Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB
Abstract
:1. Introduction
- Globally, we find studies based on international databases, mainly the Emergency Events Database (EM-DAT) of the Center for Research on the Epidemiology of Disaster (CRED) (https://www.emdat.be/emdat_db/), as well as the Darmouth flood observatory DB (http://www.dartmouth.edu/%7Efloods/Archives/index.html), Desinventar (https://www.desinventar.org/) or Reliefweb (https://reliefweb.int/) [4,5,6]. Those databases are well-known and frequently used by researchers to get a global overview of mortality as they provide general data by event and, when available, the number of fatalities [7,8,9]. The approach is by event and at the scale of countries [10]. However, the location of disaster-related fatalities is not accurate enough to bring outcomes for decision makers at the regional and local level [11]. International databases on disaster impacts need reanalysis at the local level [12,13].
- Faced with the shortcomings of these international databases, many initiatives came up in Europe and/or in the Mediterranean Basin to build a database on disaster impacts in the frame of research projects [3,14,15,16] (http://riskam.ul.pt/disaster/) or by national weather services [17,18]. The main concern of these efforts is the verification, the geographical location, and the collection of accurate information for each fatality.
2. Materials and Methods
2.1. The Collection of Fatality Data
2.2. Structure of MEFF v2.0 DB
2.3. The Construction of the Fatality Rate
- F = fatality rate
- Nf = total number of fatalities over the study period
- Pop = population in 2000
- Ny = number of years of the study period
3. Results
3.1. General Features
3.2. Fatality Rate at the National and Regional Level
3.3. Fatality Rate at the Local Level (Grid)
3.3.1. Large Size Grid
3.3.2. Small Size Grid
3.4. Fatality Rate at the Catchment Level
3.5. Spatial Discrepancies in Seasonality
3.6. Time Evolution of Mortality
3.7. Relationship with Extreme Rainfall
4. Discussion
4.1. Data Uncertainty and Further Improvements of the MEFF DB
4.2. Broader Context and Comparisons
4.3. Enhancing the Calculation of F
4.4. Enhancing the Explanation of Flood Mortality: Relationship with Other Variables
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations International Strategy of Disaster Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030; (UNISDR), A/CONF.224/CRP.1, United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Protection, C. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks Text with EEA relevance. Off. J. L 2007, 288, 27–34. [Google Scholar]
- Vinet, F.; Boissier, L.; Saint-Martin, C. Flashflood-related mortality in southern France: First results from a new database. In Proceedings of the 3rd European Conference on Flood Risk Management, Québec, QC, Canada, 17–21 October 2016. [Google Scholar]
- Hu, P.; Zhang, Q.; Shi, P.; Chen, B.; Fang, J. Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Sci. Total Envion. 2018, 643, 171–182. [Google Scholar] [CrossRef]
- Adhikari, P.; Hong, Y.; Douglas, K.R.; Kirschbaum, D.B.; Gourley, J.; Adler, R. A digitized global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards 2010, 55, 405. [Google Scholar] [CrossRef]
- Centre for Research on the Epidemiology of Disasters (CRED). CRED Crunch 54-Disasters 2018: Year in Review; CRED: Louvain, Belgium, 2019. [Google Scholar]
- Fang, J.; Li, M.; Shi, P. Mapping Flood Risk of the World. In World Atlas of Natural Disaster Risk; Shi, P., Kasperson, R., Eds.; Springer: Berlin, Germany, 2015; pp. 69–102. [Google Scholar]
