Inlet Water Quality Forecasting of Wastewater Treatment Based on Kernel Principal Component Analysis and an Extreme Learning Machine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extracting Principal Components Based on KPCA
2.2. Forecasting Water Quality Based on Extreme Learning Machine
2.3. Overview of the Proposed KPCA-ELM Model
3. Case Study
3.1. Data Sets
3.2. Process of Sewage Treatment
3.3. Experimental Design
- (a)
- Choose p eigenvectors by trial and error, which corresponds to the first p biggest eigenvalues to form the sub-eigenspace.
- (b)
- As shown in Equation (6), if the starting p eigenvalues are over 95% of the total eigenvalues, then the information can be presented by p principle components in practical applications.
- (a)
- The trial and error method is used to select the optimal activation function with root mean square error (RMSE) as the criteria.
- (b)
- The sigmoid function is selected as the activation function [57], and the sigmoid function is expressed as follows:
3.4. Assessing the Performance of the Forecasting Model
4. Results and Discussion
4.1. Assessing the Performance of the Forecasting Model
4.2. Comparisons
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Teng, Y.; Wang, J. A framework of characteristics identification and source apportionment of water pollution in a river: A case study in the Jinjiang River, China. Water Sci. Technol. 2012, 65, 2071–2078. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Cai, L.Y.; Lin, T.F.; Chung, C.L.; Linden, L.; Burch, M. Assessment of the impacts of climate change on the water quality of a small deep reservoir in a humid-subtropical climatic region. Water 2015, 7, 1687–1711. [Google Scholar] [CrossRef]
- Kusiak, A.; Verma, A.; Wei, X. A data-mining approach to predict influent quality. Environ. Monit. Assess. 2013, 185, 2197–2210. [Google Scholar] [CrossRef] [PubMed]
- Aminabad, M.S.; Maleki, A.; Hadi, M.; Shahmoradi, B. Application of Artificial Neural Network (ANN) for the prediction of water treatment plant influent characteristics. J. Adv. Environ. Health Res. 2014, 1, 1–12. [Google Scholar]
- Nasr, M.S.; Moustafa, M.A.E.; Seif, H.A.E.; Kobrosy, G.E. Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alex. Eng. J. 2012, 51, 37–43. [Google Scholar] [CrossRef]
- Maleki, A.; Nasseri, S.; Aminabad, M.S.; Hadi, M. Comparison of ARIMA and NNAR models for forecasting water treatment plant’s influent characteristics. KSCE J. Civ. Eng. 2018, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Ratnaweera, H.; Holm, J.A.; Olsbu, V. Statistical monitoring and dynamic simulation of a wastewater treatment plant: A combined approach to achieve model predictive control. J. Environ. Manag. 2017, 193, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Akpan, V.A.; Osakwe, R.A.O. Online prediction of influent characteristics for wastewater treatment plants management using adaptive recursive NNARMAX model. Mol. Nutr. Food Res. 2014, 52 (Suppl. 2), S208–S219. [Google Scholar]
- Liu, W.; Wang, G.Y.; Fu, J.Y.; Zou, X. Water quality prediction based on improved wavelet transformation and support vector machine. Adv. Mater. Res. 2013, 726–731, 3547–3553. [Google Scholar] [CrossRef]
- Martínez-Bisbal, M.C.; Loeff, E.; Olivas, E.; Carbo, N.; Garcia-Castillo, F.J.; Lopez-Carrero, J.; Tormos, I.; Tejadillos, F.J.; Berlanga, J.G.; Martnez-Manez, R.; et al. A voltammetric electronic tongue for the quantitative analysis of quality parameters in wastewater. Electroanalysis 2017, 29, 1147–1153. [Google Scholar] [CrossRef]
- Langeveld, J.; Daal, P.V.; Schilperoort, R.; Nopens, I.; Flameling, T.; Weijers, S. Empirical sewer water quality model for generating influent data for WWTP modelling. Water 2017, 9, 491. [Google Scholar] [CrossRef]
