Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
Abstract
:1. Introduction
2. Data and Methods
2.1. Analyzed Heavy Precipitation Events
2.2. Meteorological Forcing Data, Domains, and Model Configuration
2.3. Model Verification
- First ten of January of 2007.
- Second ten of January of 2007.
- Second ten of February 2007.
- Third ten of December 2007.
- Second ten of February 2009.
- First ten of February 2010.
- Third ten of February 2010.
- Third ten of January 2011.
- First ten of February 2012.
3. Results and Discussion
3.1. Extreme Rainfall in the Mantaro Basin
3.2. Synoptic Climatology Associated with the 40 Extreme Rainfall Events Cases Selected
3.3. WRF Ability to Detect Extreme Rainfall
3.4. Case Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Silva, Y.; Takahashi, K.; Chávez, R. Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes). Adv. Geosci. 2008, 14, 261–264. [Google Scholar] [CrossRef]
- Aceituno, P. On the functioning of the Southern Oscillation in the South American. sector. Part II. Upper-air circulation. J. Clim. 1989, 4, 341–355. [Google Scholar] [CrossRef]
- Vuille, M.; Kaser, G.; Juen, I. Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Glob. Planet. Chang. 2008, 62, 14–28. [Google Scholar] [CrossRef]
- Garreaud, R. The Andes climate and weather. Adv. Geosc. 2009, 22, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.G.; Núñez, E.; Silva, Y. Vulnerability and adaptation to climate change in the Peruvian Central Andes. In Proceedings of the International Conference on Southern Hemisphere Meteorology and Oceanography (ICSHMO), Foz do Iguacu, Brazil, 24–28 April 2006; pp. 297–305. [Google Scholar]
- Armengot-Serrano, R. Las precipitaciones extraordinarias. Atl. Clim. Valencia Collecció Territori. 1994, 4, 98–99. [Google Scholar]
- Martín-Vide, J. Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int. J. Climatol. 2004, 24, 959–971. [Google Scholar] [CrossRef] [Green Version]
- Moncho, R.; Belda, F.; Caselles, V. Climatic study of the exponent n of the IDF curves of the Iberian Peninsula. Tethys 2009, 6, 3–14. [Google Scholar] [CrossRef]
- Harnack, R.P.; Apffel, K.; Cermak, J.R. Heavy precipitation events in New Jersey: Attendant upper-air conditions. Weather Forecast. 1999, 14, 933–954. [Google Scholar] [CrossRef]
- Alfaro, L. Estimación de Umbrales de Precipitaciones Extremas Para la Emisión de Avisos Meteorológicos. 2014. Nota Técnica 001-SENAMHI-DGM. Available online: https://issuu.com/senamhi_peru/docs/nota_t__cnica_001-_2014_umbrales_de (accessed on 7 June 2018). (In Spanish).
- Skamarock, W.; Klemp, J.; Dudhia, J. A Description of the Advanced Research WRF Version 3; NCAR Technical Note, NCAR/TN-468+STR; National Center for Atmospheric Research (NCAR), Mesoscale and Microscale Meteorology Division: Boulder, CO, USA, 2008. [Google Scholar]
- Mercader, J.; Codina, B.; Sairouni, A.; Cunillera, J. Resultados del modelo meteorológico WRF-ARW sobre Cataluña, utilizando diferentes parametrizaciones de la convección y la microfísica de nubes. Tethys 2010, 7, 77–89. (In Spanish) [Google Scholar] [CrossRef]
- Wardah, T.; Kamil, A.A.; Sahol Hamid, A.B.; Maisarah, W.W.I. Quantitative Precipitation Forecast using MM5 and WRF models for Kelantan River Basin. Int. J. Geol. Environ. Eng. 2011, 5, 712–716. [Google Scholar]
- Joon-Bum, J.; Sangil, K. Sensitivity Study on High-Resolution WRF Precipitation Forecast for a Heavy Rainfall Event. Atmosphere 2017, 8, 96. [Google Scholar] [CrossRef]
- Junquas, C.; Takahashi, K.; Condom, T.; Espinosa, J.-C.; Chavez, S.; Sicart, J.-E.; Lebel, T. Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Clim. Dyn. 2017, 1–23. [Google Scholar] [CrossRef]
