Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems
Abstract
:1. Introduction
CLOUD-MAP Multidisciplinary Collaborative Research
2. CLOUD-MAP Flight Campaign
2.1. 2016 and 2017 CLOUD-MAP Flight Campaign Overview
2.2. Operational Considerations and Barriers to Adoption
3. Sensor Integration, Calibration, and Validation
3.1. Determining Required Sensor Response
3.2. Observed Sensor Response
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hardesty, R.M.; Hoff, R.M. Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service; Technical Report NCAR/TN-488+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2012. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; The National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Netherlands: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Arya, S.P. Introduction to Micrometeorology, 2nd ed.; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Benjamin, S.G.; Schwartz, B.E.; Szoke, E.J.; Koch, S.E. The value of wind profiler data in U.S. weather forecasting. Bull. Am. Meteorl. Soc. 2004, 85, 1871–1886. [Google Scholar] [CrossRef]
- Stratman, D.R.; Coniglio, M.C.; Koch, S.E.; Xue, M. Use of multiple verification methods to evaluate forecasts of convection from hot- and cold-start convection-allowing models. Weather Forecast. 2013, 28, 119–138. [Google Scholar] [CrossRef]
- Frew, E.W.; Elston, J.; Argrow, B.; Houston, A.; Rasmussen, E. Sampling severe local storms and related phenomena: Using Unmanned Aircraft Systems. IEEE Robotics & Automation Mag. 2012, 19, 85–96. [Google Scholar]
- Teixeira, J.; Stevens, B.; Bretherton, C.S.; Cederwall, R.; Klein, S.A.; Lundquist, J.K.; Doyle, J.D.; Golaz, J.C.; Holtslag, A.A.M.; Randall, D.A.; et al. Parameterization of the Atmospheric Boundary Layer. Bull. Am. Meteorol. Soc. 2008, 89, 453–458. [Google Scholar] [CrossRef]
- Salazar, M. Facilitating innovation in diverse science teams through integrative capacity. Small Group Res. 2012, 43, 527–558. [Google Scholar] [CrossRef]
- National Research Council. Enhancing the Effectiveness of Team Science; The National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Harden, R. The integration ladder: A tool for curriculum planning and evaluation. Med. Educ. 2000, 34, 551–557. [Google Scholar] [PubMed]
- Avery, A.; Jacob, J. Optimal Strategies for Meteorological Measurements with Unmanned Aircraft; AIAA 2017-1375; AIAA SciTech Forum: Grapevine, TX, USA, 2017. [Google Scholar]
- Cosh, M.H.; Ochsner, T.E.; McKee, L.; Dong, J.; Basara, J.B.; Evett, S.R.; Hatch, C.E.; Small, E.E.; Steele-Dunne, S.C.; Zreda, M.; et al. The Soil Moisture Active Passive Marena Oklahoma In Situ Sensor Testbed (SMAP-MOISST): Testbed design and evaluation of in situ sensors. Vadose Zone J. 2016. [Google Scholar] [CrossRef]
- Sisterson, D.L.; Peppler, R.A.; Cress, T.S.; Lamb, P.J.; Turner, D.D. The ARM Southern Great Plains (SGP) Site. Meteorol. Monogr. 2016, 57, 6.1–6.14. [Google Scholar] [CrossRef]
- Brock, F.V.; Crawford, K.C.; Elliott, R.L.; Cuperus, G.W.; Stadler, S.J.; Johnson, H.L.; Eilts, M.D. The Oklahoma Mesonet: A technical overview. J. Atmos. Ocean. Technol. 1995, 12, 5–19. [Google Scholar] [CrossRef]
- McPherson, R.A.; Fiebrich, C.; Crawford, K.C.; Elliott, R.L.; Kilby, V.C.; Grimsley, D.L.; Martinez, J.E.; Basara, J.B.; Illston, B.G.; Morris, D.A.; et al. Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Ocean. Technol. 2007, 24, 301–321. [Google Scholar] [CrossRef]
