# Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Model

#### 2.1. Finite Volume Godunov-Type SWE Model

**q**,

**f**,

**g**, and

**s**represent the vectors containing the flow variables, fluxes in the x- and y-directions, and source terms. Neglecting the Coriolis effect and the surface stresses, which are not significant for flood modeling, the vector terms may be given by [30]

_{x}and q

_{y}are the corresponding unit-width discharges in the x- and y-directions; z

_{b}is defined as the bed elevation above the datum; g is the gravity acceleration; r and f represent the rainfall intensity and infiltration rate, respectively; −∂z

_{b}/∂x and −∂z

_{b}/∂y define the bed slopes in the two Cartesian directions; and c

_{f = gn}

^{2}

_{/h}

^{1/3}is the bed roughness coefficient, with n being the Manning coefficient.

#### 2.2. Gate Model

_{u}are the gate opening and upstream flow depth, respectively; and ε = h

_{c}/e is the contraction coefficient, in which h

_{c}is the flow depth at vena contraction.

_{t}is the downstream tailwater depth.

#### 2.3. Model Coupling

**q**at cell i

#### 2.3.1. Flux Term Coupling Approach

- (1)
- Under the free-surface flow condition$$\mathit{F}{\left({\mathit{q}}_{i}^{n}\right)}_{k}=\left[\begin{array}{c}{q}_{sx}^{u}-{q}_{sx}^{t}\\ {u}_{u}{q}_{s}x+g\left({\eta}_{u}^{2}-2{\eta}_{u}{z}_{bu}\right)-{u}_{c}{q}_{sx}-g\left({\eta}_{c}^{2}-2{\eta}_{c}{z}_{bc}\right)\\ {u}_{u}{q}_{sy}-{u}_{c}{q}_{sy}\end{array}\right]$$
- (2)
- Under the submerged flow condition$$\mathit{F}{\left({\mathit{q}}_{i}^{n}\right)}_{k}=\left[\begin{array}{c}{q}_{sx}^{u}-{q}_{sx}^{t}\\ {u}_{u}{q}_{s}x+g\left({\eta}_{u}^{2}-2{\eta}_{u}{z}_{bu}\right)-{u}_{c}{q}_{sx}-g\left({\eta}_{H}^{2}-2{\eta}_{H}{z}_{bH}\right)\\ {u}_{u}{q}_{sy}-{u}_{H}{q}_{sy}\end{array}\right]$$

_{sx}and q

_{sy}are the unit-width discharges in the x- and y-directions calculated from Equations (3) and (4), respectively; u

_{u}, u

_{c}, and u

_{H}are the flow velocities obtained by dividing the discharges defined in Equations (3) and (4) by the corresponding flow depths.

#### 2.3.2. Source Term Coupling Approach

_{x}and n

_{y}define the x- and y-direction outward unit vector normal to the edge/boundary under consideration. This is then integrated into the source terms of 2D SWE model as

## 3. Model Validation

^{2}. The root-mean-squared error (RMSE) defined against water level is calculated to indicate the accuracy of the simulation results, which is defined as

_{i}and O

_{i}represent the simulated and analytical/observed data, respectively; and N is the number of observations available for comparison.

#### 3.1. Analytical Tests

_{u}, downstream water depth h

_{d}, and gate opening height e). In all of the simulations, the water was initially at rest, and the gate was rapidly opened to the specified height. The contraction coefficient was set to ε = 0.611.

#### 3.2. Flume Experiments

_{u}increases, the discharge simulated by the numerical model is slightly underestimated. This may be because of the existence of the piers of sluice gates, which create localized three-dimensional contraction effects that cannot be captured by the SWE model. Generally, the numerical simulations capture reasonably well the stage–discharge relationships in different flow conditions, which confirms the capability of the current model in predicting the highly transient waves through sluice gates.

