Machine Learning Models Coupled with Variational Mode Decomposition: A New Approach for Modeling Daily Rainfall-Runoff
Abstract
:1. Introduction
2. Methodology
2.1. Discrete Wavelet Transform (DWT)
2.2. Variational Mode Decomposition (VMD)
2.3. Extreme Learning Machine (ELM)
2.4. Least Squares Support Vector Regression (LSSVR)
2.5. Artificial Neural Network (ANN)
2.6. VMD and DWT-based MLM Modeling
- Step 1.
- Training and testing data sets are decomposed into multiple IMFs by the VMD and an approximation and multiple details by the DWT, respectively.
- Step 2.
- For each decomposed training data set, single MLMs (ELM, LSSVR, and ANN) are developed.
- Step 3.
- The final estimates of streamflow time series are obtained by aggregating the sub-time series estimated from the single MLMs, respectively.
2.7. Quantitative Performance Indices
3. Study Area and Observed Data
4. Results and Discussion
4.1. Development of Hybrid and Single MLMs
- Step 1.
- Decompose input and target time series into IMFs for different K = [1, 20] and α = [5, 2000].
- Step 2.
- Add up the IMFs for each of the K and α values again and estimate the values of correlation coefficient (r) for the reconstructed and original time series.
- Step 3.
- Select the sets of K and α values for .
- Step 4.
- Select the optimal K and α values producing the best performance of VMD-based MLMs.
- Step 1.
- Select the potential influencing variables based on the lag times of input variables determined by autocorrelation function (ACF), partial autocorrelation function (PACF), cross-correlation function (CCF), and average mutual information (AMI).
- Step 2.
- Select five input sets for each model utilizing the variables selected in step 1 and all-possible-regression method [87], where Mallows’s Cp and adjusted r2 [87] are used as the criteria for selecting the sets. The Mallows’s Cp is minimized when the input set consists of only statistically significant variables. The adjusted r2 helps prevent overfitting since a penalty is given when adding variables to a model [87,88].
- Step 3.
- Select the optimal input set producing the best performance for each model based on quantitative performance indices.
4.2. Performance Assessment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Besaw, L.E.; Rizzo, D.M.; Bierman, P.R.; Hackett, W.R. Advances in ungauged streamflow prediction using artificial neural networks. J. Hydrol. 2010, 386, 27–37. [Google Scholar] [CrossRef]
- Yassen, Z.M.; Jaafar, O.; Deo, R.C.; Kisi, O.; Adamowski, J.; Quilty, J.; El-Shafie, A. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 2016, 542, 603–614. [Google Scholar] [CrossRef]
- Singh, H.; Sankarasubramanian, A. Systematic uncertainty reduction strategies for developing streamflow forecasts utilizing multiple climate models and hydrologic models. Water Resour. Res. 2014, 50, 1288–1307. [Google Scholar] [CrossRef] [Green Version]
- Wang, W. Stochasticity, Nonlinearity and Forecasting of Streamflow Processes; IOS Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Shalamu, A. Monthly and Seasonal Streamflow Forecasting in the Rio Grande Basin. Ph.D. Thesis, New Mexico State University, Las Cruces, NM, USA, 2009. [Google Scholar]
- Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J. Hydrol. 2015, 520, 224–243. [Google Scholar] [CrossRef]
- Kisi, O. Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering. Water Resour. Manag. 2015, 29, 5109–5127. [Google Scholar] [CrossRef]
- Toth, E. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrol. Earth Syst. Sci. 2009, 13, 1555–1566. [Google Scholar] [CrossRef] [Green Version]
- Shiri, J.; Kisi, O. Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J. Hydrol. 2010, 394, 486–493. [Google Scholar] [CrossRef]
- Rasouli, K.; Hsieh, W.W.; Cannon, A.J. Daily streamflow forecasting by machine learning methods with weather and climate inputs. J. Hydrol. 2012, 414–415, 284–293. [Google Scholar] [CrossRef]
- Sudheer, C.; Maheswaran, R.; Panigrahi, B.K.; Mathur, S. A hybrid SVM-PSO model for forecasting monthly streamflow. Neural Comput. Appl. 2014, 24, 1381–1389. [Google Scholar] [CrossRef]
- Yang, T.; Asanjan, A.A.; Welles, E.; Gao, X.; Sorooshian, S.; Liu, X. Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information. Water Resour. Res. 2017, 53, 2786–2812. [Google Scholar] [CrossRef]
- Okkan, U.; Serbes, Z.A. Rainfall-runoff modeling using least squares support vector machines. Environmetrics 2012, 23, 549–564. [Google Scholar] [CrossRef]
