Downscaling Atmosphere-Ocean Global Climate Model Precipitation Simulations over Africa Using Bias-Corrected Lateral and Lower Boundary Conditions
Abstract
:1. Introduction
1.1. Characteristics of the West African (WA) Monsoon System
1.2. Dynamic Downscaling with Regional Models: Simulating the African Summer Monsoon Climate
1.3. Bias Corrections
2. Models and Data
2.1. The GISS Atmosphere-Ocean Global Climate Model
2.2. Regional Climate Model, Version 3 (RM3)
3. Simulation Experiments: Computation of Bias Corrections
4. Results
4.1. JJAS Precipitation Accumulations
4.2. Pentad (5-Day Mean) Precipitation versus Latitude over WA
4.3. JJAS Mean Zonal Circulation for WA
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thorncroft, C.; Nguyen, H.; Zhang, C.; Peyrillé, P. Annual cycle of the West African monsoon: Regional circulations and associated water vapour transport. Q. J. R. Meteorol. Soc. 2011, 137, 129–147. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R. Seasonal evolution and variability associated with the West African monsoon system. J. Clim. 2004, 17, 3364–3377. [Google Scholar] [CrossRef]
- Mohino, E.; Janicot, S.; Bader, J. Sahel rainfall and decadal to multi-decadal sea-surface temperature variability. Clim. Dyn. 2011, 37, 419–440. [Google Scholar] [CrossRef]
- Jung, T.; Ferranti, L.; Tompkins, A.M. Response to the summer of 2003 Mediterranean SST anomalies over Europe and Africa. J. Clim. 2006, 19, 5439–5454. [Google Scholar] [CrossRef]
- Rowell, D. The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Clim. 2003, 16, 849–862. [Google Scholar] [CrossRef]
- Druyan, L. Studies of 21st century precipitation trends over West Africa. Int. J. Clim. 2011, 31, 1415–1424. [Google Scholar] [CrossRef]
- Nicholson, S. The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol. 2013, 2013, 453521. [Google Scholar] [CrossRef]
- Druyan, L.; Fulakeza, M. Downscaling GISS ModelE boreal summer climate over Africa. Clim. Dyn. 2016, 47, 3499–3515. [Google Scholar] [CrossRef]
- Lim, Y.-K.; Stefanova, L.B.; Chan, S.C.; Schubert, S.D.; O’Brien, J.J. High-resolution subtropical summer precipitation derived from dynamical downscaling of the NCEP/DOE reanalysis: How much small-scale information is added by a regional model? Clim. Dyn. 2011, 37, 1061–1080. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.; Fiorino, M.; Potter, G. NCEP-DEO AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Denis, B.; Laprise, R.; Caya, D.; Cote, J. Downscaling ability of one-way nested regional climate models: The Big-Brother Experiment. Clim. Dyn. 2002, 18, 627–646. [Google Scholar]
- Haensler, A.; Hagemann, S.; Jacob, D. Dynamical downscaling of ERA40 reanalysis data over southern Africa: Added value in the representation of seasonal rainfall characteristics. Int. J. Clim. 2011, 31, 2338–2349. [Google Scholar] [CrossRef]
- Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Davidson, O.; Hare, W.; Huq, S.; Karoly, D.; Kattsov, V.; et al. Climate Change 2007: Synthesis Report, The Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; 73p. [Google Scholar]
- Druyan, L.; Fulakeza, M. Downscaling reanalysis over continental Africa with a regional model: NCEP versus ERA Interim forcing. Clim. Res. 2013, 56, 181–196. [Google Scholar] [CrossRef]
- Diallo, I.; Sylla, M.; Giorgi, F.; Gaye, A.; Camara, M. Multi-model GCM-RCM ensemble-based projections of temperature and precipitation over West Africa for the early 21st century. Int. J. Geophys. 2012, 2012, 972896. [Google Scholar] [CrossRef]
- Patricola, C.; Cook, K. Northern African climate at the end of the 21st century: An integrated application of regional and global climate models. Clim. Dyn. 2010, 35, 193–212. [Google Scholar] [CrossRef]
- Vigaud, N.; Roucou, P.; Fontaine, B.; Sijikumar, S.; Tyteca, S. WRF/ARPEGE-CILMAT simulated climate trends over West Africa. Clim. Dyn. 2011, 36, 925–944. [Google Scholar] [CrossRef]
- Paeth, H.; Thamm, H.-P. Regional modeling of future African climate north of 15° S including greenhouse warming and land degradation. Clim. Chang. 2007, 83, 401–427. [Google Scholar] [CrossRef]
- Steiner, A.; Pal, J.; Rauscher, S.; Bell, J.; Diffenbaugh, N.; Boone, A.; Sloan, L.; Giorgi, F. Land surface coupling in regional model simulations of the West African monsoon. Clim. Dyn. 2009, 33, 869–892. [Google Scholar] [CrossRef]
- Moufouma-Okia, W.; Rowell, D. Impact of soil moisture initialization and lateral boundary conditions on regional climate model simulations of the West African monsoon. Clim. Dyn. 2010, 35, 213–229. [Google Scholar] [CrossRef]