- Shi, P.; Kasperson, R. World Atlas of Natural Disaster Risk; Springer: Berlin, Germany, 2015; p. 368. [Google Scholar]
- Wallemacq, P.; Below, R. The Human Cost of Natural Disasters: A Global Perspective; Centre for Research on the Epidemiology of Disaster: Brussels, Belgium, 2015. [Google Scholar]
- Jonkman, S.N. Global Perspectives on Loss of Human Life Caused by Floods. Nat. Hazards 2005, 34, 151. [Google Scholar] [CrossRef]
- Doocy, S.; Daniels, A.; Murray, S.; Kirsch, T.D. The Human Impact of Floods: A Historical Review of Events 1980–2009 and Systematic Literature Review. PLoS Curr. Disasters 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Zagheni, E.; Muttarak, R.; Striessnig, E. Differential mortality patterns from hydro-meteorological disasters: Evidence from cause-of-death data by age and sex. Vianna Yearb. Poplation Res. 2015, 13, 47–70. [Google Scholar]
- Haynes, K.; Coates, L.; Van Den Honert, R.; Gissing, A.; Bird, D.; Dimer de Oliveira, F.; D’Arcy, R.; Smith, C.; Radford, D. Exploring the circumstances surrounding flood fatalities in Australia–1900–2015 and the implications for policy and practice. Envion. Sci. Policy 2017, 76, 165–176. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Pereira, S.; Tavares, A.O.; Bateira, C.; Trigo, R.M.; Queresma, I.; Santos, P.P.; Santos, M.; Verde, J. DISASTER: A GIS database on hydro-geomorphologic disasters in Portugal. Nat. Hazards 2014, 72, 503. [Google Scholar] [CrossRef]
- Boissier, L. La Mortalité Liée Aux Crues Torrentielles Dans Le Sud De La France: Une Approche De La Vulnérabilité Humaine Face A L’inondation. Ph.D. Thesis, Université Paul Valéry Montpellier 3, Montpellier, France, 2013. [Google Scholar]
- Guzzeti, F. Landslide fatalities and the evaluation of the landslide risk in Italy. Eng. Geol. 2000, 58, 89–107. [Google Scholar] [CrossRef]
- Diakakis, M.; Deligiannakis, G. Changes in flood mortality during the last 50 years in Greece. Bull. Geol. Soc. Greece 2013, 47, 1397–1406. [Google Scholar] [CrossRef]
- Badoux, A.; Andres, N.; Techel, F.; Hegg, C. Natural hazard fatalities in Switzerland from 1946 to 2015. Nat. Hazards Earth Syst. Sci. 2016, 16, 2747–2768. [Google Scholar] [CrossRef] [Green Version]
- DeKay, M.L.; McClelland, G.H. Predicting Loss of Life in Cases of Dam Failure and Flash Flood. Risk Anal. 2006, 13, 193–205. [Google Scholar] [CrossRef]
- Lumbroso, D.; Davison, M. Use of an agent-based model and Monte Carlo analysis to estimate the effectiveness of emergency management interventions to reduce loss of life during extreme floods. J. Flood Risk Manag. 2018, 11, S419–S433. [Google Scholar] [CrossRef]
- Jonkman, S.N. Loss of life models for sea and river floods. Flood Def. 2002, 1, 196–206. [Google Scholar]
- Jonkman, S.N. Loss of Life Estimation in Flood Risk Assessment; Therory and Applications; Sieca Repro: Delft, The Netherlands, 2007; p. 360. [Google Scholar]
- Jonkman, S.N.; Maaskant, B.; Boyd, E.; Lloyd Levitan, M. Loss of life caused by the flooding of New Orleans after hurricane Katrina: Analysis of the relationship between flood characteristics and mortality. Risk Anal. 2009, 29, 5. [Google Scholar] [CrossRef] [PubMed]
- Lumbroso, D.M.; Sakamoto, D.; Johnstone, W.; Tagg, A.; Lence, B.L. The development of a life safety model to estimate the risk posed to people by dam failure and floods. Dams and Reservoirs. Official journal of the British Dam Society. 2011. Available online: https://britishdams.org/about/bds-journal/ (accessed on 21 October 2019).