- Shabri, A.; Suhartono. Streamflow forecasting using least-squares support vector machines. Hydrol. Sci. J. 2012, 57, 1275–1293. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.R.; Cannon, A.J.; Hsieh, W.W. Forecasting daily streamflow using online sequential extreme learning machines. J. Hydrol. 2016, 537, 431–443. [Google Scholar] [CrossRef]
- Rezaie-Balf, M.; Kisi, O. New formulation for forecasting streamflow: Evolutionary polynomial regression vs. extreme learning machine. Hydrol. Res. 2017, 49, 939–953. [Google Scholar] [CrossRef]
- ASCE Task Committee. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- ASCE Task Committee. Artificial neural networks in hydrology. II: Hydrological applications. J. Hydrol. Eng. 2000, 5, 124–137. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; El-shafie, A.; Jaafar, O.; Afan, H.A.; Sayl, K.N. Artificial intelligence based models for stream-flow forecasting. J. Hydrol. 2015, 530, 829–844. [Google Scholar] [CrossRef]
- Fahimi, F.; Yassen, Z.M.; El-shafie, A. Application of soft computing based hybrid models in hydrological variables modeling: A comprehensive review. Theor. Appl. Climatol. 2017, 128, 875–903. [Google Scholar] [CrossRef]
- Fotovatikhah, F.; Herrera, M.; Shamshirband, S.; Chau, K.; Ardabili, S.F.; Piran, M.J. Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Eng. Appl. Comput. Fluid 2018, 12, 411–437. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W.; Li, Y.S. Predicting monthly streamflow using data–driven models coupled with data-preprocessing techniques. Water Resour. Res. 2009, 45, W08432. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W. Data-driven models for monthly streamflow time series prediction. Eng. Appl. Artif. Intell. 2010, 23, 1350–1367. [Google Scholar] [CrossRef] [Green Version]
- Gousheh, M. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401, 177–189. [Google Scholar] [CrossRef]
- Saghafian, B.; Anvari, S.; Morid, S. Effect of Southern Oscillation Index and spatially distributed climate data on improving the accuracy of Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and K-Nearest Neighbour streamflow forecasting models. Expert Syst. 2013, 30, 367–380. [Google Scholar] [CrossRef]
- Corzo, G.; Solomatine, D. Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting. Neural Netw. 2007, 20, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Shahrabi, J.; Abbaszadeh, P.; Tabanmehr, S. A new hybrid artificial neural networks for rainfall-runoff process modeling. Neurocomputing 2013, 121, 470–480. [Google Scholar] [CrossRef]
- Yang, C.-C.; Chen, C.-S. Application of integrated back-propagation network and self organizing map for flood forecasting. Hydrol. Process. 2009, 23, 1313–1323. [Google Scholar] [CrossRef]
- Wu, M.-C.; Lin, G.-F.; Lin, H.-Y. Improving the forecasts of extreme streamflow by support vector regression with the data extracted by self-organizing map. Hydrol. Process. 2012, 28, 386–397. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Chatterjee, C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J. Hydrol. 2010, 382, 20–33. [Google Scholar] [CrossRef]
- Jain, A.; Srinivasulu, S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Sedki, A.; Ouazar, D.; El Mazoudi, E. Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting. Expert Syst. Appl. 2009, 36 Pt 1, 4523–4527. [Google Scholar] [CrossRef]
- Cheng, C.; Niu, W.; Feng, Z.; Shen, J.; Chau, K. Daily reservoir runoff forecasting method using artificial neural network based on quantum-behaved particle swarm optimization. Water 2015, 7, 4232–4246. [Google Scholar] [CrossRef]
- Turan, M.E. Fuzzy systems tuned by swarm based optimization algorithms for predicting stream flow. Water Resour. Manag. 2016, 30, 4345–4362. [Google Scholar] [CrossRef]
- Xing, B.; Gan, R.; Liu, G.; Liu, Z. Monthly mean streamflow prediction based on bat algorithm-support vector machine. J. Hydrol. Eng. 2016, 21, 04015057. [Google Scholar] [CrossRef]
- Yassen, Z.M.; Ebtehaj, I.; Bonakdari, H.; Deo, R.C.; Mehr, A.D.; Mohtar, W.H.M.W.; Diop, L.; El-shafie, A.; Singh, V.P. Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. J. Hydrol. 2017, 554, 263–276. [Google Scholar] [CrossRef]
- Kisi, O.; Cimen, M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol. 2011, 399, 132–140. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, P.; Chen, G.; Guo, L. Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting. J. Hydrol. 2014, 519 Pt D, 2822–2831. [Google Scholar] [CrossRef]
