Current Challenges in Orographic Flow Dynamics: Turbulent Exchange Due to Low-Level Gravity-Wave Processes
Abstract
:1. Introduction
2. Turbulent Exchange in Foehn Flows
3. Turbulent Exchange Associated with Atmospheric Rotors
3.1. “Type 1” Rotors
- Lee-wave trough (or downslope flow): Shallow, highly sheared boundary layer beneath a fast moving, (highly) stable laminar flow.
- Flow separation region: Highly turbulent and unsteady with local overturning and strong vertical shear.
- Lee-wave crest: Deeper boundary layer, light winds, but highly turbulent, topped by strong shear and stability.
3.2. “Type 2” Rotors
- 4.
- Downslope flow: akin to a wave trough for Type 1, but more intense.
- 5.
- Breaking region: Overturning aloft introduces convective instability, dramatically enhancing vertical transport and affecting a substantially deeper layer than Type 1 overturning; otherwise, at the surface, analogous to the flow separation region in the Type 1 case.
- 6.
- Downwind region: Weak winds, but enhanced turbulence.
3.3. Three-Dimensional Complexity
4. Modulation of Boundary-Layer Turbulence by Orographic Gravity Waves
5. Discussion and Current Challenges
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palmer, T.N.; Shutts, G.J.; Swinbank, R. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Q. J. R. Meteorol. Soc. 1986, 112, 1001–1039. [Google Scholar] [CrossRef]
- Poulidis, A.P.; Takemi, T.; Iguchi, M.; Renfrew, I.A. Orographic effects on the transport and deposition of volcanic ash: A case study of Mt. Sakurajima, Japan. J. Geophys. Res. Atmos. 2017, 122, 9332–9350. [Google Scholar] [CrossRef]
- Fritts, D.C.; Smith, R.B.; Taylor, M.J.; Doyle, J.D.; Eckermann, S.D.; Dörnbrack, A.; Rapp, M.; Williams, B.P.; Pautet, P.-D.; Bossert, K.; et al. The deep propagating gravity wave experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources through the lower and middle atmosphere. Bull. Am. Meteorol. Soc. 2016, 97, 425–453. [Google Scholar] [CrossRef]
- Jackson, D.R.; Gadian, A.; Hindley, N.P.; Hoffmann, L.; Hughes, J.; King, J.; Moffat-Griffin, T.; Moss, A.C.; Ross, A.N.; Vosper, S.B.; et al. The South Georgia wave experiment (SG-WEX)—A means for improving analysis of gravity waves and low-level wind impacts generated from mountainous islands. Bull. Am. Meteorol. Soc. 2018, 99, 1027–1040. [Google Scholar] [CrossRef]
- Nappo, C.J. An Introduction to Atmospheric Gravity Waves, 2nd ed.; Academic Press: Cambridge, MA, USA, 2012; ISBN 9780123852236. [Google Scholar]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef]
- Elvidge, A.D.; Vosper, S.B.; Wells, H.; Cheung, J.C.H.; Derbyshire, S.H.; Turp, D. Moving towards a wave-resolved approach to forecasting mountain wave induced clear air turbulence. Meteorol. Appl. 2017, 24, 540–550. [Google Scholar] [CrossRef]
- Hann, J. Lehrbuch der Meteorologie, 1st ed.; Verlag C. H. Tauchnitz: Leipzig, Germany, 1901; 805p. [Google Scholar]
- Elvidge, A.D.; Renfrew, I.A. The causes of foehn warming in the lee of mountains. Bull. Am. Meteorol. Soc. 2016, 97, 455–466. [Google Scholar] [CrossRef]
- Seibert, P. South foehn studies since the ALPEX experiment. Meteorol. Atmos. Phys. 1990, 43, 91–103. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0521681582. [Google Scholar]
- Richner, H.; Hächler, P. Understanding and forecasting Alpine foehn. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., de Wekker, S.F.J., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-4097-6. [Google Scholar]