- Llasat, M.C.; Llasat-Botija, M.; Petrucci, O.; Pasqua, A.A.; Rossello, J.; Vinet, F.; Boissier, L. Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project. Nat. Hazards Earth Syst. Sci. 2013, 13, 1337–1350. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.J. Floods; Routledge: London, UK, 2000; p. 748. [Google Scholar]
- Nussbaum, R. Observation and measurements of losses due to flooding. In Floods 1 the Risk Knowledge; Vinet, F., Ed.; ISTE Press: London, UK; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 2; pp. 21–32. [Google Scholar]
- Petrucci, O.; Papagiannaki, K.; Aceto, L.; Boissier, L.; Kotroni, V.; Grimalt, M.; Llasat, M.C.; Llasat-Botija, M.; Rosselo, J.; Pasqua, A.; et al. MEFF: The database of Mediterranean Flood Fatalities (1980 to 2015). J. Flood Risk Manag. 2018, 12, e12461. [Google Scholar] [CrossRef]
- Petrucci, O.; Aceto, L.; Bianchi, C.; Bigot, V.; Brazdil, R.; Pereira, S.; Kahraman, A.; Kikiç, O.; Kotroni, V.; Llasat, M.C.; et al. Flood Fatalities in Europe, 1980–2018: Variability, Features, and Lessons to Learn. Water 2019, 11, 1682. [Google Scholar] [CrossRef]
- Llasat, M.C.; Marcos, R.; Turco, M.; Gilabert, J.; Llasat-Botija, M. Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. J. Hydrol. 2016, 541, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Diakakis, M.; Katsetsiadou, K.; Pallikarakis, A. Flood fatalities in Athens, Greece: 1880–2010. Bull. Geol. Soc. Greece 2016, 47, 1407–1416. [Google Scholar] [CrossRef]
- Antoine, J.M.; Desailly, B.; Gazelle, F. Les crues meurtrières, du Roussillon aux Cévennes. Ann. De Géographie 2001, 622, 597–623. [Google Scholar] [CrossRef]
- Ruin, I. Conduite à contre-courant. Les pratiques de mobilités dans le Gard: Facteurs de vulnérabilité aux crues rapides. Ph.D. Thesis, De Doctorat Université De Grenoble I, Université Joseph Fourier, Saint-Martin-d'Hères, France, 2007; p. 364. (In French). [Google Scholar]
- Jonkman, S.N.; Kelman, I. An analysis of the causes and circumstances of flood disaster deaths. Disasters 2005, 29, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Vinet, F. Floods impacts on loss of life and human health. In Chapitre 3 Floods 1: Risk Knowledge; Vinet, F., Ed.; ISTE edition: London, UK, 2017; pp. 33–50. [Google Scholar]
- Tilev-Tanriover, S.; Kahraman, A.; Kadioglu, M.; Schultz, D.M. Lightning fatalities and injuries in Turkey. Nat. Hazards Earth Syst. Sci. 2015, 15, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Ashley, W.S.; Gilson, C.W. A reassessment of U.S. lightning mortality. Bull. Am. Met. Soc. 2009, 90, 1501–1518. [Google Scholar] [CrossRef]
- Guzzetti, F.; Stark, C.P.; Salvati, P. Evaluation of flood and landslide risk to the population of Italy. Environ. Manag. 2005, 36, 15–36. [Google Scholar] [CrossRef]
- Forzieri, G.; Cascatti, A.; Silva, F.B.; Feyen, L. Increasing risk over time of weather-related hazards to the European population: A data-driven prognostic study. Lancet 2017, 1, e200–e208. [Google Scholar] [CrossRef]
- Pereira, S.S.; Diakakis, M.; Deligiannakis, G.; Zêzere, J.L. Comparing flood mortality in Portugal and Greece (Western and Eastern Mediterranean). Int. J. Disaster Risk Reduct. 2017, 22, 147–157. [Google Scholar] [CrossRef]
- Gao, J. Downscaling Global Spatial Population Projections from 1/8-death to 1-km Grid Cells. Ncar Tech. Nate 2017. [Google Scholar] [CrossRef]
- Badey, S. Atelier Archéomatique 17.1: l’analyse par maille: Un outil d’aide à l’analyse et de représentation cartographique quantitative. In École thématique. Les Ateliers Archéomatiques; MSH Val de Loire: Tours, France, 2017; p. 29. [Google Scholar]
- Biricik, A.S. Flood Disasters in Senirkent (13 July 1995–18,19 July 1996). Marmara Geogr. J. 1997, 1, 9–30. [Google Scholar]
- Conseil général de l’environnement et du développement durable (GCEDD). Retour d’expérience des inondations dans l’Aude du 14 au 17 octobre 2018. Rapport CGEDD n°012561-01, IGA n° 18105-RP, May 2019. p. 175. Available online: http://www.cgedd.developpement-durable.gouv.fr/IMG/pdf/012561-01_rapport_cle22f9dd.pdf (accessed on 21 October 2019). (In French).