- Adamowski, J.; Sun, K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390, 85–91. [Google Scholar] [CrossRef]
- Moosavi, V.; Talebi, A.; Hadian, M.R. Development of a hybrid wavelet packet-group method of data handling (WPGMDH) model for runoff forecasting. Water Resour. Manag. 2017, 31, 43–59. [Google Scholar] [CrossRef]
- Napolitano, G.; Serinaldi, F.; See, L. Impact of EMD decomposition and random initialization of weights in ANN hindcasting of daily stream flow series: An empirical examination. J. Hydrol. 2011, 406, 199–214. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Chen, Y. Monthly streamflow prediction using modified EMD-based support vector machine. J. Hydrol. 2014, 511, 764–775. [Google Scholar] [CrossRef]
- Wang, W.; Chau, K.; Qiu, L.; Chen, Y. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environ. Res. 2015, 139, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Chen, Z.; Xie, J.; Li, C. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. J. Hydrol. 2016, 532, 193–206. [Google Scholar] [CrossRef]
- Zhang, F.; Dai, H.; Tang, D. A conjunction method of wavelet transform-particle swarm optimization-support vector machine for streamflow forecasting. J. Appl. Math. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Dariane, A.B.; Azimi, S. Forecasting streamflow by combination of a genetic input selection algorithm and wavelet transforms using ANFIS models. Hydrol. Sci. J. 2016, 61, 585–600. [Google Scholar] [CrossRef]
- Wang, W.; Xu, D.; Chau, K.; Chen, S. Improved annual rainfall–runoff forecasting using PSO–SVM model based on EEMD. J. Hydroinform. 2013, 15, 1377–1390. [Google Scholar] [CrossRef]
- Barge, J.; Sharif, H.O. An ensemble empirical mode decomposition, self-organizing map, and linear genetic programming approach for forecasting river streamflow. Water 2016, 8, 247. [Google Scholar] [CrossRef]
- Baydaroğlu, Ő.; Koçak, K.; Duran, K. River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach. Meteorol. Atmos. Phys. 2018, 130, 349–359. [Google Scholar] [CrossRef]
- Wang, W.; Chau, K.; Xu, D.; Qiu, L.; Liu, C. The annual maximum flood peak discharge forecasting using hermite projection pursuit regression with SSO and LS method. Water Resour. Manag. 2017, 31, 461–477. [Google Scholar] [CrossRef]
- Gokhale, M.Y.; Khanduja, D.K. Time domain signal analysis using wavelet packet decomposition approach. Int. Commun. Netw. Syst. Sci. 2010, 3, 321–329. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hibert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, H.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Shi, P.; Yang, W. Precise feature extraction from wind turbine condition monitoring signals by using optimized variational mode decomposition. IET Renew. Power Gener. 2017, 11, 245–252. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Sun, G.; Chen, T.; Wei, Z.; Sun, Y.; Zang, H.; Chen, S. A carbon price forecasting model based on variational mode decomposition and spiking neural networks. Energies 2016, 9, 54. [Google Scholar] [CrossRef]
- Lahmiri, S. A variational mode decomposition approach for analysis and forecasting of economic and financial time series. Expert Syst. Appl. 2016, 55, 268–273. [Google Scholar] [CrossRef]
- Huang, N.; Yuan, C.; Cai, G.; Xing, E. Hybrid short term wind speed forecasting using variational mode decomposition and a weighted regularized extreme learning machine. Energies 2016, 9, 989. [Google Scholar] [CrossRef]
- Wang, H.; Hu, D. Comparison of SVM and LS-SVM for regression. In Proceedings of the 2005 International Conference on Neural Networks and Brain, Beijing, China, 13–15 October 2005; pp. 279–283. [Google Scholar] [CrossRef]
- Thissen, U.; Ustün, B.; Melssen, W.J.; Buydens, L.M. Multivariate calibration with least-squares support vector machines. Anal. Chem. 2004, 76, 3099–3105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, G.-J.; Cai, L.; Pan, H.-X. Comparison of extreme learning machine with support vector regression for reservoir permeability prediction. In Proceedings of the 2009 International Conference on Computational Intelligence and Security, Beijing, China, 11–14 December 2009; pp. 173–176. [Google Scholar] [CrossRef]
- Lee, K.-H.; Jang, M.; Park, K.; Park, D.-C.; Jeong, Y.-M.; Min, S.-Y. An efficient learning scheme for extreme learning machine and its application. Int. J. Comput. Sci. Electron. Eng. 2015, 3, 212–216. [Google Scholar]
