Water Footprint for Pulse, Cereal, and Oilseed Crops in Saskatchewan, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
- (1)
- Meteorological data include monthly maximum, minimum and average temperature, relative humidity, precipitation, wind speed, and sunshine hours.
- (2)
- Agricultural data include crop type (e.g., pulses, cereals, and oilseeds), crop yield, crop kernel protein content (mean and ranges of protein contents where available for a crop), seeded area and date, harvest date, soil type, groundwater, tillage and rotation type, rain-fed or irrigated land, and agricultural inputs (e.g., fertilizer, pesticide, machinery power, and irrigation amount). Specifically, crop data were obtained and referenced to CROPWAT standardized crop database according to Allen et al. and several FAO publications [36,37].
- (3)
- Socio-economic data include crop input expenses for farms and sales to farms, population, labor, prices of crops (retail and wholesale), crop export and imports, and crop consumption per capita.
2.3. CROPWAT Model
- (1)
- Crops are planted under optimum soil water conditions, and the crop develops without shortage of soil water.
- (2)
- Crop ET under standard conditions is the ET from disease-free, well-fertilized crops grown in large fields with 100% coverage.
- (3)
- Crop coefficients are selected depending on the single crop per year coefficient approach. In the crop directory of the CROPWAT package, sets of crop parameters are available for different crops. The crop parameters used as input data to CROPWAT are the crop coefficients in different crop development stages (i.e., initial, middle and late stage), the length of each crop in each development stage, the root depth and the planting date (Table 1).
2.4. WF Calculation Methodology
2.4.1. Calculation of the WF
2.4.2. Analysis of Influencing Factors
3. Results and Discussion
3.1. Temporal Variations of Effective Precipitation, CWR, and IR
3.2. Crop Yields and Seeding Area
3.3. Changes of Crop Actual Evapotranspiration and Soil Water Storage
3.4. Species-Dependent Variations of Water Footprint
3.5. Factors Influencing WFs
3.6. Reduction Potential of Crop WFs
3.7. Implications of Current Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Knights, E.I.; Acikgoz, A.; Warkentin, T.; Bejiga, G.; Yadav, S.S.; Sandhul, I.S. Area, production distribution. In Chickpea Breeding and Management; Yadav, S.S., Redden, R.J., Chen, W., Sharma, S., Eds.; CABI International: Cambridge, MA, USA, 2007; pp. 167–179. [Google Scholar]
- Suleimenov, M. Dryland agriculture in northeastern Europe and northwest Asia. In Dryland Agriculture, 2nd ed.; Agronomy Monograph No. 23; ASA-CSSA-SSSA: Madison, WI, USA, 2006; pp. 625–670. [Google Scholar]
- Gan, Y.; Goddard, T. Roles of annual legumes in no-till farming systems. In No-Till Farming Systems, World Association of Soil and Water Conservation; Goddard, T., Zoebisch, M.A., Gan, Y., Ellis, W., Watson, A., Sombatpanit, S., Eds.; Funny Publication: Bangkok, Thailand, 2008; pp. 279–289. [Google Scholar]
- Zentner, R.P.; Wall, D.D.; Nagy, C.N.; Smith, E.G.; Young, D.L.; Miller, P.R.; Campbell, C.A.; McConkey, B.G.; Brandt, S.A.; Lafond, G.P.; et al. Economics of crop diversification and soil tillage opportunities in the Canadian Prairies. Agron. J. 2002, 94, 216–230. [Google Scholar] [CrossRef]
- Walley, F.L.; Clayton, G.W.; Miller, P.R.; Carr, P.M.; Lafond, G.P. Nitrogen economy of pulse crop production in the northern Great Plains. Agron. J. 2007, 99, 1710–1718. [Google Scholar] [CrossRef]
- Shiklomanov, I.A.; Rodda, J.C. World Water Resources at the Beginning of the Twenty-First Century; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Sun, S.; Wu, P.; Wang, Y.; Zhao, X. Temporal variability of water footprint for Maize production: The case of Beijing from 1978 to 2008. Water Resour. Manag. 2013, 27, 2447–2463. [Google Scholar] [CrossRef]
- IPCC. Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- Zentner, R.P.; Campbell, C.A.; Biederbeck, V.O.; Miller, P.R.; Selles, F.; Fernandez, M.R. In search of sustainable cropping system for the semiarid Canadian prairies. J. Sustain. Agric. 2001, 18, 117–136. [Google Scholar] [CrossRef]
- Peterson, G.A.; Westfall, D.G. Managing precipitation use in sustainable dryland agroecosystems. Ann. Appl. Biol. 2004, 144, 127–138. [Google Scholar] [CrossRef]
