The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Abstract
:1. Introduction
2. Methods
2.1. Burn Sites and Cases
2.2. Models
2.3. Meteorological and Smoke Data
3. Results and Discussion
3.1. Synoptic Patterns
3.2. Evaluation of Daysmoke Simulations at Eglin
3.3. Daysmoke Simulation of Prescribed Burning at Stewart
3.4. PB-P Simulations of Prescribed Burning at Stewart
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goodrick, S.A.; Achtemeier, G.L.; Larkin, N.K.; Liu, Y.-Q.; Strand, T.M. Modelling smoke transport from wildland fires: A review. Int. J. Wildl. Fire 2012, 22, 83–94. [Google Scholar] [CrossRef]
- Lavdas, L.G. Program VSMOKE—Users Manual; USDA Forest Service, Southeastern Forest Experiment Station, General Technical Report SRS-6. (Macon GA); US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 1996.
- Sestak, M.L.; Riebau, A.R. SASEM, Simple Approach Smoke Estimation Model; Technical Note 382; US Bureau of Land Management: Denver, CO, USA, 1988.
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modeling grassland fires. Int. J. Wildl. Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Achtemeier, G.L.; Goodrick, S.A.; Liu, Y.-Q.; Garcia-Menendez, F.; Hu, Y.; Odman, M.T. Modeling smoke plume-rise and dispersion from southern United States prescribed burns with Daysmoke. Atmosphere 2011, 2, 358–388. [Google Scholar] [CrossRef]
- Achtemeier, G.L. Planned Burn—Piedmont. A local operational numerical meteorological model for tracking smoke on the ground at night: Model development and sensitivity tests. Int. J. Wildl. Fire 2005, 14, 85–98. [Google Scholar] [CrossRef]
- Appel, K.W.; Napelenok, S.L.; Foley, K.M.; Pye, H.O.; Hogrefe, C.; Luecken, D.J.; Bash, J.O.; Roselle, S.J.; Pleim, J.E.; Foroutan, H.; et al. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev. 2017, 10, 1703–1732. [Google Scholar] [CrossRef]
- Scire, J.S. CALPUFF: Overview of capabilities. In Proceedings of the Technical Highlights of EPA’s 7th Conference on Air Pollution Modeling, Raleigh, NC, USA, 1 August 2000; Available online: www.epa.gov/scram001/7thconf/information/t029day1.pdf (accessed on 11 July 2018).
- Draxler, R.R.; Rolph, C.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 2003. Available online: http://www.arl.noaa.gov/ready/hysplit4.html (accessed on 11 July 2018).
- Larkin, N.K.; O’Neill, S.M.; Solomon, R.; Raffuse, S.; Strand, T.; Sullivan, D.C.; Ferguson, S.A. The BlueSky Smoke Modeling Framework. Int. J. Wildl. Fire 2010, 18, 906–920. [Google Scholar] [CrossRef]
- Mandel, J.; Beezley, J.D.; Kochanski, A.K. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE. Geosci. Model Dev. 2011, 4, 591–610. [Google Scholar] [CrossRef] [Green Version]
- Kochanski, A.K.; Jenkins, M.A.; Yedinak, K.; Mandel, J.; Beezley, J.; Lamb, B. Toward an integrated system for fire, smoke, and air quality simulations. Int. J. Wildl. Fire 2015, 25, 558–568. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Kochanski, A.; Baker, K.; Mell, R.; Linn, R.; Paugam, R.; Mandel, J.; Fournier, A.; Jenkins, M.A.; Goodrick, S.; et al. Fire behavior and smoke modeling: Model improvement and measurement needs for next-generation operational smoke prediction systems. Int. J. Wildl. Fire 2018. to be submitted. [Google Scholar]
- Briggs, G.A. Plume Rise Predictions. In Lectures on Air Pollution and Environmental Impact Analyses; American Meteorological Society: Boston, MA, USA, 1975; pp. 72–73. [Google Scholar]
- Achtemeier, G.L.; Goodrick, S.A.; Liu, Y.-Q. Modeling Multiple-Core Updraft Plume Rise for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular Automata Fire Model. Atmosphere 2012, 3, 352–376. [Google Scholar] [CrossRef] [Green Version]
- Ottmar, R.; Brown, T.J.; French, N.H.F.; Larkin, N.K. Fire and Smoke Model Evaluation Experiment (FASMEE) Study Plan, Joint Fire Science Program Project #15-S-01-01. 2017. Available online: https://www.fasmee.net/study-plan/ (accessed on 11 July 2018).
- Prichard, S.J.; Sandberg, D.V.; Ottmar, R.D.; Campbell, P.W. FCCS User’s Guide (Version 2.0). 2015. Available online: https://www.researchgate.net/publication/254495982_FCCS_User’s_Guide_Version_20 (accessed on 11 July 2018).
- Anderson, G.K.; Sandberg, D.V.; Norheim, R.A. Fire Emission Production Simulator (FEPS) User’s Guide (Version 1.0). 2004. Available online: https://www.fs.fed.us/pnw/fera/feps/FEPS_users_guide.pdf (accessed on 11 July 2018).
- Liu, Y.-Q.; Goodrick, S.; Achtemeier, G.; Jackson, W.A.; Qu, J.J.; Wang, W. Smoke incursions into urban areas: Simulation of a Georgia prescribed burn. Int. J. Wildl. Fire 2009 18, 336–348. [CrossRef]
- Liu, Y.-Q.; Achtemeier, G.; Goodrick, S.; Jackson, W.A. Important parameters for smoke plume rise simulation with Daysmoke. Atmos. Pollut. Res. 2010, 1, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Linn, R.R.; Reisner, J.; Colmann, J.J.; Winterkamp, J. Studying wildfire behavior using FIRETEC. Int. J. Wildl. Fire 2002, 11, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Sci. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-Q.; Goodrick, S.; Achtemeier, G.; Forbus, K.; Combs, D. Smoke plume height measurement of prescribed burns in the south-eastern United States. Int. J. Wildl. Fire 2012, 22, 130–147. [Google Scholar] [CrossRef]
Physical Process | Scheme | Property |
---|---|---|
Short-wave radiation | Dudhia scheme | Simple downward integration allowing efficiently for clouds and clear-sky absorption and scattering |
Long-wave radiation | Rapid Radiative Transfer Model | An accurate scheme using look-up tables for efficiency. Accounts for multiple bands, and microphysics species. |
Convection | Kain-Fritsch scheme | Deep and shallow convection sub-grid scheme using a mass flux approach with downdrafts and CAPE removal time scale |
PBL | Yonsei University scheme | Non-local-K scheme with explicit entrainment layer and parabolic K profile in unstable mixed layer |
Surface layer | MM5 similarity | Based on Monin-Obukhov with Carslon-Boland viscous sub-layer and standard similarity functions from look-up tables |
Land surface | Thermal diffusion | Soil temperature only scheme. Five layers. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Goodrick, S.; Achtemeier, G. The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site. Atmosphere 2018, 9, 259. https://doi.org/10.3390/atmos9070259
Liu Y, Goodrick S, Achtemeier G. The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site. Atmosphere. 2018; 9(7):259. https://doi.org/10.3390/atmos9070259
Chicago/Turabian StyleLiu, Yongqiang, Scott Goodrick, and Gary Achtemeier. 2018. "The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site" Atmosphere 9, no. 7: 259. https://doi.org/10.3390/atmos9070259
APA StyleLiu, Y., Goodrick, S., & Achtemeier, G. (2018). The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site. Atmosphere, 9(7), 259. https://doi.org/10.3390/atmos9070259