- Chang, F.-J.; Chang, Y.-T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 2006, 29, 1–10. [Google Scholar] [CrossRef]
- Petrovic-Lazarevic, S.; Coghill, K.; Abraham, A. Neuro-fuzzy modelling in support of knowledge management in social regulation of access to cigarettes by minors. Knowl. Based Syst. 2004, 17, 57–60. [Google Scholar] [CrossRef]
- Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mallat, S.G. A theory of multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Luenberger, D.G.; Ye, Y. Linear and Nonlinear Programming, 3rd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods; Athena Scientific: Belmont, MA, USA, 1996. [Google Scholar]
- Li, J.; Wang, X.; Zhang, K. An efficient alternating direction method of multipliers for optimal control problems constrained by random Helmholtz equation. Numer. Algorithms 2017, 78, 161–191. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and application. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific: Singapore, 2002. [Google Scholar]
- Kisi, O. Modeling discharge-suspended sediment relationship using least square support vector machine. J. Hydrol. 2012, 456–457, 110–120. [Google Scholar] [CrossRef]
- Shuai, Y.; Song, T.; Wang, J.; Shen, H.; Zhan, W. A integrated IFCM-MPSO-SVM model for forecasting equipment support capability. J. Comput. 2017, 28, 233–245. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Zadeh, H.A.; Isazadeh, M.; Terzi, O. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ. Earth Sci. 2016, 75, 476. [Google Scholar] [CrossRef]
- Yuxia, H.; Hongtao, Z. Chaotic optimization method of SVM parameters selection for chaotic time series forecasting. Phys. Procedia 2012, 25, 588–594. [Google Scholar] [CrossRef]
- Alpaydin, E. Introduction to Machine Learning, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Dawson, C.W.; Abrahart, R.J.; See, L.M. HydroTest: A web-based toolbox of evaluation metrics for the standardized assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22, 1034–1052. [Google Scholar] [CrossRef]
- Dawson, C.W.; Wilby, R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25, 80–108. [Google Scholar] [CrossRef]
- Han River Flood Control Office. Water Resources Management Information System. Available online: http://www.wamis.go.kr (accessed on 25 January 2018).
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill Book Company: New York, NY, USA, 1988. [Google Scholar]
- Nourani, V.; Alami, M.T.; Aminfaar, M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22, 466–472. [Google Scholar] [CrossRef]
- Adamowski, J.; Chan, H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407, 28–40. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Chatterjee, C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394, 458–470. [Google Scholar] [CrossRef]
- Kim, S.; Kisi, O.; Seo, Y.; Singh, V.P.; Lee, C.-J. Assessment of rainfall aggregation and disaggregation using data-driven models and wavelet decomposition. Hydrol. Res. 2017, 49, 99–116. [Google Scholar] [CrossRef]
- Nourani, V.; Alami, M.T.; Vousoughi, F.D. Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. J. Hydrol. 2015, 524, 255–269. [Google Scholar] [CrossRef]
- Shafaei, M.; Kisi, O. Lake level forecasting using wavelet-SVR, wavelet-ANFIS and wavelet-ARMA conjunction models. Water Reour. Manag. 2016, 30, 79–97. [Google Scholar] [CrossRef]
- Montgomery, D.C.; George, C.R. Applied Statistics and Probability for Engineers, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Hoffmann, J.P.; Shafer, K. Linear Regression Analysis: Assumptions and Applications; NASW Press: Washington, DC, USA, 2015. [Google Scholar]
- Kim, S.; Shiri, J.; Kisi, O.; Singh, V.P. Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resour. Manag. 2013, 27, 2267–2286. [Google Scholar] [CrossRef]
- Rumelhart, D.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Pao, Y.H. Adaptive Pattern Recognition and Neural Networks; Addison-Wesley Publishing Company, Inc.: New York, NY, USA, 1988. [Google Scholar]
- Dai, H.; MacBeth, C. Effects of learning parameters on learning procedure and performance of a BPNN. Neural Netw. 1997, 10, 1505–1521. [Google Scholar] [CrossRef]
- Zell, A.; Mamier, G.; Mache, M.V.N.; Hübner, R.; Dörin, S.; Hermann, K.U. SNNS Stuttgart Neural Network Simulator v. 4.2, User Manual. University of Stuttgart/University of Tübingen, 1998. Available online: http://www.ra.cs.uni-tuebingen.de/downloads/SNNS/SNNSv4.2.Manual.pdf (accessed on 30 June 2018).