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Dubash, N.K. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Yin, J.; Yu, D.; Wilby, R. Modelling the impact of land subsidence on urban pluvial flooding: A case study of downtown Shanghai, China. Sci. Total Environ.
**2016**, 544, 744–753. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Takagi, H.; Esteban, M.; Mikami, T.; Fujii, D. Projection of coastal floods in 2050 Jakarta. Urban Clim.
**2016**, 17, 135–145. [Google Scholar] [CrossRef] - Ward, P.J.; Jongman, B.; Weiland, F.S.; Bouwman, A.; Van Beek, R.; Bierkens, M.F.P.; Ligtvoet, W.; Winsemius, H.C. Assessing flood risk at the global scale: Model setup, results, and sensitivity. Environ. Res. Lett.
**2013**, 8, 044019. [Google Scholar] [CrossRef] - Yang, T.H.; Yang, S.C.; Ho, J.Y.; Lin, G.F.; Hwang, G.D.; Lee, C.S. Flash flood warnings using the ensemble precipitation forecasting technique: A case study on forecasting floods in taiwan caused by typhoons. J. Hydrol.
**2015**, 520, 367–378. [Google Scholar] [CrossRef] - Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw.
**2017**, 90, 201–216. [Google Scholar] [CrossRef] - Chan, F.K.S.; Mitchell, G.; Adekola, O.; McDonald, A. Flood risk in Asia’s urban mega-deltas drivers, impacts and response. Environ. Urban. Asia
**2012**, 3, 41–61. [Google Scholar] [CrossRef] - Okoye, C.B.; Ojeh, V.N. Mapping of flood prone areas in Surulere, Lagos, Nigeria: A GIS approach. J. Geogr. Inf. Syst.
**2015**, 7, 158–176. [Google Scholar] [CrossRef] - Breckpot, M.; Agudelo, O.M.; Meert, P.; Willems, P.; De Moor, B. Flood control of the Demer by using Model Predictive Control. Control Eng. Pract.
**2013**, 21, 1776–1787. [Google Scholar] [CrossRef] - Sims, J. The No-Nonsense Guide to Flood Safety; Lulu Books & Beyond the Spectrum Books; Lulu Press: Morrisvill, NC, USA, 2013. [Google Scholar]
- Tingsanchali, T. Urban flood disaster management. Procedia Eng.
**2012**, 32, 25–37. [Google Scholar] [CrossRef] [Green Version] - Ogie, R.; Holderness, T.; Dunbar, M.; Turpin, E. Spatio-topological network analysis of hydrological infrastructure as a decision support tool for flood mitigation in coastal mega-cities. Environ. Plan. B Urban Anal. City Sci.
**2017**, 44, 718–739. [Google Scholar] [CrossRef] - Ogie, R.; Holderness, T.; Dunn, S.; Turpin, E. Assessing the vulnerability of hydrological infrastructure to flood damage in coastal cities of developing nations. Comput. Environ. Urban Syst.
**2018**, 68, 97–109. [Google Scholar] [CrossRef] [Green Version] - Dewan, A. Floods in a Megacity: Geospatial Techniques in Assessing Hazards, Risk and Vulnerability; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Ding, Y.; Wang, S.S. Optimal control of flood diversion in watershed using nonlinear optimization. Adv. Water Resour.
**2012**, 44, 30–48. [Google Scholar] [CrossRef] - Munoz, D.H.; Constantinescu, G. A Fully 3-D Numerical Model to Predict Flood Wave Propagation and Assess Efficiency of Flood Protection Measures. Adv. Water Resour.
**2018**, 122, 148–165. [Google Scholar] [CrossRef] - Yin, J.; Ye, M.; Yin, Z.; Xu, S. A review of advances in urban flood risk analysis over China. Stoch. Environ. Res. Risk Assess.
**2015**, 29, 1063–1070. [Google Scholar] [CrossRef] - Sanders, B.F. Hydrodynamic modeling of urban flood flows and disaster risk reduction. In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Morgan, A.; Olivier, D.; Nathalie, B.; Claire-Marie, D.; Philippe, G. High-resolution Modeling With Bi-dimensional Shallow Water Equations Based Codes—High-Resolution Topographic Data Use for Flood Hazard Assessment Over Urban and Industrial Environments. Procedia Eng.
**2016**, 154, 853–860. [Google Scholar] [CrossRef] - Vacondio, R.; Aureli, F.; Ferrari, A.; Mignosa, P.; Dal Palù, A. Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme. Nat. Hazards
**2016**, 80, 103–125. [Google Scholar] [CrossRef] - Liang, Q.; Smith, L.S. A high-performance integrated hydrodynamic modelling system for urban flood simulations. J. Hydroinform.
**2015**, 17, 518–533. [Google Scholar] [CrossRef] - Song, L.; Zhou, J.; Guo, J.; Zou, Q.; Liu, Y. A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain. Adv. Water Resour.
**2011**, 34, 915–932. [Google Scholar] [CrossRef] - Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol.
**2000**, 236, 54–77. [Google Scholar] [CrossRef] - Xing, Y.; Liang, Q.; Wang, G.; Ming, X.; Xia, X. City-scale hydrodynamic modeling of urban flash floods: The issues of scale and resolution. Nat. Hazards
**2019**, 96, 473–496. [Google Scholar] [CrossRef] - Morales-Hernández, M.; Murillo, J.; García-Navarro, P. The formulation of internal boundary conditions in unsteady 2-D shallow water flows: Application to flood regulation. Water Resour. Res.
**2013**, 49, 471–487. [Google Scholar] [CrossRef] - Angeloudis, A.; Falconer, R.; Bray, S. Representation and operation of tidal energy impoundments in a coastal hydrodynamic model. Renew. Energy
**2016**, 99, 1103–1115. [Google Scholar] [CrossRef] [Green Version] - Malekmohammadi, B.; Zahraie, B.; Kerachian, R. A real-time operation optimization model for flood management in river-reservoir systems. Nat. Hazards
**2010**, 53, 459–482. [Google Scholar] [CrossRef] - Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep.
**2018**, 8, 12623. [Google Scholar] [CrossRef] - Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; Wiley: Chichester, UK, 2001. [Google Scholar]
- Liang, Q.; Borthwick, A.G. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography. Comput. Fluids
**2009**, 38, 221–234. [Google Scholar] [CrossRef] - Toro, E.F.; Garcia-Navarro, P. Godunov-type methods for free-surface shallow flows: A review. J. Hydraul. Res.
**2007**, 45, 736–751. [Google Scholar] [CrossRef] - Martins, R.; Kesserwani, G.; Rubinato, M.; Lee, S.; Leandro, J.; Djordjević, S.; Shucksmith, J.D. Validation of 2d shock capturing flood models around a surcharging manhole. Urban Water J.
**2017**, 14, 1–8. [Google Scholar] [CrossRef] - Liang, Q. Flood simulation using a well-balanced shallow flow model. Hydraul. Eng.
**2010**, 136, 669–675. [Google Scholar] [CrossRef] - Amouzgar, R.; Liang, Q.; Clarke, P.; Yasuda, T.; Mase, H. Computationally Efficient Tsunami Modeling on Graphics Processing Units (GPUs). Int. J. Offshore Polar Eng.
**2016**, 26, 154–160. [Google Scholar] [CrossRef] [Green Version] - Cozzolino, L.; Cimorelli, L.; Covelli, C.; Pianese, D.; Della Morte, R. The analytic solution of the Shallow-Water Equations with partially open sluice-gates: The dam-break problem. Adv. Water Resour.
**2015**, 80, 90–102. [Google Scholar] [CrossRef] - Bao, Q.; Wang, Y.; Tu, X. Experimental Study on Hydraulic Model of Zhujiazhan Sluice; Water Conservancy Science and Technology in Zhejiang Province: Hangzhou, China, 2013; Volume 41. [Google Scholar]