- Srividya, M.; Mohanavalli, S.; Bhalaji, N. Behavioral modeling for mental health using machine learning algorithms. J. Med. Syst. 2018, 45, 88. [Google Scholar] [CrossRef] [PubMed]
- Cambria, E.; Gastaldo, P.; Bisio, F.; Zunino, R. An ELM-based model for affective analogical reasoning. Neurocomputing 2015, 149, 443–455. [Google Scholar] [CrossRef]
- Low, Y.; Gonzalez, J.E.; Kyrola, A.; Bickson, D.; Guestrin, C.; Hellerstein, J.M. GraphLab: A new framework for parallel machine learning. arXiv, 2010; arXiv:1408.2041. [Google Scholar]
- Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef]
- Rong, H.J.; Ong, Y.S.; Tan, A.H.; Zhu, Z.A. A fast pruned-extreme learning machine for classification problem. Neurocomputing 2008, 72, 359–366. [Google Scholar] [CrossRef]
- Ding, S.F.; Zhang, Y.N.; Xu, X.Z.; Lina, B. A Novel Extreme Learning Machine Based on Hybrid Kernel Function. J. Comput. 2013, 8, 2110–2117. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Akusok, A.; Gritsenko, A.; Miche, Y.; Björk, K.M.; Nian, R.; Lauren, P.; Lendasse, A. Adding reliability to ELM forecasts by confidence intervals. Neurocomputing 2017, 219, 232–241. [Google Scholar] [CrossRef]
- Shamshirband, S.; Mohammadi, K.; Yee, P.L.; Petković, D.; Mostafaeipour, A. A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renew. Sustain. Energy Rev. 2015, 52, 1031–1042. [Google Scholar] [CrossRef]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis. Neural Comput. Appl. 2014, 24, 99–107. [Google Scholar] [CrossRef]
- Xiao, C.; Dong, Z.; Xu, Y.; Meng, K.; Zhou, X.; Zhang, X. Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast. Memet. Comput. 2016, 8, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, P.; Goel, L. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electr. Power Syst. Res. 2015, 122, 96–103. [Google Scholar] [CrossRef]
- Barzegar, R.; Moghaddam, A.A.; Adamowski, J.; Ozga-Zielinski, B. Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stoch. Environ. Res. Risk A 2018, 32, 799–813. [Google Scholar] [CrossRef]
- Yousefi, F.; Mohammadiyan, S.; Karimi, H. Viscosity of carbon nanotube suspension using artificial neural networks with principal component analysis. Heat Mass Transf. 2016, 80, 1538–1544. [Google Scholar] [CrossRef]
- Lei, Y.; Bennamoun, M.; Hayat, M.; Guo, Y. An efficient 3D face recognition approach using local geometrical signatures. Pattern Recognit. 2014, 47, 509–524. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, P.; Li, C.; Xie, J.; Wang, Y. A multi-scale relevance vector regression approach for daily urban water demand forecasting. J. Hydrol. 2014, 517, 236–245. [Google Scholar] [CrossRef]
- Gonçalves, A.M.; Alpuim, T. Water quality monitoring using cluster analysis and linear models. Environmetrics 2011, 22, 933–945. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, Z.Q.; Xie, J.J.; Li, C. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. J. Hydrol. 2016, 532, 193–206. [Google Scholar] [CrossRef]
- Park, C.H.; Park, H. A comparison of generalized linear discriminant analysis algorithms. Pattern Recognit. 2008, 41, 1083–1097. [Google Scholar] [CrossRef] [Green Version]
- Calhoun, V.D.; Liu, J.; Adali, T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 2009, 45 (Suppl. 1), 163–172. [Google Scholar] [CrossRef] [PubMed]
- Gaskin, C.J.; Happell, B. On exploratory factor analysis: A review of recent evidence, an assessment of current practice, and recommendations for future use. Int. J. Nurs. Stud. 2014, 51, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.R.; Tomé, A.M.; Stadlthanner, K.; Lang, E.W. KPCA denoising and the pre-image problem revisited. Digit. Signal Process. 2008, 18, 568–580. [Google Scholar] [CrossRef]