- Chawla, I.; Osuri, K.; Mujumdar, P.; Niyogi, D. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin. Hydrol. Earth Syst. Sci. 2018, 22, 1095–1117. [Google Scholar] [CrossRef] [Green Version]
- Moya, A.S.; Martínez-Castro, D.; Flores, J.L.; Silva, Y. Sensitivity Study on the Influence of Parameterization Schemes in WRF_ARW Model on Short- and Medium-Range Precipitation Forecasts in the Central Andes of Peru. Adv. Meteorol. 2018. [Google Scholar] [CrossRef]
- Bischoff, S.A.; Vargas, W.M. The 500 and 1000 hPa weather type circulations and their relationship with some extreme climatic conditions over southern South America. Int. J. Clim. 2003, 23, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, S.A.; Vargas, W.M. Climatic properties of the daily 500 hPa circulation ECWMF reanalysis data over southern South America during 1980–1988. Meteorologica 2006, 23, 3–12. [Google Scholar]
- Compagnucci, R.H.; Salles, M.A. Surface pressure patterns during the year over southern South America. Int. J. Clim. 1997, 17, 635–653. [Google Scholar] [CrossRef]
- Kalnay, E.M.; Kanamitsu, R.; Kistler, W.; Collins, D.; Deaven, L.; Gandin, M.; Iredell, S.; Saha, G.; White, J.; Woollen, Y.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E.; Morris, S.C.; Belz, J.E. A Global Assessment of the SRTM Performance. Photogramm. Eng. Remote Sens. 2006, 3, 249–260. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Riley, D.; Hensley, S.; Kobrick, M.; Paller, M.; Rodríguez, E.; Ladislav, R.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007. [Google Scholar] [CrossRef]
- González, Y.; Mesquita, M. Numerical Simulations of the 1 May 2012 Deep Convection Event over Cuba: Sensitivity to Cumulus and Microphysical Schemes in a High-Resolution Model. Adv. Meteorol. 2015. [Google Scholar] [CrossRef]
- Orr, A.; Listowski, C.; Cottet, M.; Collier, E.; Immerzeel, W.; Deb, P.; Bannister, D. Sensitivity of simulated summer monsoonal precipitation in Langtang Valley, Himalaya, to cloud microphysics schemes in WRF. J. Geophys. Res. 2017, 122, 6298–6318. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.K.; Connolly, P.J.; Gallagher, M.W. Sensitivity of WRF cloud microphysics to simulations of a convective storm over the Nepal Himalayas. Open Atmos. Sci. J. 2017, 11, 29–43. [Google Scholar] [CrossRef]
- Rajeevan, M.; Kesarkar, A.; Thampi, S.B.; Rao, T.N.; Radhakrishna, B.; Rajasekhar, M. Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Ann. Geophys. 2010, 28, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Paulson, C.A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layerm. J. Appl. Meteorol. 1970, 9, 857–861. [Google Scholar] [CrossRef]
- Dyer, A.J.; Hicks, B.B. Flux–gradient relationships in the constant fluxlayer. Q. J. R. Meteorol. Soc. 1970, 96, 715–721. [Google Scholar] [CrossRef]
- Webb, E.K. Profile relationships: The log-linear range, and extension to strong stability. Q. J. R. Meteorol. Soc. 1970, 96, 67–90. [Google Scholar] [CrossRef]
- Zhang, D.; Anthes, R.A. A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol. 1982, 21, 1594–1609. [Google Scholar] [CrossRef]
- Beljaars, A.C.M. The parameterization of surface fluxes in large-scale models under free convection. Q. J. R. Meteorol. Soc. 1994, 12, 255–270. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting, 16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 14 January 2004; pp. 11–15. [Google Scholar]
- Weisman, M.L.; Davis, C.; Wang, W.; Manning, K.W.; Klemp, J.B. Experience with 0–36 h explicit convective forecast with the WRF-ARW model. Weather Forecast. 2008, 407–437. [Google Scholar] [CrossRef]