- Diakakis, M. Have flood mortality qualitative characteristics changed during the last decades? The case study of Greece. Environ. Hazards 2016, 15, 148–159. [Google Scholar] [CrossRef]
- Pottier, N.; Penning-Rowsell, E.; Tunstall, S.; Hubert, G. Land use and flood protection: Contrasting approaches and outcomes in France and in England and Wales. Appl. Geogr. 2005, 25, 1–27. [Google Scholar] [CrossRef]
- Llasat, M.C.; Llasat-Botija, M.; Prat, M.A.; Porcù, F.; Price, C.; Mugnia, A.; Lagouvardos, K.; Kotroni, V.; Katsanos, D.; Michaelides, S.; et al. High impact floods and flash floods in Mediterranean countries: The FLASH preliminary database. Adv. Geosci. 2010, 23, 47–55. [Google Scholar] [CrossRef]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Garambois, P.A.; Larnier, K.; Roux, H.; Labat, D.; Dartus, D. Analysis of flash flood triggering rainfall for a process-oriented hydrological model. Atmos. Res. 2014, 137, 14–24. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K. Lighting in the Mediterranean and its relation with sea-surface temperature. Environ. Res. Lett. 2016, 11, 034006. [Google Scholar] [CrossRef]
- Jansa, A.; Alpertn, P.; Arbogast, P.; Buzzi, A.; Ivancan-Picek, B.; Kotroni, V.; Llasat, M.C.; Ramis, C.; Richard, E.; Romero, R.; et al. MEDEX: A general overview. Nat. Hards Earth Syst. Sci. 2014, 14, 1965–1984. [Google Scholar] [CrossRef]
- Bechtold, E.B. The 12–13 November 1999 flash flood in southern France. Atmos. Res. 2001, 56, 171–189. [Google Scholar] [CrossRef]
- Papagiannaki, K.; Lagouvardos, K.; Kotroni, V. A database of high-impact weather events in Greece: A descriptive impact analysis for the period 2001–2011. Nat. Hazards Earth Syst. Sci. 2013, 13, 727–736. [Google Scholar] [CrossRef]
- Galanaki, V.; Kotroni, V.; Lagouvardos, K.; Argiriou, A. A ten-year analysis of lightning activity over the Eastern Mediterranean. Atmos. Res. 2015, 166, 213–222. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K.; Lalas, D. The effect of the island of Crete on the Etesian winds over the Aegean Sea. Q. J. R. Meteorol. Soc. 2001, 127, 1917–1938. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Dobricic, S.; Nickovic, S.; Kallos, G. On the storm of 21–22 October 1994 over Greece: Observations and model results. J. Geophys. Res. 1996, 101, 26217–26226. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Defer, E. The 21–22 January 2004 explosive cyclogenesis over the Aegean Sea: Observations and model analysis. Q. J. R. Meteorol. Soc. 2007, 133, 1519–1531. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K.; Kallos, G.; Ziakopoulos, D. Severe flooding over central and southern Greece associated with pre-cold frontal orographic lifting. Q. J. R. Meteorol. Soc. 1999, 125, 967–991. [Google Scholar] [CrossRef]
- Kadioglu, M. Regional variability of seasonal precipitation over Turkey. Int. J. Climatol. 2000, 20, 1743–1760. [Google Scholar] [CrossRef]
- Kahraman, A.; Markowski, P. Tornado climatology of Turkey. Mon. Weather Rev. 2014, 142, 2345–2352. [Google Scholar] [CrossRef]
- Kahraman, A.; Tilev-Tanriover, S.; Kadioglu, M.; Schultz, D.; Markowski, P. Severe hail climatology of Turkey. Mon. Wea. Rev. 2016, 144, 337–346. [Google Scholar] [CrossRef]
- Papagiannaki, K.; Lagouvardos, K.; Kotroni, V.; Bezes, A. Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area. Nat. Hazards Earth Syst. Sci. 2015, 15, 1859–1971. [Google Scholar] [CrossRef]
- Ledoux, B. The French flood risk management model: Local territories facing State omnipresency. In Floods 2, Risk Management; Vinet, F., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; Chapter 2; pp. 15–30. [Google Scholar]
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 2008, 113, D20119. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modelling of Extreme Values. In Springer Series in Statistics; Springer: London, UK, 2001. [Google Scholar]