- Witte, B.M.; Schlagenhauf, C.; Mullen, J.; Helvey, J.P.; Thamann, M.A.; Bailey, S.C. Fundamental turbulence measurement with Unmanned Aerial Vehicles; In Proceedings of 8th AIAA Atmospheric and Space Environments Conference, Washington, DC, USA, 13–17 June 2016; p. 3584. [Google Scholar]
- Bailey, S.C.; Witte, B.M.; Schlagenhauf, C.; Greene, B.R.; Chilson, P.B. Measurement of high reynolds number turbulence in the Atmospheric Boundary Layer Using Unmanned Aerial Vehicles. In Proceedings of the 10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, IL, USA, 6–9 July 2017. [Google Scholar]
- Hemingway, B.L.; Frazier, A.E.; Elbing, B.R.; Jacob, J.D. Vertical sampling scales for the atmospheric bourndary layer measurements from small unmanned aircraft systems (sUAS). Atmosphere 2017, 8, 176. [Google Scholar] [CrossRef]
- Elston, J.; Stachura, M.; Argrow, B.; Dixon, C.; Frew, E. Guidelines and best practices for FAA Certificate of Authorization applications for Small Unmanned Aircraft. In Proceedings of the Infotech@Aerospace 2011, St. Louis, MO, USA, 29–31 March 2011. [Google Scholar]
- Vömel, H.; Argrow, B.; Axisa, D.; Chilson, P.; Ellis, S.; Fladeland, M.; Frew, E.; Jacob, J.; Lord, M.; Moore, J.; et al. The NCAR/EOL Community Workshop On Unmanned Aircraft Systems For Atmospheric Research Final Report. Available online: https://www.eol.ucar.edu/node/13299 (accessed on 4 May 2018).
- “CM1 Homepage”, MM5 Community Model Homepage. Available online: www2.mmm.ucar.edu/people/bryan/cm1/ (accessed on 12 January 2018).
- Keeler, J.; Houston, A. Impact of UAS data on Supercell Evolution in an Observing System Simulation Experiment. In Proceedings of the American Meteorological Society 28th Conference on Weather Analysis and Forecasting and the 24th Conference on Numerical Weather Prediction; and the 21st Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, Seattle, WA, USA, 22–26 January 2017. [Google Scholar]
- Avery, A.; Jacob, J. Evaluation of low altitude icing conditions for Small Unmanned Aircraft; AIAA 2017-3929. In Proceedings of the 9th AIAA Atmospheric and Space Environments Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Couvreux, F.; Bazile, E.; Canut, G.; Seity, Y.; Lothon, M.; Lohou, F.; Nilsson, E. Boundary-layer turbulent processes and mesoscale variability represented by numerical weather prediction models during the BLLAST campaign. Atmos. Chem. Phys. 2016, 16(14), 8983–9002. [Google Scholar] [CrossRef] [Green Version]
- Privé, C.; Xie, Y.; Woolen, J.; Koch, S.; Atlas, R.; Hood, R. Evaluation of the Earth Systems Research Laboratory’s Global Observing System Simulation Experiment System. Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 19011. [Google Scholar] [CrossRef]
- Donnell, G.; Feight, J.; Lannan, N.; Jacob, J. Wind Characterization Using sUAS; AIAA 2018-2986; American Institute of Aeronautics and Astronautics AVIATION: Atlanta, GA, USA, 2018. [Google Scholar]
- Greene, B.R.; Segales, A.; Waugh, S.; Duthoit, S.; Chilson, P.B. Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems. Atmos. Meas. Tech. 2018. submitted. [Google Scholar] [CrossRef]
- Straka, J.M.; Rasmussen, E.; Fredrickson, S.E. A mobile mesonet for finescale meteorological observations. J. Atmos. Ocean. Technol. 1996, 13, 921–936. [Google Scholar] [CrossRef]
- Richardson, S.J.; Frederickson, S.E.; Brock, F.V.; Brotzge, J.A. Combination temperature and relative humidity probes: Avoiding large air temperature errors and associated relative humidity errors. In Proceedings of the AMS 10th Symposium on Meteorological Observations and Instrumentation, Phoenix, AZ, USA, 11–16 January 1998. [Google Scholar]