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Xavier-de-Souza, S.; Suykens, J.A.K.; Vandewalle, J.; Bolle, D. Coupled simulated annealing. IEEE Trans. Syst. Man Cybern. B 2010, 40, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Brabanter, K.D.; Suykens, J.A.K.; Moor, B.D. StatLSSVM User’s Guide. 2011. Available online: http://www.esat.kuleuven.be/sista/lssvmlab/StatLSSVM/manual.pdf (accessed on 30 June 2018).
- Brabanter, K.D.; Suykens, J.A.K.; Moor, B.D. Nonparametric regression via StatLSSVM. J. Stat. Softw. 2013, 55, 1–21. [Google Scholar] [CrossRef]
- Mall, R.; Suykens, J.A.K. Sparse reductions for fixed-size least squares support vector machines on large scale data. In Advances in Knowledge Discovery and Data Mining, PAKDD 2013, Lecture Notes in Computer Science; Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7818. [Google Scholar]
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W. Comparative study of different wavelet based neural network models for rainfall-runoff modeling. J. Hydrol. 2014, 515, 47–58. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, S.; Kisi, O.; Parasuraman, K.; Singh, V.P. River stage forecasting using wavelet packet decomposition and machine learning models. Water Resour. Manag. 2016, 30, 4011–4035. [Google Scholar] [CrossRef]
- Remesan, R.; Bray, M.; Mathew, J. Application of PCA and clustering methods in input selection of hybrid runoff models. J. Environ. Inform. 2018, 31, 137–152. [Google Scholar] [CrossRef]
- Adamowski, J.; Chan, H.F.; Prasher, S.O.; Ozga-Zielinski, B.; Sliusarieva, A. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour. Res. 2012, 48, 273–279. [Google Scholar] [CrossRef]
- Moosavi, V.; Vafakhah, M.; Shirmohammadi, B.; Behnia, N. A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour. Manag. 2013, 27, 1301–1321. [Google Scholar] [CrossRef]
- Chau, K.W. A split-step particle swarm optimization algorithm in river stage forecasting. J. Hydrol. 2007, 346, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-T.; Wu, X.-Y.; Chau, K.W. Multiple criteria rainfall-runoff model calibration using a parallel genetic algorithm in a cluster of computers. Hydrol. Sci. J. 2005, 50, 1069–1087. [Google Scholar] [CrossRef]
- Zhou, Y.; Tan, Y. GPU-based parallel particle swarm optimization. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 1493–1500. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K.-W.; Sivakumar, B. Neural network river forecasting through baseflow separation and binary-coded swarm optimization. J. Hydrol. 2015, 529 Pt 3, 1788–1797. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399, 394–409. [Google Scholar] [CrossRef] [Green Version]
Indices | Equations | Indices | Equations | ||
---|---|---|---|---|---|
Efficiency indices | Coefficient of efficiency | Efficiency indices | Mean squared relative error | ||