- Hofstra, N.; Haylock, M.; New, M.; Jones, P.D. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J. Geophys. Res. 2009, 114, D21101. [Google Scholar] [CrossRef]
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaskovicova, L.; Bloschl, G.; Borga, M.; Dumitrascu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Gaume, E.; Borga, M.; Llasat, M.; Maouche, S.; Lang, M.; Diakakis, M. Mediterranean extreme floods. In The Mediterranenean Region under Climate Change; Universitat de Barcelona: Barcelona, Spain, 2016; pp. 133–144. [Google Scholar]
- Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. Trends in flood losses in Europe over the past 150 years. Nat. Commun. 2018, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Zêzere, J.L.; Quaresma, I.; Santos, P.P.; Santos, M. Mortality patterns of hydro-geomorphologic Disasters. Risk Analysis 2015, 36, 1188–1210. [Google Scholar] [CrossRef] [PubMed]
- Boudou, M. Approche Multidisciplinaire Pour La Caractérisation D’inondations Remarquables: Enseignements Tirés de Neuf Evénements en France (1910–2010); Université Paul Valéry: Montpellier, France, 2015. [Google Scholar]
- Trigo, M.T.; Ramos, C.; Pereira, S.S.; Ramos, A.M.; Zêzere, J.L.; Liberato, M.L.R. The deadliest storm of the 20th century striking Portugal: Flood impacts and atmospheric circulation. J. Hydrol. 2016, 541, 597–610. [Google Scholar] [CrossRef]
- Llasat, M.C.; Barriendos, M.; Barrera, A.; Rigo, T. Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. J. Hydrol. 2005, 313, 32–47. [Google Scholar] [CrossRef]
- Martín-Vide, J.P.; Llasat, M.C. The 1962 flash flood in the Rubí stream river (Barcelona, Spain). J. Hydrol. 2018, 566, 441–454. [Google Scholar] [CrossRef]
- Tarolli, P.; Borga, M.; Delrieu, G. Analysis of flash flood regimes in the North-Western and South-Eastern Mediterranean regions. Nat. Hazards Earth Syst. Sci. 2012, 12, 1255–1265. [Google Scholar] [CrossRef] [Green Version]
- Raymond, F.; Ullmann, A.; Camberlin, P. Précipitations intenses sur le Bassin Méditerranéen: Quelles tendances entre 1950 to 2013? Cybergeo Eur. J. Geogr. 2016, 32. [Google Scholar] [CrossRef]
- Llasat, M.C. Chapter 18: Storms and floods. In The Physical Geography of the Mediterranean Basin; Oxford University: Oxford, UK, 2009; pp. 504–531. ISBN 978-0-19-926803-0. [Google Scholar]
- Ziv, B.; Dayan, U.; Kushnir, Y.; Roth, C.; Enzel, Y. Regional and global atmospheric patterns governing rainfall in the southern Levant. Int. J. Climatol. 2005, 26, 55–73. [Google Scholar] [CrossRef]
- Lopez-Moreno, J.I.; Vicente-Serrano, S.M.; Gimeno, L.; Nieto, R. Stability of the seasonal distribution of precipitation in the Mediterranean region: Observations since 1950 and projections for the 21st century. Geophys. Res. Lett. 2009, 36, L10703. [Google Scholar] [CrossRef]
- Fleta, J.; Godé, L.; Gomá, J.L.; Gracia, A.; Gracia, J.; Martínez, J.; Marturià, J.; Palma, J.J.; Pardo, M.; De Paz, A.I.; et al. Flooding areas and risk analysis of Catalonia (inuncat plan). In Proceedings of the 5th European Congress on Regional Geoscience Cartography and Information Systems, Barcelona, Spain, 13–16 June 2006; pp. 458–500. [Google Scholar]
- Kahn, M.E. The death toll from natural disasters: The role of income, geography, and institutions. Rev. Econ. Stat. 2005, 87, 271–284. [Google Scholar] [CrossRef]
- Donner, W.; Rodríguez, H. Population composition, migration and inequality: The influence of demographic changes on disaster risk and vulnerability. Soc. Forces 2008, 87, 1089–1114. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Fehri, N.; Samaali, H.; Abaza, K.h. Les inondations catastrophiques du 13 octobre 2007 dans le secteur de Sabbelet Ben Ammar entre aléa climatique et responsabilité anthropique (Grand Tunis–Tunisie). Rev. Tunis. De Géographie 2009, 40, 31–55. [Google Scholar]