- Scorer, R.S. Environmental Aerodynamics; Ellis Horwood: Chichester, UK, 1978; ISBN 978-0132825269. [Google Scholar]
- Ólafsson, H. The heat source of the foehn. Hrvatski Meteorološki Časopis 2005, 40, 542–545. [Google Scholar]
- Minder, J.R.; Smith, R.B.; Nugent, A. The dynamics of ascent-forced orographic convection in the tropics: Results from Dominica. J. Atmos. Sci. 2013, 70, 4067–4088. [Google Scholar] [CrossRef]
- Hoinka, K.P. What is a foehn clearance? Bull. Am. Meteorol. Soc. 1985, 66, 1123–1132. [Google Scholar] [CrossRef]
- Takane, Y.; Kusaka, H. Formation mechanisms of the extreme high surface air temperature of 40.9 °C observed in the Tokyo metropolitan area: Considerations of dynamic foehn and foehnlike wind. J. Appl. Meteorol. Climatol. 2011, 50, 1827–1841. [Google Scholar] [CrossRef]
- Elvidge, A.D.; Renfrew, I.A.; King, J.C.; Orr, A.; Lachlan-Cope, T.A.; Weeks, M.; Gray, S.L. Foehn jets over the Larsen C Ice Shelf, Antarctica. Q. J. R. Meteorol. Soc. 2015, 141, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, A.D.; Renfrew, I.A.; King, J.C.; Orr, A.; Lachlan-Cope, T.A. Foehn warming distributions in non-linear and linear flow regimes: A focus on the Antarctic Peninsula. Q. J. R. Meteorol. Soc. 2016, 142, 618–631. [Google Scholar] [CrossRef] [Green Version]
- Mayr, G.J.; Armi, L.; Gohm, A.; Zängl, G.; Durran, D.R.; Flamant, C.; Gaberšek, S.; Mobbs, S.; Ross, A.; Weissmann, M. Gap flows: Results from the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc. 2007, 133, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Miltenberger, A.K.; Reynolds, S.; Sprenger, M. Revisiting the latent heating contribution to foehn warming: Lagrangian analysis of two foehn events over the Swiss Alps. Q. J. R. Meteorol. Soc. 2016, 142, 2194–2204. [Google Scholar] [CrossRef]
- Turton, J.V.; Kirchgaessner, A.; Ross, A.N.; King, J.C. The spatial distribution and temporal variability of föhn winds over the Larsen C Ice Shelf, Antarctica. Q. J. R. Meteorol. Soc. 2018. [Google Scholar] [CrossRef]
- Turton, J.V.; Kirchgaessner, A.; Ross, A.N.; King, J.C. Does high-resolution modelling improve the spatial analysis of föhn flow over the Larsen C ice shelf? Weather 2017, 72, 192–196. [Google Scholar] [CrossRef]
- Grubišić, V. Bora-driven potential vorticity banners over the Adriatic. Q. J. R. Meteorol. Soc. 2004, 130, 2571–2603. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Doyle, J.D. Wave breaking induced surface wakes and jets observed during a bora event. Geophys. Res. Lett. 2005, 32, L17807. [Google Scholar] [CrossRef]
- Večenaj, Ž.; Belušić, D.; Grubišić, V.; Grisogono, B. Along-coast features of the bora related turbulence. Bound.-Layer Meteorol. 2012, 143, 527–545. [Google Scholar] [CrossRef]
- Wood, N.; Mason, P.J. The pressure force induced by neutral, turbulent flow over hills. Q. J. R. Meteorol. Soc. 1993, 119, 1233–1267. [Google Scholar] [CrossRef]
- Beljaars, A.C.M.; Brown, A.R.; Wood, N. A new parametrization of turbulent orographic form drag. Q. J. R. Meteorol. Soc. 2004, 130, 1327–1347. [Google Scholar] [CrossRef] [Green Version]
- Vosper, S.B.; Brown, A.R. The effect of small-scale hills on orographic drag. Q. J. R. Meteorol. Soc. 2007, 133, 1345–1352. [Google Scholar] [CrossRef]
- Westerling, A.L.; Cayan, D.R.; Brown, T.J.; Hall, B.L.; Riddle, L.G. Climate, Santa Ana winds and autumn wildfires in southern California. EOS Trans. Am. Geophys. Union 2004, 85, 289–296. [Google Scholar] [CrossRef]