- Felter, D.G.; Lyon, D.J.; Nielsen, D.C. Evaluating crops for a flexible summer fallow cropping system. Agron. J. 2006, 89, 1510–1517. [Google Scholar] [CrossRef]
- Johnston, A.M.; Tanaka, D.L.; Miller, P.R.; Brandt, S.A.; Nielsen, D.C.; Lafond, G.P.; Riveland, N.R. Oilseed crops for semiarid cropping systems in the Northern Great Plains. Agron. J. 2002, 94, 231–240. [Google Scholar] [CrossRef]
- Miller, P.R.; McConkey, B.G.; Clayton, G.W.; Brandt, S.A.; Staricka, J.A.; Johnston, A.M.; Lafond, G.P.; Schatz, B.G.; Baltensperger, D.D.; Neill, K.E. Pulse Crop Adaptation in the Northern Great Plains. Agron. J. 2002, 94, 261–272. [Google Scholar] [CrossRef]
- Passioura, J. Increasing crop productivity when water is scarce- from breeding to field management. Agric. Water Manag. 2006, 80, 176–196. [Google Scholar] [CrossRef]
- Campbell, C.A.; Zentner, R.P.; Janzen, H.H.; Bowren, K.E. Crop Rotation Studies on the Canadian Prairies; Publ #184/E; Canadian Govt. Publ. Centre, Supply & Services Canada: Hull, QC, Canada, 1990; p. 133. [Google Scholar]
- Subbarao, G.V.; Johansen, C.; Slinkard, A.E.; Nageshwara Rao, R.C.; Saxena, N.P.; Chauhan, Y.S. Strategies for improving drought resistance in grain legumes. Crit. Rev. Plant Sci. 1995, 14, 469–523. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A Meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Campbell, C.A.; Zentner, R.P.; McConkey, B.G.; Selles, F. Effect of nitrogen and snow management on efficiency of water use by spring wheat grown annually on zero-tillage. Can. J. Plant Sci. 1992, 72, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Akinremi, O.O.; McGinn, S.M.; Cutforth, H. Seasonal and spatial patterns of rainfall trends on the Canadian Prairies. J. Clim. 2000, 14, 2177–2182. [Google Scholar] [CrossRef]
- Cutforth, H.W. Climate change in the semiarid prairie of southwestern Saskatchewan: Temperature, precipitation, wind and incoming solar energy. Can. J. Soil Sci. 2000, 80, 375–385. [Google Scholar] [CrossRef]
- Miller, P.R.; McDonald, C.L.; Derksen, D.A.; Waddington, J. The adaptation of seven broadleaf crops to the dry semiarid prairie. Can. J. Plant Sci. 2001, 81, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.R.; Holmes, J.A. Cropping sequence effects of four broadleaf crops on four cereal crops in the northern Great Plains. Agron. J. 2005, 97, 189–200. [Google Scholar] [CrossRef]
- Angadi, S.V.; McConkey, B.G.; Cutforth, H.W.; Miller, P.R.; Ulrich, D.; Selles, F.; Volkmar, K.M.; Entz, M.H.; Brandt, S.A. Adaptation of alternative pulse and oilseed crops to the semiarid Canadian Prairie: Seed yield and water use efficiency. Can. J. Plant Sci. 2008, 88, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.T.; Campbell, C.A.; Liu, L.; Basnyat, P.; McDonald, C.L. Water use and distribution profile under pulse and oilseed crops in semiarid northern high latitude areas. Agric. Water Manag. 2009, 96, 337–348. [Google Scholar] [CrossRef]
- Katerji, N.; Campi, P.; Mastrorilli, M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric. Water Manag. 2013, 130, 14–26. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G.M. Review of measured crop water productivity values for irrigated wheat, rice, cotton, and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade; Value of Water Research Report Series No. 12; UNESCO-IHE: Delft, The Netherlands, 2003. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- Ercin, A.E.; Hoekstra, A.Y. Water footprint scenarios for 2050: A global analysis. Environ. Int. 2014, 64, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, D.X.; Lai, H.L.; Wang, Y. Water footprint: An application in water resources research. Resour. Sci. 2005, 27, 96–100. (In Chinese) [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.K.; Wu, P.T.; Wang, Y.B.; Zhao, X.N.; Liu, J.; Zhang, X.H. The temporal and spatial variability of water footprint of grain: A case study of an irrigation district in China from 1960 to 2008. J. Food Agric. Environ. 2012, 10, 1246–1251. [Google Scholar]
- Hoekstra, A.Y.; Hung, P.Q. Virtual water trade. A quantification of virtual water flows between nations in relation to international crop trade. Value Water Res. Rep. Ser. 2002, 11, 166. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- FAO—Food and Agriculture Organization of the United Nations. FAOSTAT, 2017. Available online: http://www.fao.org/faostat/en/#data (accessed on 25 February 2018).