Region (Country) | Flood Fatalities | Area (km2) | Population (2000) | Population Density in 2000 (inh/km2) | Number of NUTS 3 |
---|---|---|---|---|---|
Catalonia (Spain) | 100 | 32,113 | 6,293,440 | 196 | 4 |
Balearic Islands (Spain) | 20 | 5030 | 823,401 | 164 | 1 |
Southern France | 275 | 53,874 | 7,233,580 | 134 | 10 |
Calabria (Italy) | 40 | 15,088 | 2,028,630 | 134 | 5 |
Greece | 132 | 131,759 | 10,780,000 | 82 | 52 |
Turkey | 1242 | 780,375 | 66,890,000 | 86 | 81 |
Study area | 1809 | 1,018,239 | 94,048,051 | 92 | 153 |
Region (Country) | Number of Flood Fatalities | Population (2000) | Fatality Rate, F |
---|---|---|---|
Catalonia (Spain) | 100 | 6,293,440 | 0.407 |
Balearic Islands (Spain) | 20 | 823,401 | 0.623 |
Southern France | 275 | 7,233,580 | 0.975 |
Calabria (Italy) | 40 | 2,028,630 | 0.506 |
Greece | 132 | 10,780,000 | 0.314 |
Turkey | 1242 | 66,890,000 | 0.476 |
Study area | 1809 | 94,048,051 | 0.49 |
Region (Country) | Deadliest Month |
---|---|
Southern France | September |
Calabria (Italy) | September |
Balearic Islands (Spain) | October |
Catalonia (Spain) | November |
Greece | November |
Western Turkey | November |
Eastern Turkey | July |
Region (Country) | Number of Fatal Events (1980–2018) | Density of Fatal Event (Number of Fatal Event/1000 km2 in 39 Years) | Average Number of Deaths Per Event | Population Density in 2000 (inh/km2) |
---|---|---|---|---|
Catalonia (Spain) | 45 | 1.4 | 2.2 | 196 |
Balearic Islands (Spain) | 5 | 1 | 4 | 164 |
Southern France | 73 | 1.4 | 3.7 | 134 |
Calabria (Italy) | 12 | 0.8 | 3.3 | 134 |
Greece | 56 | 0.4 | 2.3 | 82 |
Turkey | 264 | 0.3 | 4.5 | 86 |
Region (Country) | Number of Located Fatalities | % of Located Fatalities |
---|---|---|
Catalonia (Spain) | 100 | 100.0 |
Balearic Islands (Spain) | 20 | 100.0 |
Southern France | 274 | 99.6 |
Calabria (Italy) | 40 | 100.0 |
Greece | 132 | 100.0 |
Turkey | 1197 | 96.4 |
Region (Country) | Total Number of Events (1980–2018) | Total Number of Fatalities (1980–2018) | Death Toll of the Deadliest Event | Date of the Deadliest Event | |
---|---|---|---|---|---|
Number of Fatalities | % of Fatalities by Country/Region | ||||
Catalonia (Spain) | 45 | 100 | 14 | 14 | 6 November 1982 |
Balearic Islands (Spain) | 5 | 20 | 13 | 65 | 9 October 2018 |
Southern France | 73 | 275 | 49 | 18 | 22 September 1992 |
Calabria (Italy) | 12 | 40 | 13 | 33 | 10 September 2000 |
Greece | 56 | 132 | 24 | 18 | 15 November 2017 |
Turkey | 264 | 1242 | 75 | 6 | 13 July 1995 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinet, F.; Bigot, V.; Petrucci, O.; Papagiannaki, K.; Llasat, M.C.; Kotroni, V.; Boissier, L.; Aceto, L.; Grimalt, M.; Llasat-Botija, M.; et al. Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB. Water 2019, 11, 2196. https://doi.org/10.3390/w11102196
Vinet F, Bigot V, Petrucci O, Papagiannaki K, Llasat MC, Kotroni V, Boissier L, Aceto L, Grimalt M, Llasat-Botija M, et al. Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB. Water. 2019; 11(10):2196. https://doi.org/10.3390/w11102196
Chicago/Turabian StyleVinet, Freddy, Victoria Bigot, Olga Petrucci, Katerina Papagiannaki, Maria Carmen Llasat, Vassiliki Kotroni, Laurent Boissier, Luigi Aceto, Miquel Grimalt, Montserrat Llasat-Botija, and et al. 2019. "Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB" Water 11, no. 10: 2196. https://doi.org/10.3390/w11102196
APA StyleVinet, F., Bigot, V., Petrucci, O., Papagiannaki, K., Llasat, M. C., Kotroni, V., Boissier, L., Aceto, L., Grimalt, M., Llasat-Botija, M., Pasqua, A. A., Rossello, J., Kılıç, Ö., Kahraman, A., & Tramblay, Y. (2019). Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB. Water, 11(10), 2196. https://doi.org/10.3390/w11102196