- Yu, M.D.; He, X.S.; Xi, B.D.; Gao, R.T.; Zhao, X.W.; Zhang, H.; Huang, C.H.; Tan, W. Investigating the composition characteristics of dissolved and particulate/colloidal organic matter in effluent-dominated stream using fluorescence spectroscopy combined with multivariable analysis. Environ. Sci. Pollut. Res. 2018, 25, 9132–9144. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.Y.; Huang, G.H.; An, C.J.; Huang, C.; Weger, H.; Zhao, S.; Zhou, Y.; Rosendahl, S.M. Insights into the Toxicity of Triclosan to Green Microalga Chlorococcum sp. using Synchrotron-based Fourier Transform Infrared Spectromicroscopy: Biophysiological Analyses and Roles of Environmental Factors. Environ. Sci. Technol. 2018, 54, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal component analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chem. Eng. Sci. 2011, 66, 64–72. [Google Scholar] [CrossRef]
- Kuang, F.; Xu, W.; Zhang, S.; Wang, Y.; Liu, K. A novel approach of KPCA and SVM for intrusion detection. J. Comput. Inf. Syst. 2012, 8, 3237–3244. [Google Scholar]
- Ma, H. Formation drillability prediction based on multi-source information fusion. J. Petrol. Sci. Eng. 2011, 78, 438–446. [Google Scholar] [CrossRef]
- Ren, F.; Wu, X.; Zhang, K.; Niu, R. Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the Three Gorges, China. Environ. Earth Sci. 2015, 73, 4791–4804. [Google Scholar] [CrossRef]
- Jin, H.; Lee, B.M.; Lee, T.; Park, D.H. Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra. Sensors 2010, 10, 2460–2471. [Google Scholar]
- Maruthi, Y.A.; Das, N.L.; Hossain, K.; Sarma, K.S.S.; Rawat, K.P.; Sabharwal, S. Application of electron beam technology in improving sewage water quality: An advance technique. Afr. J. Environ. Sci. Technol. 2011, 5, 545–552. [Google Scholar]
- Bhatti, Z.A.; Mahmood, Q.; Raja, I.A.; Malik, A.H.; Rashid, N.; Wu, D.L. Integrated chemical treatment of municipal wastewater using waste hydrogen peroxide and ultraviolet light. Phys. Chem. Earth A/B/C 2011, 36, 459–464. [Google Scholar] [CrossRef]
- Shao, J.D.; Rong, G.; Lee, J.M. Learning a data-dependent kernel function for KPCA-based nonlinear process monitoring. Chem. Eng. Res. Des. 2009, 87, 1471–1480. [Google Scholar] [CrossRef]
- Qian, X.; Chen, J.P.; Xiang, L.; Zhang, W.; Niu, C.C. A novel hybrid KPCA and SVM with PSO model for identifying debris flow hazard degree: A case study in Southwest China. Environ. Earth Sci. 2016, 75, 991. [Google Scholar] [CrossRef]
- Mercer, A.E.; Richman, M.B.; Leslie, L.M. Identification of severe weather outbreaks using kernel principal component analysis. Procedia Comput. Sci. 2011, 6, 231–236. [Google Scholar] [CrossRef]
- Tveit, S.; Bakr, S.A.; Lien, M.; Mannseth, T. Identification of subsurface structures using electromagnetic data and shape priors. J. Comput. Phys. 2015, 284, 505–527. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem. Eng. Sci. 2009, 64, 801–811. [Google Scholar] [CrossRef]
- Scholkopf, B.; Alexander, S. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10, 1299–1319. [Google Scholar] [CrossRef]
- Pang, Y.W.; Wang, L.; Yuan, Y. Generalized KPCA by adaptive rules in feature space. Int. J. Comput. Math. 2010, 87, 956–968. [Google Scholar] [CrossRef]
- Singh, R.; Balasundaram, S. Application of extreme learning machine method for time series analysis. Int. J. Intell. Technol. 2007, 2, 256–262. [Google Scholar]
- Yin, Z.; Qi, F.; Yang, L.S.; Deo, R.C.; Wen, X.H.; Si, J.H.; Xiao, S.C. Future projection with an extreme-learning machine and support vector regression of reference evapotranspiration in a mountainous inland watershed in North-West China. Water 2017, 9, 880. [Google Scholar] [CrossRef]
- Huang, G.B.; Li, M.B.; Chen, L.; Siew, C.K. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 2008, 71, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Jian, L.; Song, Y.Q.; Shen, S.Q.; Wang, Y.; Yin, H.Q. Adaptive least squares support vector machine prediction for blast furnace ironmaking process. ISIJ. Int. 2015, 55, 845–850. [Google Scholar] [CrossRef]
