1] |
---|---|---|---|---|---|
CR/million m3 | [0.1,1) | [1,10) | [10,100) | [100,1000) | [1000,∞) |
PR/million person | [0,0.05) | [0.05,0.2) | [0.2,0.5) | [0.5,1.5) | [1.5,∞) |
UB | precise | medium | general | vague | unknown |
TW/h | [6,∞) | [3,6) | [1,3) | [0.25,1) | [0,0.25) |
VB | high-rise | reinforced concrete | brick-concrete | brick | adobe |
ER/million person | [0,0.1) | [0.1,0.4) | [0.4,1.0) | [1.0,3.0) | [3.0,∞) |
TI | services | services–industry | industry | industry–agriculture | agriculture |
Reservoir | Province | Year | CR/Million m3 | HD/m | PR/person | UB | TW/h | VB |
---|---|---|---|---|---|---|---|---|
Longtun | Liaoning | 1959 | 30.00 | 9.5 | 35,428 | vague | 0.00 | adobe |
Liujiatai | Hebei | 1960 | 40.54 | 35.9 | 64,941 | vague | 1.00 | adobe |
Hengjiang | Guangdong | 1970 | 78.79 | 48.4 | 70,000 | precise/medium | 0.25 | brick/adobe |
Dongkoumiao | Zhejiang | 1971 | 2.55 | 21.5 | 4700 | vague | 0.00 | brick/adobe |
Lijiazui | Gansu | 1973 | 1.45 | 25.0 | 2000 | vague | 0.00 | adobe |
Shijiagou | Gansu | 1973 | 0.856 | 28.6 | 300 | vague | 0.40 | adobe |
Shimantan | Henan | 1975 | 91.80 | 25.0 | 204,490 | medium/general | 0.00 | adobe |
Banqiao | Henan | 1975 | 492.00 | 24.5 | 402,500 | medium/general | 0.00 | adobe |
Gouhou | Qinghai | 1993 | 3.30 | 71.0 | 3060 | vague | 0.00 | brick/adobe |
Xiaomeigang | Hubei | 1995 | 0.14 | 10.9 | 1400 | vague | 0.00 | brick/adobe |
Shenjiakeng | Zhejiang | 2012 | 0.24 | 28.5 | 300 | medium | 0.00 | brick-concrete |
Sheyuegou | Xinjiang | 2018 | 6.78 | 37.7 | 5600 | precise/medium | 0.00 | brick-concrete |
Item | Longtun | Liujiatai | Hengjiang | Dongkoumiao | Lijiazui | Shijiagou |
Statistics/person | 707 | 943 | 941 | 186 | 580 | 81 |
Evaluation results | 0.868 | 0.893 | 0.894 | 0.840 | 0.841 | 0.829 |
Item | Shimantan | Banqiao | Gouhou | Xiaomeigang | Shenjiakeng | Sheyuegou |
Statistics/person | 2517 | 19701 | 320 | 34 | 11 | 28 |
Evaluation results | 0.908 | 0.921 | 0.870 | 0.774 | 0.771 | 0.821 |
Item | Jiangang 1 | Jiangang 2 | Jiangang 3 | Jiangang 4 | Jiangang 5 |
---|---|---|---|---|---|
UB | vague/unknown | vague/unknown | medium | medium | medium |
TW/h | 0 | 1 | 0 | 1 | 6 |
Evaluation results | 0.900 | 0.887 | 0.880 | 0.867 | 0.835 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, W.; Jiao, Y.; Sun, H.; Li, Z.; Zhang, H.; Zheng, Y.; Guo, X.; Zhang, Z.; van Gelder, P.H.A.J.M. A Method for Fast Evaluation of Potential Consequences of Dam Breach. Water 2019, 11, 2224. https://doi.org/10.3390/w11112224
Ge W, Jiao Y, Sun H, Li Z, Zhang H, Zheng Y, Guo X, Zhang Z, van Gelder PHAJM. A Method for Fast Evaluation of Potential Consequences of Dam Breach. Water. 2019; 11(11):2224. https://doi.org/10.3390/w11112224
Chicago/Turabian StyleGe, Wei, Yutie Jiao, Heqiang Sun, Zongkun Li, Hexiang Zhang, Yan Zheng, Xinyan Guo, Zhaosheng Zhang, and P.H.A.J.M. van Gelder. 2019. "A Method for Fast Evaluation of Potential Consequences of Dam Breach" Water 11, no. 11: 2224. https://doi.org/10.3390/w11112224
APA StyleGe, W., Jiao, Y., Sun, H., Li, Z., Zhang, H., Zheng, Y., Guo, X., Zhang, Z., & van Gelder, P. H. A. J. M. (2019). A Method for Fast Evaluation of Potential Consequences of Dam Breach. Water, 11(11), 2224. https://doi.org/10.3390/w11112224