- FAO. CropWat 8.0, Edited, Land and Water Development Division; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Hoekstra, A.Y.; Hung, P.Q. Globalization of water resources: International virtual water flows in relation to crop trade. Glob. Environ. Chang. 2005, 15, 45–56. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Wright, S. The method of path coefficients. Ann. Math Stat. 1934, 5, 161–215. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield response to water. Irrig. Drain. Pap. 1979, 33, 257. [Google Scholar]
- Zhao, C.; Chen, B. Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environ. Sci. Technol. 2014, 48, 12723–12731. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Huang, K.; Yu, Y.; Wang, X. Changes in water footprint of crop production in Beijing from 1978 to 2012: A logarithmic mean Divisia index decomposition analysis. J. Clean. Prod. 2015, 87, 180–187. [Google Scholar] [CrossRef]
- Yuan, Z.F.; Zhou, J.Y.; Guo, M.C.; Lei, X.Q.; Xie, X.L. Decision coefficient-the decision index of path analysis. J. Northwest Sci. Tech. Univ. Agric. For. 2001, 29, 133–135. [Google Scholar]
- Zhang, P.; Wang, Y.K.; Zhan, J.W.; Zhang, L.J. Simulation of stem diameter maximum daily shrinkage for peach under full. Irrig. Trans. CSAE 2010, 6, 38–43. [Google Scholar]
- Turner, N.C. Further progress in crop water relations. Adv. Agron. 1997, 58, 293–335. [Google Scholar]
- Cutforth, H.W.; Angadi, S.V.; McConkey, B.G.; Entz, M.H.; Ulrich, D.; Volkmar, K.M.; Miller, P.R.; Brandt, S.A. Comparing plant water relations for wheat with alternative pulse and oilseed crops grown in the semiarid Canadian prairie. Can. J. Plant Sci. 2009, 89, 823–835. [Google Scholar] [CrossRef] [Green Version]
- Thomson, B.D.; Siddique, K.H.M.; Barr, M.D.; Wilson, J.M. Grain legume species in low rainfall Mediterranean-type environments. I. Phenology and seed yield. Field Crops Res. 1997, 54, 173–187. [Google Scholar] [CrossRef]
- Merrill, S.D.; Tanaka, D.L.; Hanson, J.D. Root length growth of eight crop species in Haplustoll soils. Soil Sci. Soc. Am. J. 2002, 66, 913–923. [Google Scholar] [CrossRef]
- Miller, P.R.; Gan, Y.; McConkey, B.G.; McDonald, C.L. Pulse crops in the Northern Great Plains. I. Grain productivity and residual effects on soil water and nitrogen. Agron. J. 2003, 95, 972–979. [Google Scholar] [CrossRef]
- Gan, Y.T.; Wang, J.; Bing, D.J.; Miller, P.R.; McDonald, C.L. Water use of pulse crops at various plant densities under fallow and stubble conditions in a semiarid environment. Can. J. Plant Sci. 2007, 87, 719–722. [Google Scholar] [CrossRef] [Green Version]
- Qian, B.D.; De Jong, R.; Gameda, S. Multivariate analysis of water-related agroclimatic factors limiting spring wheat yields on the Canadian prairies. Eur. J. Agron. 2009, 30, 140–150. [Google Scholar] [CrossRef]
- De Jong, E.; Cameron, D.R. Efficiency of water use by agriculture for dryland crop production. In Prairie Production Symp. Soils and Land Resources; Advisory Committee to the Canadian Wheat Board: Saskatoon, SK, Canada, 1980. [Google Scholar]
- Zhang, H.; Pala, M.; Oweis, T.; Harris, H. Water use and water-use efficiency of chickpea and lentil in a Mediterranean environment. Aust. J. Agric. Res. 2000, 51, 295–304. [Google Scholar] [CrossRef]