- Seibert, P.; Feldmann, H.; Neininger, B.; Bäumle, M.; Trickl, T. South foehn and ozone in the Eastern Alps–case study and climatological aspects. Atmos. Environ. 2000, 34, 1379–1394. [Google Scholar] [CrossRef]
- Luckman, A.; Elvidge, A.D.; Jansen, D.; Kulessa, B.; Munneke, P.K.; King, J.; Barrand, N.E. Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarct. Sci. 2014, 26, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Scorer, R.S. Theory of waves in the lee of mountains. Q. J. R. Meteorol. Soc. 1949, 75, 41–56. [Google Scholar] [CrossRef]
- Shutts, G. Operational lee wave forecasting. Meteorol. Appl. 1997, 4, 23–35. [Google Scholar] [CrossRef]
- Vosper, S.B. Development and testing of a high resolution mountain-wave forecasting system. Meteorol. Appl. 2003, 10, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Reinecke, P.A.; Durran, D.R. Initial-condition sensitivities and the predictability of downslope winds. J. Atmos. Sci. 2009, 66, 3401–3418. [Google Scholar] [CrossRef]
- Sachsperger, J.; Serafin, S.; Grubišić, V. The amplitude of lee waves on the boundary layer inversion. Q. J. R. Meteorol. Soc. 2016, 143, 27–36. [Google Scholar] [CrossRef]
- Sheridan, P.F.; Vosper, S.B.; Brown, P. Mountain waves in high resolution forecast models: Automated diagnostics of wave severity and impact on surface winds. Atmosphere 2017, 8, 24. [Google Scholar] [CrossRef]
- Mobbs, S.D.; Vosper, S.B.; Sheridan, P.F.; Cardoso, R.; Burton, R.R.; Arnold, S.J.; Hill, M.K.; Horlacher, V.; Gadian, A.M. Observations of downslope winds and rotors in the Falkland Islands. Q. J. R. Meteorol. Soc. 2005, 131, 329–351. [Google Scholar] [CrossRef] [Green Version]
- Grubišić, V.; Billings, B.J. The intense lee-wave rotor event of Sierra Rotors IOP 8. J. Atmos. Sci. 2007, 64, 4178–4201. [Google Scholar] [CrossRef]
- Sheridan, P.F.; Horlacher, V.; Rooney, G.G.; Hignett, P.; Mobbs, S.D.; Vosper, S.B. Influence of lee waves on the near-surface flow downwind of the Pennines. Q. J. R. Meteorol. Soc. 2007, 133, 1353–1369. [Google Scholar] [CrossRef]
- Grubišić, V.; Doyle, J.D.; Kuettner, J.; Mobbs, S.; Smith, R.B.; Whiteman, C.D.; Dirks, R.; Czyzyk, S.; Cohn, S.A.; Vosper, S.; et al. The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights. Bull. Am. Meteorol. Soc. 2008, 89, 1513–1533. [Google Scholar] [CrossRef]
- Kuettner, J.P. Zurentstehung der foehnwalle. Beitr. Phys. Frei Atmos. 1939, 25, 251–299. [Google Scholar]
- Manley, G. The Helm Wind of Crossfell, 1937–1939. Q. J. R. Meteorol. Soc. 1945, 71, 197–219. [Google Scholar] [CrossRef]
- Förchtgott, J. Wave streaming in the lee of mountain ridges. Bull. Meteorol. Czech 1949, 3, 49. [Google Scholar]
- Holmboe, J.R.; Klieforth, H. Investigation of Mountain Lee Waves and the Airflow over the Sierra Nevada; Final Report; Department of Meteorology, University of California (UCLA): Los Angeles, CA, USA, 1957. [Google Scholar]
- Vosper, S.B. Inversion effects on mountain lee waves. Q. J. R. Meteorol. Soc. 2004, 130, 1723–1748. [Google Scholar] [CrossRef] [Green Version]
- Hertenstein, R.F.; Kuettner, J.P. Rotor types associated with steep lee topography: Influence of the wind profile. Tellus A Dyn. Meteorol. Oceanogr. 2005, 57, 117–135. [Google Scholar] [CrossRef]
- Doyle, J.D.; Durran, D.R. The dynamics of mountain-wave-induced rotors. J. Atmos. Sci. 2002, 59, 186–201. [Google Scholar] [CrossRef]