**Figure 4.**The numerical and analytical solutions (at t = 5 s) for the four test cases defined in Table 1: (

**a**) Test 1. (

**b**) Test 2. (

**c**) Test 3. (

**d**) Test 4.

**Figure 7.**Comparison between numerical results and experimental measurements at t = 900 s: (

**a**) Orifice free flow; (

**b**) Orifice submerged flow.

**Table 1.**Initial conditions of the four numerical tests [33].

Test | h_{u} (m) | h_{d} (m) | e (m) |
---|---|---|---|

1 | 1 | 0.002 | 0.2 |

2 | 1 | 0.2 | 0.2 |

3 | 1 | 0.6 | 0.2 |

4 | 1 | 0.5 | 0.8 |

Test | 1 | 2 | 3 | 4 |
---|---|---|---|---|

RMSE (flux) | 0.0208 | 0.0233 | 0.0177 | 0.0221 |

RMSE (source) | 0.0675 | 0.0828 | 0.0469 | 0.0749 |

Case | e = 2.0 m (free flow) | e = 1.0 m (free flow) | e = 2.0 m; Q = 400 m ^{3}/s | e = 2.0 m; Q = 600 m ^{3}/s |
---|---|---|---|---|

RMSE | 0.0467 | 0.0590 | 0.0619 | 0.0851 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cui, Y.; Liang, Q.; Wang, G.; Zhao, J.; Hu, J.; Wang, Y.; Xia, X.
Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling. *Water* **2019**, *11*, 2139.
https://doi.org/10.3390/w11102139

**AMA Style**

Cui Y, Liang Q, Wang G, Zhao J, Hu J, Wang Y, Xia X.
Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling. *Water*. 2019; 11(10):2139.
https://doi.org/10.3390/w11102139

**Chicago/Turabian Style**

Cui, Yunsong, Qiuhua Liang, Gang Wang, Jiaheng Zhao, Jinchun Hu, Yuehua Wang, and Xilin Xia.
2019. "Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling" *Water* 11, no. 10: 2139.
https://doi.org/10.3390/w11102139