- Molinari, J.; Dudek, M. Parametrization of convective precipitacion in mesoscale numerical models: A critical review. Mon. Weather Rev. 1992, 120, 326–344. [Google Scholar] [CrossRef]
- Belair, S.; Mailhot, J. Impact of horizontal resolution on the numerical simulation of a midlatitude squall line: Implicit versus explicit condensation. Mon. Weather Rev. 2001, 129, 2362–2375. [Google Scholar] [CrossRef]
- Done, J.; Christopher, A.D.; Weisman, M.L. The next generation of nwp: Explicit forecasts of convection using the weather research and forecast (WRF) model. Atmos. Sci. Lett. 2004, 5, 110–117. [Google Scholar] [CrossRef]
- Cressman, G.P. An operational objective analysis system. Mon. Weather Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- Garreaud, R.; Vuille, M.; Clement, A.C. The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Paleogeogr. Paleoclimatol. Paleoecol. 2003, 194, 5–22. [Google Scholar] [CrossRef]
- Roberts, N.M.; Lean, H. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Rama Rao, Y.V.; Alves, L.; Seulall, B.; Mitchell, Z.; Samaroo, K.; Cummings, G. Evaluation of the weather research and forecasting (WRF) model over Guyana. Nat. Hazards 2012, 61, 1243–1261. [Google Scholar] [CrossRef]
- Yáñez-Morroni, G.; Gironás, L.; Caneo, M.; Delgado, R.; Garreaud, R. Using the Weather Research and Forecasting (WRF) Model for Precipitation Forecasting in an Andean Region with Complex Topography. Atmosphere 2018, 9, 304. [Google Scholar] [CrossRef]
Fechas | |||
---|---|---|---|
7 April 2009 | 4 April 2010 | 17 February 2011 | 10 December 2011 |
8 April 2009 | 4 December 2010 | 12 March 2011 | 14 December 2011 |
11 April 2009 | 7 January 2011 | 13 March 2011 | 25 December 2011 |
22 November 2009 | 14 January 2011 | 21 March 2011 | 6 February 2012 |
28 November 2009 | 22 January 2011 | 29 March 2011 | 28 February 2012 |
17 December 2009 | 25 January 2011 | 1 April 2011 | 4 April 2012 |
10 January 2010 | 29 January 2011 | 5 April 2011 | 22 April 2012 |
7 April 2009 | 4 April 2010 | 17 February 2011 | 10 December 2011 |
8 April 2009 | 4 December 2010 | 12 March 2011 | 14 December 2011 |
11 April 2009 | 7 January 2011 | 13 March 2011 | 25 December 2011 |
Characteristics | Domain 1 (D1) | Domain 2 (D2) | Domain 3 (D3) | Domain 4 (D4) |
---|---|---|---|---|
Central point | Lat: 10° S Lon: 75° W | Lat: 12.25819° S Lon: 74.8356° W | Lat: 12.36526° S Lon: 75.0274° W | Lat: 11.96349° S Lon: 75.3562° W |
Horizontal step | 18 km | 6 km | 3 km | 0.75 km |
Dimensions (XYZ) | 115 × 140 × 28 | 115 × 142 × 28 | 127 × 163 × 28 | 113 × 121 × 28 |
Time step | 90 s | 36 s | 18 s | 4 s |
Initial and border conditions | FNL (1°) | Simulation of domain 1 | Simulation of domain 2 | Simulation of domain 3 |
Statistics | D1 | D2 | D3 | D4 |
---|---|---|---|---|
B (mm/day) | −9.40 (49.5%) | −11.07 (58.3%) | −11.74 (61.8%) | −11.71 (61.6%) |
RMSE (mm/day) | 11.68 | 13.14 | 12.86 | 12.60 |
MAE (mm/day) | 13.95 | 15.14 | 15.07 | 14.51 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moya-Álvarez, A.S.; Gálvez, J.; Holguín, A.; Estevan, R.; Kumar, S.; Villalobos, E.; Martínez-Castro, D.; Silva, Y. Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru. Atmosphere 2018, 9, 362. https://doi.org/10.3390/atmos9090362
Moya-Álvarez AS, Gálvez J, Holguín A, Estevan R, Kumar S, Villalobos E, Martínez-Castro D, Silva Y. Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru. Atmosphere. 2018; 9(9):362. https://doi.org/10.3390/atmos9090362
Chicago/Turabian StyleMoya-Álvarez, Aldo S., José Gálvez, Andrea Holguín, René Estevan, Shailendra Kumar, Elver Villalobos, Daniel Martínez-Castro, and Yamina Silva. 2018. "Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru" Atmosphere 9, no. 9: 362. https://doi.org/10.3390/atmos9090362