- Vosper, S.B.; Sheridan, P.F.; Brown, A.R. Flow separation and rotor formation beneath two-dimensional trapped lee waves. Q. J. R. Meteorol. Soc. 2006, 132, 2415–2438. [Google Scholar] [CrossRef] [Green Version]
- Sachsperger, J.; Serafin, S.; Grubišić, V. Dynamics of rotor formation in uniformly stratified two-dimensional flow over a mountain. Q. J. R. Meteorol. Soc. 2016, 142, 1201–1212. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.D.; Durran, D.R. Rotor and subrotor dynamics in the lee of three-dimensional terrain. J. Atmos. Sci. 2007, 64, 4202–4221. [Google Scholar] [CrossRef]
- Sheridan, P.F.; Vosper, S.B. Numerical simulations of rotors, hydraulic jumps and eddy shedding in the Falkland Islands. Atmos. Sci. Lett. 2006, 6, 211–218. [Google Scholar] [CrossRef]
- Mayr, G.J.; Armi, L. The influence of downstream diurnal heating on the descent of flow across the Sierras. J. Appl. Meteorol. Climatol. 2010, 49, 1906–1912. [Google Scholar] [CrossRef]
- Kühnlein, C.; Dörnbrack, A.; Weissmann, M. High Resolution Doppler Lidar Observations of Transient Downslope Flows and Rotors. Mon. Weather Rev. 2013, 141, 3257–3272. [Google Scholar] [CrossRef]
- Grubišić, V.; Serafin, S.; Strauss, L.; Haimov, S.J.; French, J.R.; Oolman, L.D. Wave-induced boundary-layer separation in the lee of the Medicine Bow Mountains. Part 2: Numerical modeling. J. Atmos. Sci. 2015, 72, 4865–4884. [Google Scholar] [CrossRef]
- Strauss, L.; Serafin, S.; Haimov, S.; Grubišić, V. Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Q. J. R. Meteorol. Soc. 2015, 141, 3207–3225. [Google Scholar] [CrossRef] [PubMed]
- Strauss, L.; Serafin, S.; Grubišić, V. Atmospheric rotors and severe turbulence in a long deep valley. J. Atmos. Sci. 2016, 73, 1481–1506. [Google Scholar] [CrossRef]
- Teixeira, M.A.C.; Argaín, J.L.; Miranda, P.M.A. Drag produced by trapped lee waves and propagating mountain waves in a two-layer atmosphere. Q. J. R. Meteorol. Soc. 2013, 139, 964–981. [Google Scholar] [CrossRef]
- Teixeira, M.A.C.; Argaín, J.L.; Miranda, P.M.A. Orographic drag associated with lee waves trapped at an inversion. J. Atmos. Sci. 2013, 70, 2930–2947. [Google Scholar] [CrossRef]
- Teixeira, M.A.C.; Miranda, P.M.A. Drag associated with 3D trapped lee waves over an axisymmetric obstacle in two-layer atmospheres. Q. J. R. Meteorol. Soc. 2017, 143, 3244–3258. [Google Scholar] [CrossRef]
- Doyle, J.D.; Jiang, Q.; Reinecke, P.A. Numerical Modeling and Predictability of Mountain Wave-Induced Turbulence and Rotors. In Aviation Turbulence; Sharman, R., Lane, T., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Turnipseed, A.A.; Anderson, D.E.; Burns, S.; Blanken, P.D.; Monson, R.K. Airflows and turbulent flux measurements in mountainous terrain Part 2: Mesoscale effects. Agric. For. Meteorol. 2004, 125, 187–205. [Google Scholar] [CrossRef]
- Hills, M.O.G.; Durran, D.R. Nonstationary Trapped Lee Waves Generated by the Passage of an Isolated Jet. J. Atmos. Sci. 2012, 69, 3040–3059. [Google Scholar] [CrossRef]
- Sheridan, P. Current gust forecasting techniques, developments and challenges. Adv. Sci. Res. 2018, 15, 159–172. [Google Scholar] [CrossRef]
- Doyle, J.D.; Durran, D.R. Recent developments in the theory of atmospheric rotors. Bull. Am. Meteorol. Soc. 2004, 85, 337–342. [Google Scholar] [CrossRef]
- Jiang, Q.; Doyle, J.D. Diurnal variation of downslope winds in Owens Valley during the Sierra Rotors Experiment. Mon. Weather Rev. 2008, 136, 3760–3780. [Google Scholar] [CrossRef]