- Miller, P.R.; Brandt, S.A.; McDonald, C.L.; Waddington, J. Chickpea, lentil, and pea response to delayed spring seeding on the Northern Great Plains. Can. J. Plant Sci. 2006, 86, 1059–1070. [Google Scholar] [CrossRef]
- Liu, L.P.; Gan, Y.T.; Bueckert, R.; Van Rees, K.; Warkentin, T.D. Fine root distributions in oilseed and pulse crops. Crop Sci. 2010, 50, 222–226. [Google Scholar] [CrossRef]
- Bell, J.M. Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci. 1993, 73, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Bulman, P.; Mather, D.E.; Smith, D.L. Genetic improvement of spring barley cultivars grown in eastern Canada from 1910 to 1988. Euphytica 1993, 71, 35–48. [Google Scholar] [CrossRef]
- Gauer, L.E.; Grant, C.A.; Bailey, L.D.; Gehl, D.T. Effects of nitrogen fertilization on grain protein content, nitrogen uptake, and nitrogen use efficiency of six spring wheat (Triticum aestivum L.) cultivars, in relation to estimated moisture supply. Can. J. Plant Sci. 1992, 72, 235–241. [Google Scholar] [CrossRef]
- Grami, B.; Stefansson, B.R. Gene action for protein and oil content in summer rape. Can. J. Plant Sci. 1977, 57, 625–631. [Google Scholar] [CrossRef]
- Wang, N. Effect of variety and crude protein content on dehulling quality and on the resulting chemical composition of red lentil (Lens culinaris). J. Sci. Food Agric. 2008, 88, 885–890. [Google Scholar] [CrossRef]
- Wang, N.; Daun, J.K. Effect of variety and crude protein content on nutrients and certain antinutrients in field peas (Pisum sativum). J. Sci. Food Agric. 2004, 84, 1021–1029. [Google Scholar] [CrossRef]
- Campbell, C.A.; Tessier, J.S.J.; Selles, F. Challenges and limitations to adoption of conservation tillage soil organic matter, fertility, moisture and soil environment. In Proceedings of the 34th Annual CSSS/AIC Meeting, Calgary, AB, Canada, 21–24 August 1988; pp. 140–185. [Google Scholar]
- Xiao, D.; Tao, F.; Liu, Y.; Shi, W.; Wang, M.; Liu, F.; Zhang, S.; Zhu, Z. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 2013, 57, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Christensen, N.B.; Jones, T.L.; Kauta, G.J. Infiltration characteristics under no-till and clean-till furrow irrigation. Soil Sci. Soc. Am. J. 1994, 58, 1495–1500. [Google Scholar] [CrossRef]
- Ding, D.; Feng, H.; Zhao, Y.; Liu, W.; Chen, H.; He, J. Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China. Clim. Chang. 2016, 138, 157–171. [Google Scholar] [CrossRef]
- Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Kroebel, R.; Li, C.; Qian, B.; Worth, D.E.; McConkey, B.G.; Drury, C.F. Assessing the effects of climate change on crop production and GHG emissions in Canada. Agric. Ecosyst. Environ. 2013, 179, 139–150. [Google Scholar] [CrossRef]
- Zentner, R.P.; Campbell, C.A.; Selles, F.; McConkey, B.G.; Jefferson, P.G.; Lemke, R. Cropping frequency, wheat classes and flexible rotations: Effects on production, nitrogen economy, and water use in a Brown Chernozem. Can. J. Plant Sci. 2003, 83, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; McCaig, T.N.; DePauw, R.M.; Clarke, J.M.; Lemke, R. Water use of some recent bread and durum wheat cultivars in western Canada. Can. J. Plant Sci. 2007, 87, 289–292. [Google Scholar] [CrossRef] [Green Version]