Index of agreement | Mean absolute relative error | ||||
Coefficient of determination | Relative volume error | ||||
Persistence index | Fourth root mean quadrupled error | ||||
Root mean square error | Effectiveness indices | Average absolute relative error | |||
Mean absolute error | Threshold statistics |
Models | Input Variables | Output Variables |
---|---|---|
ANN | R(t), QDP(t − 1), QDP(t), QGH(t), QHY(t − 1), QHY(t), QDC(t − 5), QDC(t − 1) | QDC(t) |
ELM | R(t − 1), R(t), QDP(t − 1), QDP(t), QGH(t), QHY(t − 1), QHY(t), QDC(t − 1) | QDC(t) |
LSSVR | R(t − 1), R(t), QDP(t − 1), QDP(t), QGH(t), QHY(t − 1), QHY(t), QDC(t − 1) | QDC(t) |
Models | IMFs | Input Variables | Output Variables |
---|---|---|---|
VMD-ANN | IMF 1 | IMF1R(t − p), IMF1DP(t − q), IMF1GH(t − r), IMF1HY(t − s), IMF1DC(t − u) (p = 0, 1, 2, 3, 5, 6, 7; q = 0, 1, 2, 4, 5, 6, 7; r = 2, 3, 4, 6, 7; s = 0, 1, …, 7; u = 1, 2, …, 7) | IMF1DC(t) |
IMF 2 | IMF2R(t − p), IMF2DP(t − q), IMF2GH(t − r), IMF2HY(t − s), IMF2DC(t − u) (p = 0, 1, …, 4, 6, 7; q = 0, 1, 2, 3, 5; r = 2, 3, …, 7; s = 0, 1, …, 7; u = 1, 2, …, 7) | IMF2DC(t) | |
IMF 3 | IMF3R(t − p), IMF3DP(t − q), IMF3GH(t − r), IMF3HY(t − s), IMF3DC(t − u) (p = 0, 2, 3, 4, 6, 7; q = 0, 1, 3, 4, 5, 6; r = 0, 1, …, 7; s = 0, 1, …, 6; u = 1, 2, …, 7) | IMF3DC(t) | |
IMF 4 | IMF4R(t − p), IMF4DP(t − q), IMF4GH(t − r), IMF4HY(t − s), IMF4DC(t − u) (p = 0, 1, …, 7; q = 1, 2, …, 7; r = 0, 1, …, 6; s = 0, 1, …, 5, 7; u = 1, 2, …, 7) | IMF4DC(t) | |
IMF 5 | IMF5R(t − p), IMF5DP(t − q), IMF5GH(t − r), IMF5HY(t − s), IMF5DC(t − u) (p = 0, 1, …, 7; q = 0, 1, 2, 3, 5, 6, 7; r = 0, 1, …, 5, 7; s = 0, 1, …, 7; u = 1, 2, 3, 4, 6, 7) | IMF5DC(t) | |
VMD-ELM | IMF 1 | IMF1R(t − p), IMF1DP(t − q), IMF1GH(t − r), IMF1HY(t − s), IMF1DC(t − u) (p = 0, 1, 2, 3, 5, 6, 7; q = 0, 1, 2, 4, 5, 6, 7; r = 2, 3, 4, 6, 7; s = 0, 1, 2, 3, 5, 6, 7; u = 1, 2, …, 7) | IMF1DC(t) |
IMF 2 | IMF2R(t − p), IMF2DP(t − q), IMF2GH(t − r), IMF2HY(t − s), IMF2DC(t − u) (p = 0, 1, 2, 3, 4, 6, 7; q = 0, 1, 2, 3, 5, 7; r = 0, 1, …, 7; s = 0, 1, …, 7; u = 1, 2, …, 7) | IMF2DC(t) | |
IMF 3 | IMF3R(t − p), IMF3DP(t − q), IMF3GH(t − r), IMF3HY(t − s), IMF3DC(t − u) (p = 0, 1, …, 4, 6, 7; q = 0, 1, 3, 4, …, 7; r = 0, 1, …, 7; s = 0, 1, …, 6; u = 1, 2, …, 7) | IMF3DC(t) | |
IMF 4 | IMF4R(t − p), IMF4DP(t − q), IMF4GH(t − r), IMF4HY(t − s), IMF4DC(t − u) (p = 0, 1, …, 7; q = 0, 1, …, 7; r = 0, 1, …, 6; s = 0, 1, …, 7; u = 1, 2, …, 7) | IMF4DC(t) | |
IMF 5 | IMF5R(t − p), IMF5DP(t − q), IMF5GH(t − r), IMF5HY(t − s), IMF5DC(t − u) (p = 0, 1, …, 7; q = 0, 1, 2, 3; r = 0, 1, …, 5, 7; s = 0, 1, …, 7; u = 1, 2, 3, 4, 6, 7) | IMF5DC(t) | |
VMD-LSSVR | IMF 1 | IMF1R(t − p), IMF1DP(t − q), IMF1GH(t − r), IMF1HY(t − s), IMF1DC(t − u) (p = 0, 1, …, 7; q = 0, 1, 2, 4, 5, 6, 7; r = 0, 1, …, 4, 6, 7; s = 0, 1, …, 7; u = 1, 2, …, 7) | IMF1DC(t) |