- Serafin, S.; Strauss, L.; Grubišić, V. Climatology of westerly wind events in the lee of the southern Sierra Nevada. J. Appl. Meteorol. Climatol. 2017, 56, 1003–1023. [Google Scholar] [CrossRef]
- Dörnbrack, A.; Dürbeck, T. Turbulent dispersion of aircraft exhausts in regions of breaking gravity waves. Atmos. Environ. 1998, 32, 3105–3112. [Google Scholar] [CrossRef]
- Sun, J.; Nappo, C.J.; Mahrt, L.; Belušić, D.; Grisogono, B.; Stauffer, D.R.; Pulido, M.; Staquet, C.; Jiang, Q.; Pouquet, A.; et al. Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys. 2015, 53, 956–993. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L. Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 2014, 46, 23–45. [Google Scholar] [CrossRef]
- Meillier, Y.P.; Frehlich, R.G.; Jones, R.M.; Balsley, B.B. Modulation of small-scale turbulence by ducted gravity waves in the nocturnal boundary layer. J. Atmos. Sci. 2008, 65, 1414–1427. [Google Scholar] [CrossRef]
- Cava, D.; Giostra, U.; Katul, G. Characteristics of gravity waves over an Antarctic Ice Sheet during an Austral summer. Atmosphere 2015, 6, 1271–1289. [Google Scholar] [CrossRef]
- Zeri, M.; Sá, L.D.A. Horizontal and vertical turbulent fluxes forced by a gravity wave event in the nocturnal atmospheric surface layer over the Amazon forest. Bound.-Layer Meteorol. 2011, 138, 413–431. [Google Scholar] [CrossRef]
- Román-Cascón, C.; Yagüe, C.; Mahrt, L.; Sastre, M.; Steeneveld, G.-J.; Pardyjak, E.; van de Boer, A.; Hartogensis, O. Interactions among drainage flows, gravity waves and turbulence: A BLLAST case study. Atmos. Chem. Phys. 2015, 15, 9031–9047. [Google Scholar] [CrossRef]
- Jemmett-Smith, B.C. Cold Air Pools over Complex Terrain. Ph.D. Thesis, University of Leeds, Leeds, UK, 2014. Available online: http://etheses.whiterose.ac.uk/6414/1/BCJemmettSmith_Thesis_20140429.pdf (accessed on 30 April 2018).
- Viana, S.; Terradellas, E.; Yagüe, C. Analysis of gravity waves generated at the top of a drainage flow. J. Atmos. Sci. 2010, 67, 3949–3966. [Google Scholar] [CrossRef]
- Chemel, C.; Staquet, C.; Largeron, Y. Generation of internal gravity waves by a katabatic flow in an idealized alpine valley. Meteorol. Atmos. Phys. 2009, 103, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Hang, C.; Nadeau, D.F.; Gultepe, I.; Hoch, S.W.; Román-Cascón, C.; Pryor, K.; Fernando, H.J.S.; Creegan, E.D.; Leo, L.S.; Silver, Z.; et al. A case study of the mechanisms modulating the evolution of valley fog. Pure Appl. Geophys. 2016, 173, 3011–3030. [Google Scholar] [CrossRef]
- Price, J.D.; Vosper, S.; Brown, A.; Ross, A.; Clark, P.; Davies, F.; Horlacher, V.; Claxton, B.; McGregor, J.R.; Hoare, J.S.; et al. COLPEX: Field and numerical studies over a region of small hills. Bull. Am. Meteorol. Soc. 2011, 92, 1636–1650. [Google Scholar] [CrossRef]
- Emeis, S.; Kalthoff, N.; Adler, B.; Pardyjak, E.; Paci, A.; Junkermann, W. High resolution observation of transport and exchange processes in mountainous terrain. Atmosphere 2018. submitted. [Google Scholar]
- Lapworth, A.; Claxton, B.M.; McGregor, J.R. The effect of gravity wave drag on near-surface winds and wind profiles in the nocturnal boundary layer over land. Bound.-Layer Meteorol. 2015, 156, 325–335. [Google Scholar] [CrossRef]
- Lapworth, A.; Osborne, S.R. Evidence for gravity wave drag in the boundary layer of a numerical forecast model: A comparison with observations. Q. J. R. Meteorol. Soc. 2016, 142, 3257–3264. [Google Scholar] [CrossRef]