- Houston, A.; Laurence, R.J., III; Nichols, T.W.; Waugh, S.; Argrow, B.; Ziegler, C.L. Intercomparison of unmanned aircraft-borne and mobile mesonet atmospheric sensors. J. Atmos. Ocean. Technol. 2016, 33, 1569–1582. [Google Scholar] [CrossRef]
- Hanft, W.; Houston, A. An observational and modeling study of mesoscale air masses with high theta-e. Mon. Weather Rev. 2018. submitted. [Google Scholar] [CrossRef]
- Houston, A. The Sensitivity of simulated near-surface mesovortices to environmental vertical shear. In Proceedings of the 17th AMS Conference on Mesoscale Processes, San Diego, CA, USA, 24–27 July 2017. [Google Scholar]
- Houston, A.; Keeler, J. The impact of sensor response and airspeed on the representation of Atmospheric Boundary Layer phenomena by airborne instruments. J. Atmos. Ocean. Technol. 2018. submitted. [Google Scholar]
- Houston, A.; Chilson, P.; Islam, A.; Shankar, A.; Greene, B.; Segales, A.; Detweiler, C. PTH sensor siting on rotary-wing UAS. In Proceedings of the 19th AMS Symposium on Meteorological Observation and Instrumentation, Austin, TX, USA, 7–11 January 2018. [Google Scholar]
CLOUD-MAP | Year 1 2015–2016 | Year 2 2016–2017 | Year 3 2017–2018 | Year 4 2019–2019 |
---|---|---|---|---|
Science | Science tasks | Science tasks, plus 2017 Total Eclipse | Science tasks, plus science question | Science tasks, plus science question |
Technology | Sensors/Platforms | Sensors/platforms, plus 3–5 formation | Sensors/platforms, plus >10 formation | Sensors/platforms, plus 3–5 adaptive flight control |
Community Interaction | Perception focus groups, plus outreach | Perception, plus severe-weather risk, outreach, PR | Perception, plus risk, outreach, PR | Workshop and outreach |
Team-Science Development | Complimentary | Multidisciplinary | Interdisciplinary | Transdisciplinary |
Flights: 241 Flight hours: 25 | Flights: >500 Flight hours: >70 | |||
Collaboration Publications | Multidisciplinary conference: 5 | Multidisciplinary conference: 6 | Multi-university conference: 1 | |
Multi-university conference: 2 | Multi-university conference: 2 | Multidisciplinary, multi-university journal: 3 |
Meteorological Variables and Accuracies | Sensor Response Time | ||
---|---|---|---|
Temperature | ±0.2 C | Time | <5 s (Preferably < 1 s) |
Relative Humidity | ±5.0% | Operational Environmental Conditions | |
Pressure | ±1.0 hPa | Temperature | −30–40 C |
Wind Speed | ±0.5 m/s | Relative Humidity | 0–100% |
Wind Direction | ±5 Degrees Azimuth | Wind Speed | 0–45 m/s |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, J.D.; Chilson, P.B.; Houston, A.L.; Smith, S.W. Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems. Atmosphere 2018, 9, 252. https://doi.org/10.3390/atmos9070252
Jacob JD, Chilson PB, Houston AL, Smith SW. Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems. Atmosphere. 2018; 9(7):252. https://doi.org/10.3390/atmos9070252
Chicago/Turabian StyleJacob, Jamey D., Phillip B. Chilson, Adam L. Houston, and Suzanne Weaver Smith. 2018. "Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems" Atmosphere 9, no. 7: 252. https://doi.org/10.3390/atmos9070252
APA StyleJacob, J. D., Chilson, P. B., Houston, A. L., & Smith, S. W. (2018). Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems. Atmosphere, 9(7), 252. https://doi.org/10.3390/atmos9070252