IMF 2 | IMF2R(t − p), IMF2DP(t − q), IMF2GH(t − r), IMF2HY(t − s), IMF2DC(t − u) (p = 0, 1, …, 4, 6, 7; q = 0, 1, 2, 3, 5, 7; r = 0, 1, 3, 4, …, 7; s = 0, 1, …, 7; u = 1, 2, …, 7) | IMF2DC(t) | |
IMF 3 | IMF3R(t − p), IMF3DP(t − q), IMF3GH(t − r), IMF3HY(t − s), IMF3DC(t − u) (p = 0, 2, 3, 4; q = 0, 1, 3, 4, 5, 6; r = 0, 1, …, 7; s = 0, 1, …, 6; u = 1, 2, …, 7) | IMF3DC(t) | |
IMF 4 | IMF4R(t − p), IMF4DP(t − q), IMF4GH(t − r), IMF4HY(t − s), IMF4DC(t − u) (p = 0, 1, …, 7; q = 1, 2, …, 7; r = 0, 1, …, 6; s = 0, 1, …, 7; u = 1, 2, …, 7) | IMF4DC(t) | |
IMF 5 | IMF5R(t − p), IMF5DP(t − q), IMF5GH(t − r), IMF5HY(t − s), IMF5DC(t − u) (p = 0, 1, …, 6; q = 0, 1, 2, 3, 5, 6, 7; r = 0, 1, …, 5, 7; s = 0, 1, …, 7; u = 1, 2, 3, 4, 6, 7) | IMF5DC(t) |
Models | Ds and As | Input Variables | Output Variables |
---|---|---|---|
DWT-ANN | D1 | D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u) (p = 0, 1, 2, 3; q = 0, 1, 2; r = 0; s = 0, 1, 2, 3; u = 1, 2, …, 7) | D1DC(t) |
D2 | D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u) (p = 1, 2, 3; q = 1, 2; r = 0, 1, 2; s = 0, 1, 2, 3; u = 1, 2, …, 6) | D2DC(t) | |
D3 | D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u) (p = 0, 1, 2, 3; q = 0, 1, 2, 3; r = 0, 1, 2, 3; s = 0, 1, 2, 3; u = 1, 2, …, 7) | D3DC(t) | |
A3 | A1R(t − p), A1DP(t − q), A1GH(t − r), A1HY(t − s), A1DC(t − u) (p = 0, 1, …, 4; q = 0, 1, …, 6; r = 0, 1, …, 7; s = 0, 1, …, 7; u = 1, 2, …, 7) | A3DC(t) | |
DWT-ELM | D1 | D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u) (p = 0, 1, 2, 3; q = 0, 1, 2; r = 0; s = 0, 1, 2, 3; u = 1, 2, …, 7) | D1DC(t) |
D2 | D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u) (p = 0; q = 0, 1, 2; r = 3; s = 0, 1, 2, 3; u = 1, 2, …, 7) | D2DC(t) | |
D3 | D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u) (p = 0, 1, 2; q = 0; r = 0, 1, 2, 3; s = 0, 1, 2, 3; u = 1, 2, …, 7) | D3DC(t) | |
A3 | A1R(t − p), A1DP(t − q), A1GH(t − r), A1HY(t − s), A1DC(t − u) (p = 0, 1, 2, 3, 6; q = 0, 1, …, 7; r = 0, 1, …, 7; s = 0, 1, …, 7; u = 1, 2, …, 7) | A3DC(t) | |
DWT-LSSVR | D1 | D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u) (p = 0, 1, 2, 3; q = 0, 1, 2; r = 1; s = 0, 1, 2, 3; u = 1, 2, …, 7) | D1DC(t) |
D2 | D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u) (p = 0, 1, 2; q = 0, 1, 2; r = 0, 1, 2; s = 0, 1, 2, 3; u = 1, 2, …, 6) | D2DC(t) | |
D3 | D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u) (p = 0, 1, 2, 3; q = 1; r = 0, 1, 2; s = 0, 1, 2, 3; u = 1, 2, …, 7) | D3DC(t) | |
A3 | A1R(t − p), A1DP(t − q), A1GH(t − r), A1HY(t − s), A1DC(t − u) (p = 5; q = 0, 1, 2, 3, 7; r = 0, 1, …, 7; s = 0, 1, …, 7; u = 1, 2, …, 7) | A3DC(t) |
Models | Architectures | Models | Architectures | ||
---|---|---|---|---|---|
VMD-ANN | IMF1 | 34-120-1 | DWT-ANN | D1 | 19-28-1 |
IMF2 | 33-151-1 | D2 | 18-69-1 | ||
IMF3 | 34-95-1 | D3 | 23-46-1 | ||
IMF4 | 36-76-1 | A3 | 35-59-1 | ||