- Coote, D.R.; Gregorich, L.J. The Health of Our Water: Toward Sustainable Agriculture in Canada; Agriculture and Agri-Food Canada: Ottawa, CA, Canada, 2000; p. 19. [Google Scholar]
- Angadi, S.; McConkey, B.; Ulrich, D.; Cutforth, H.; Miller, P.; Entz, M.; Brandt, S.; Volkmar, K. Developing Viable Cropping Options for the Semiarid Prairies; Final Report; Western Grains Research Foundation: Saskatoon, SK, Canada, 1999. [Google Scholar]
Crop | Planting Date | Relative Crop Growing Stages | HI0 | Max Rooting Depth (m) | ||
---|---|---|---|---|---|---|
Lini | Lmid | Llate | ||||
Spring wheat | 9 May | 0.3 | 1.15 | 0.3 | 39% | 1.2 |
Barley | 10 May | 0.3 | 1.15 | 0.25 | 39% | 1.1 |
Canola | 1 May | 0.7 | 1.05 | 0.95 | 27% | 0.5 |
Sunflower | 1 May | 0.35 | 1.15 | 0.35 | 32% | 1.3 |
Lentil | 20 April | 0.5 | 1.05 | 0.9 | 44% | 0.7 |
Chick peas | 20 May | 0.4 | 1.15 | 0.35 | 50% | 1 |
Years | Progress Index | |||||
---|---|---|---|---|---|---|
Spring Wheat | Barley | Canola | Sunflower | Lentils | Chick Peas | |
1965–1974 | 1.000 | 1.000 | 1.000 | \ | \ | \ |
1975–1984 | 1.116 | 1.084 | 1.147 | \ | \ | \ |
1985–1994 | 1.143 | 1.165 | 1.220 | 1.000 | 1 | \ |
1995–2004 | 1.233 | 1.245 | 1.236 | 1.173 | 1.013 | 1.000 |
2005–2014 | 1.364 | 1.295 | 1.524 | 1.515 | 1.166 | 1.547 |
Influence Factors | Spring Wheat | Barley | Canola | Sunflower | Lentil | Chickpea |
---|---|---|---|---|---|---|
Scientific and technological progress | −1.299 | −1.142 | −0.721 | −1.310 | −1.036 | −2.102 |
Agricultural product price * | −1.087 | −1.134 | −0.180 | −1.299 | −0.956 | −1.998 |
Agricultural inputs | −1.355 | −1.262 | −0.718 | −1.282 | −1.099 | −2.359 |
Population | −1.247 | −1.130 | 0.584 | −1.274 | −1.018 | −2.369 |
Annual precipitation | −1.521 | −1.442 | −0.640 | −1.559 | −1.319 | −2.445 |
Seasonal precipitation | −1.345 | −1.300 | −0.502 | −1.437 | −1.005 | −2.004 |
Average daily temperature | 0.075 | 0.028 | 0.320 | 0.088 | 0.659 | 1.083 |
Influence Factors | Spring Wheat | Barley | Canola | Sunflower | Lentil | Chickpea |
---|---|---|---|---|---|---|
Scientific and technological progress | −0.394 | −0.807 | −0.127 | −2.257 | −1.099 | −0.413 |
Agricultural product price * | −0.311 | −1.127 | 0.150 | −2.314 | −0.998 | −0.238 |
Agricultural inputs | −0.443 | −1.073 | −0.147 | −2.312 | −1.151 | −0.202 |
Population | −0.448 | −1.088 | 0.270 | −2.169 | −1.103 | −0.399 |
Annual precipitation | −0.785 | −1.197 | −0.302 | −2.306 | −1.436 | −0.982 |
Seasonal precipitation | −0.773 | −0.984 | −0.293 | −2.023 | −1.135 | −1.138 |
Average daily temperature | 0.127 | 0.383 | 0.245 | 0.203 | 0.648 | 0.641 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, D.; Zhao, Y.; Guo, H.; Li, X.; Schoenau, J.; Si, B. Water Footprint for Pulse, Cereal, and Oilseed Crops in Saskatchewan, Canada. Water 2018, 10, 1609. https://doi.org/10.3390/w10111609
Ding D, Zhao Y, Guo H, Li X, Schoenau J, Si B. Water Footprint for Pulse, Cereal, and Oilseed Crops in Saskatchewan, Canada. Water. 2018; 10(11):1609. https://doi.org/10.3390/w10111609
Chicago/Turabian StyleDing, Dianyuan, Ying Zhao, Hui Guo, Xueyan Li, Jeff Schoenau, and Bingcheng Si. 2018. "Water Footprint for Pulse, Cereal, and Oilseed Crops in Saskatchewan, Canada" Water 10, no. 11: 1609. https://doi.org/10.3390/w10111609