- Tsiringakis, A.; Steenveld, G.J.; Holtsag, A.A.M. Small-scale orographic gravity wave drag in stable boundary layers and its impact on synoptic systems and near-surface meteorology. Q. J. R. Meteorol. Soc. 2017, 143, 1504–1516. [Google Scholar] [CrossRef]
- Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.F.J.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.J.; Rotach, M.W.; Schmidli, J.; et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 2018, 9, 102. [Google Scholar] [CrossRef]
- Lehner, M.; Rotach, M.W. Current challenges in understanding and predicting transport and exchange in the Atmosphere over mountainous terrain. Atmosphere 2018, 9, 276. [Google Scholar] [CrossRef]
- Howell, J.F.; Mahrt, L. Multiresolution flux decomposition. Bound.-Layer Meteorol. 1997, 83, 117–137. [Google Scholar] [CrossRef]
- French, J.R.; Haimov, S.J.; Oolman, L.D.; Grubišić, V.; Serafin, S.; Strauss, L. Wave-induced boundary-layer separation in the lee of the Medicine Bow Mountains. Part 1: Observations. J. Atmos. Sci. 2015, 72, 4845–4863. [Google Scholar] [CrossRef]
- Chouza, F.; Reitebuch, O.; Jähn, M.; Rahm, S.; Weinzierl, B. Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements. Atmos. Chem. Phys. 2016, 16, 4675–4692. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, S.; Mayr, G.J.; Chong, M.; Weissmann, M.; Dörnbrack, A.; Calhoun, R. Three-Dimensional Wind Retrieval: Application of MUSCAT to Dual-Doppler Lidar. J. Atmos. Ocean. Technol. 2009, 26, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Weissmann, M.; Dörnbrack, A.; Doyle, J.D. Vorticity from Line-of-Sight Lidar Velocity Scans. J. Atmos. Ocean. Technol. 2009, 26, 2683–2690. [Google Scholar] [CrossRef]
- Witschas, B.; Rahm, S.; Dörnbrack, A.; Wagner, J.; Rapp, M. Airborne Coherent Doppler Wind Lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves. J. Atmos. Ocean. Technol. 2017, 34, 1371–1386. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; Svensson, G.; Baas, P.; Basu, S.; Beare, B.; Beljaars, A.C.M.; Bosveld, F.C.; Cuxart, J.; Lindvall, J.; Steeneveld, G.J.; et al. Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Am. Meteorol. Soc. 2013, 94, 1691–1706. [Google Scholar] [CrossRef]
- Sorbjan, Z. Gradient-based scales and similarity laws in the stable boundary layer. Q. J. R. Meteorol. Soc. 2010, 136, 1243–1254. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vosper, S.B.; Ross, A.N.; Renfrew, I.A.; Sheridan, P.; Elvidge, A.D.; Grubišić, V. Current Challenges in Orographic Flow Dynamics: Turbulent Exchange Due to Low-Level Gravity-Wave Processes. Atmosphere 2018, 9, 361. https://doi.org/10.3390/atmos9090361
Vosper SB, Ross AN, Renfrew IA, Sheridan P, Elvidge AD, Grubišić V. Current Challenges in Orographic Flow Dynamics: Turbulent Exchange Due to Low-Level Gravity-Wave Processes. Atmosphere. 2018; 9(9):361. https://doi.org/10.3390/atmos9090361
Chicago/Turabian StyleVosper, Simon B., Andrew N. Ross, Ian A. Renfrew, Peter Sheridan, Andrew D. Elvidge, and Vanda Grubišić. 2018. "Current Challenges in Orographic Flow Dynamics: Turbulent Exchange Due to Low-Level Gravity-Wave Processes" Atmosphere 9, no. 9: 361. https://doi.org/10.3390/atmos9090361
APA StyleVosper, S. B., Ross, A. N., Renfrew, I. A., Sheridan, P., Elvidge, A. D., & Grubišić, V. (2018). Current Challenges in Orographic Flow Dynamics: Turbulent Exchange Due to Low-Level Gravity-Wave Processes. Atmosphere, 9(9), 361. https://doi.org/10.3390/atmos9090361