- Jiang, D.L.; Ni, G.; Jia, J.L. Performance Analysis of Anaerobic/Anoxic/Oxic (A/A/O) Process Municipal WWTPs. Adv. Mater. Res. 2012, 461, 478–481. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Xu, R.; Wu, D.C.; Wang, H.Y. Illumination correction of dyed fabrics approach using Bagging-based ensemble particle swarm optimization–extreme learning machine. Opt. Eng. 2016, 55, 93–102. [Google Scholar] [CrossRef]
- Alizadeh, M.J.; Kavianpour, M.R. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Mar. Pollut. Bull. 2015, 98, 171–178. [Google Scholar] [CrossRef] [PubMed]
Set | Maximum | Minimum | Mean | SD |
---|---|---|---|---|
Train | 293 | 125 | 204.967 | 33.339 |
Test | 216 | 147 | 188.2 | 14.271 |
Train | 118 | 52.6 | 82.796 | 12.945 |
Test | 90.8 | 61 | 79.978 | 6.613 |
Pattern | No. | Variable | Maximum | Minimum | Mean | SD |
---|---|---|---|---|---|---|
Input | 1 | COD | 293 | 125 | 201.980 | 31.479 |
2 | BOD | 118 | 52.6 | 81.760 | 12.260 | |
3 | NH3-N | 31.6 | 10 | 20.348 | 4.093 | |
4 | SS | 199 | 74 | 166.5 | 29.143 | |
5 | TP | 3.99 | 1.59 | 3.619 | 0.423 | |
6 | TN | 38.4 | 18.9 | 29.248 | 3.582 | |
Output | 1 | COD | 293 | 125 | 201.980 | 31.479 |
2 | BOD | 118 | 52.6 | 81.760 | 12.260 |
Assessment Factor | Unit | Judgment | Classes | |||
---|---|---|---|---|---|---|
I | II | III | ||||
A | B | |||||
COD | mg/L | ≤ | 50 | 60 | 100 | 120 |
BOD | mg/L | ≤ | 10 | 20 | 30 | 60 |
NH3-N | mg/L | ≤ | 5 | 8 | 25 | - |
SS | mg/L | ≤ | 10 | 20 | 30 | 50 |
TN | mg/L | ≤ | 15 | 20 | - | - |
TP | mg/L | ≤ | 0.5 | 1 | 3 | 5 |
Component | PCA Accumulation % | KPCA Accumulation % |
---|---|---|
1 | 54.300 | 80.487 |
2 | 73.313 | 90.573 |
3 | 89.923 | 98.200 |
Model | Modeling Setting | |
---|---|---|
COD | BOD | |
PCA-ELM | Input = 3, hidden = 85, output = 1, layer = 1, activation function: Sigmoid, time lags: two days ahead | Input = 3, hidden = 75, output = 1, layer = 1, activation function: Sigmoid, time lags: three days ahead |
ELM | Input = 6, hidden = 80, output = 1, layer = 1, activation function: Sigmoid, time lags: four days ahead | Input = 6, hidden = 80, output = 1, layer = 1, activation function: Sigmoid, time lags: three days ahead |
BPNN | Input = 6, hidden = 10, Output = 1, layers = 3, training: Trainlm, hidden transfer: Log-Sigmoid, output transfer: Log-Sigmoid, time lags: three days ahead | Input = 6, hidden = 10, Output = 1, layers = 3, training: Trainlm, hidden transfer: Log-Sigmoid, output transfer: Log-Sigmoid, time lags: four days ahead |
Model | COD | BOD | ||||
---|---|---|---|---|---|---|
MAE | MAPE | RMSE | MAE | MAPE | RMSE | |
BPNN | 15.826 | 8.061 | 20.126 | 6.950 | 8.783 | 8.817 |
ELM | 9.125 | 6.234 | 14.267 | 4.399 | 6.057 | 5.585 |
PCA-ELM | 3.542 | 1.900 | 4.270 | 1.341 | 1.777 | 1.710 |
KPCA-ELM | 2.322 | 1.223 | 3.108 | 1.125 | 1.321 | 1.340 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T.; Yang, S.; Bai, Y.; Gao, X.; Li, C. Inlet Water Quality Forecasting of Wastewater Treatment Based on Kernel Principal Component Analysis and an Extreme Learning Machine. Water 2018, 10, 873. https://doi.org/10.3390/w10070873
Yu T, Yang S, Bai Y, Gao X, Li C. Inlet Water Quality Forecasting of Wastewater Treatment Based on Kernel Principal Component Analysis and an Extreme Learning Machine. Water. 2018; 10(7):873. https://doi.org/10.3390/w10070873
Chicago/Turabian StyleYu, Tingting, Shuai Yang, Yun Bai, Xu Gao, and Chuan Li. 2018. "Inlet Water Quality Forecasting of Wastewater Treatment Based on Kernel Principal Component Analysis and an Extreme Learning Machine" Water 10, no. 7: 873. https://doi.org/10.3390/w10070873
APA StyleYu, T., Yang, S., Bai, Y., Gao, X., & Li, C. (2018). Inlet Water Quality Forecasting of Wastewater Treatment Based on Kernel Principal Component Analysis and an Extreme Learning Machine. Water, 10(7), 873. https://doi.org/10.3390/w10070873