IMF5 | 36-99-1 | DWT-ELM | D1 | 19-64-1 | |
VMD-ELM | IMF1 | 33-148-1 | D2 | 16-93-1 | |
IMF2 | 36-154-1 | D3 | 19-63-1 | ||
IMF3 | 36-122-1 | A3 | 36-96-1 | ||
IMF4 | 38-163-1 | DWT-LSSVR | D1 | 19-19-1 | |
IMF5 | 33-190-1 | D2 | 19-19-1 | ||
VMD-LSSVR | IMF1 | 37-37-1 | D3 | 19-19-1 | |
IMF2 | 35-35-1 | A3 | 29-29-1 | ||
IMF3 | 32-32-1 | ANN | 8-9-1 | ||
IMF4 | 37-37-1 | ELM | 8-30-1 | ||
IMF5 | 35-35-1 | LSSVR | 8-8-1 |
Models | CE | IOA | r2 | PI | RMSE (m3/s) | MAE (m3/s) | MSRE | MARE | RVE | R4MS4E (m3/s) | AARE (%) | TS1 (%) | TS5 (%) | TS25 (%) | TS50 (%) | TS75 (%) | TS100 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANN | 0.979 | 0.995 | 0.981 | 0.976 | 8.957 | 4.479 | 0.175 | 0.346 | −0.104 | 25.636 | 34.6 | 0.6 | 2.7 | 18.8 | 97.1 | 98.8 | 99.4 |
ELM | 0.981 | 0.995 | 0.982 | 0.979 | 8.502 | 3.873 | 0.228 | 0.283 | −0.011 | 22.894 | 28.3 | 2.2 | 12.6 | 58.2 | 90.3 | 96.1 | 97.8 |
LSSVR | 0.981 | 0.995 | 0.981 | 0.978 | 8.540 | 2.802 | 0.146 | 0.179 | 0.004 | 30.235 | 17.9 | 4.7 | 22.4 | 84.3 | 95.3 | 97.6 | 98.5 |
VMD-ANN | 0.990 | 0.998 | 0.991 | 0.989 | 6.067 | 3.002 | 0.117 | 0.224 | 0.054 | 15.376 | 22.4 | 3.1 | 16.0 | 71.6 | 91.6 | 96.9 | 98.2 |
VMD-ELM | 0.997 | 0.999 | 0.997 | 0.997 | 3.193 | 1.376 | 0.036 | 0.101 | −0.001 | 8.431 | 10.1 | 14.9 | 50.0 | 91.2 | 97.1 | 98.9 | 99.4 |
VMD-LSSVR | 0.998 | 0.999 | 0.998 | 0.998 | 2.887 | 1.418 | 0.042 | 0.110 | −0.008 | 6.193 | 11.0 | 11.0 | 47.5 | 89.3 | 96.5 | 98.8 | 99.4 |
DWT-ANN | 0.987 | 0.997 | 0.987 | 0.985 | 7.092 | 3.475 | 0.155 | 0.241 | −0.050 | 16.693 | 24.1 | 4.9 | 19.6 | 69.7 | 88.4 | 94.7 | 97.3 |
DWT-ELM | 0.995 | 0.999 | 0.996 | 0.995 | 4.200 | 1.693 | 0.039 | 0.112 | −0.003 | 10.877 | 11.2 | 11.3 | 43.3 | 90.1 | 97.0 | 98.9 | 99.4 |
DWT-LSSVR | 0.995 | 0.999 | 0.995 | 0.994 | 4.404 | 1.668 | 0.104 | 0.116 | 0.006 | 11.656 | 11.6 | 11.6 | 46.0 | 90.5 | 97.5 | 98.8 | 99.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y.; Kim, S.; Singh, V.P. Machine Learning Models Coupled with Variational Mode Decomposition: A New Approach for Modeling Daily Rainfall-Runoff. Atmosphere 2018, 9, 251. https://doi.org/10.3390/atmos9070251
Seo Y, Kim S, Singh VP. Machine Learning Models Coupled with Variational Mode Decomposition: A New Approach for Modeling Daily Rainfall-Runoff. Atmosphere. 2018; 9(7):251. https://doi.org/10.3390/atmos9070251
Chicago/Turabian StyleSeo, Youngmin, Sungwon Kim, and Vijay P. Singh. 2018. "Machine Learning Models Coupled with Variational Mode Decomposition: A New Approach for Modeling Daily Rainfall-Runoff" Atmosphere 9, no. 7: 251. https://doi.org/10.3390/atmos9070251
APA StyleSeo, Y., Kim, S., & Singh, V. P. (2018). Machine Learning Models Coupled with Variational Mode Decomposition: A New Approach for Modeling Daily Rainfall-Runoff. Atmosphere, 9(7), 251. https://doi.org/10.3390/atmos9070251