- Alo, C.; Wang, G. Role of dynamic vegetation in regional climate predictions over West Africa. Clim. Dyn. 2010, 35, 907–922. [Google Scholar] [CrossRef]
- Giannini, A.; Salack, S.; Loudoun, T.; Ali, A.; Gaye, A.; Ndiaye, O. A unifying view of climate change in the Sahel linking inter-seasonal, interannual and long time scales. Environ. Res. Lett. 2013, 8, 024010. [Google Scholar] [CrossRef]
- Sylla, M.; Coppola, E.; Mariotti, L.; Giorgi, F.; Ruti, P.; Dell’Aquilla, A.; Bi, X. Multiyear simulation of the African climate using a regional climate model (RegCM3) with high resolution ERA-interim reanalysis. Clim. Dyn. 2010, 35, 231–247. [Google Scholar] [CrossRef]
- Sylla, M.; Giorgi, F.; Ruti, P.; Calmanti, S.; Dell’Aquila, A. The impact of deep convection on the West African summer monsoon climate: A regional climate model sensitivity study. Q. J. R. Meteorol. Soc. 2011, 137, 1417–1430. [Google Scholar] [CrossRef]
- Jones, C.; Giorgi, F.; Asrar, G. The coordinated regional downscaling experiment: CORDEX, An international downscaling link to CMIP5. CLIVAR Exch. 2011, 16, 34–39. [Google Scholar]
- Hernandez-Diaz, L.; Laprise, R.; Sushama, L.; Martynov, A.; Winger, K.; Dugas, B. Climate simulation over CORDEX Africa domain using the fifth generation Canadian Regional Climate Model (CRCM5). Clim. Dyn. 2013, 40, 1415–1433. [Google Scholar] [CrossRef]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.; Déqué, M.; Fernandez, J.; Haensler, A.; et al. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef]
- Adeniyi, M.O.; Dilau, K.A. Assessing the link between Atlantic Niño 1 and drought over West Africa using CORDEX regional climate models. Theor. Appl. Climatol. 2018, 131, 937–949. [Google Scholar] [CrossRef]
- Misra, V.; Kanamitsu, M. Anomaly nesting: A methodology to downscale seasonal climate simulations from AGCMs. J. Clim. 2004, 17, 3249–3262. [Google Scholar] [CrossRef]
- Rojas, M.; Seth, A. Simulation and sensitivity in a nested modeling system for South America. II. GCM boundary forcing. J. Clim. 2003, 16, 2454–2471. [Google Scholar] [CrossRef]
- Aryal, Y.; Zhu, J. On bias correction in drought frequency analysis based on climate models. Clim. Chang. 2017, 140, 361–374. [Google Scholar] [CrossRef]
- Miller, R.L.; Schmidt, G.A.; Nazarenko, L.S.; Tausnev, N.; Bauer, S.E.; DelGenio, A.D.; Kelley, M.; Lo, K.K.; Ruedy, R.; Shindell, D.T.; et al. CMIP5 historical simulations (1850-2012) with GISS ModelE2. J. Adv. Model. Earth Syst. 2014, 6, 441–478. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.A.; Ruedy, R.; Hansen, J.E.; Aleinov, I.; Bell, N.; Bauer, M.; Bauer, S.; Cairns, B.; Canuto, V.; Cheng, Y.; et al. Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J. Clim. 2006, 19, 153–192. [Google Scholar] [CrossRef]
- Schmidt, G.A.; Kelley, M.; Nazarenko, L.; Ruedy, R.; Russell, G.L.; Aleinov, I.; Bauer, M.; Bauer, S.E.; Bhat, M.K.; Bleck, R.; et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 2014, 6, 141–184. [Google Scholar] [CrossRef] [Green Version]
- Del Genio, A.; Yao, M.-S. Efficient cumulus parameterization for long-term climate studies. The GISS scheme. In Cumulus Parameterization; Monograph Series; Emanuel, K., Raymond, D., Eds.; American Meteorological Society: Boston, MA, USA, 1993; Volume 24, pp. 181–184. [Google Scholar]
- Del Genio, A.; Yao, M.-S.; Kovari, W.; Lo, K.-W. A prognostic cloud water parameterization for global climate models. J. Clim. 1996, 9, 270–304. [Google Scholar] [CrossRef]
- Kim, Y.; Moorcroft, P.R.; Aleinov, I.; Puma, M.J.; Kiang, N. Variability of phenology and fluxes of water and carbon with observed and simulated soil moisture in the Ent Terrestrial Biosphere Model (Ent TBM version 1.0.1.0.0). Geosci. Model. Dev. 2015, 8, 3837–3865. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multi-satellite precipitation analysis (TMPA): Quasi-global, multi-year, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Druyan, L.; Fulakeza, M.; Lonergan, P. Mesoscale analyses of West African summer climate: Focus on wave disturbances. Clim. Dyn. 2006, 27, 459–481. [Google Scholar] [CrossRef]
- Druyan, L.; Fulakeza, M.; Lonergan, P. The impact of vertical resolution on regional model simulation of the West African summer monsoon. Int. J. Clim. 2008, 28, 1293–1314. [Google Scholar] [CrossRef]
- Druyan, L.; Feng, J.; Cook, K.; Xue, Y.; Fulakeza, M.; Hagos, S.; Konare, A.; Moufouma-Okia, W.; Rowell, D.; Vizy, E. The WAMME regional model intercomparison study. Clim. Dyn. 2010, 35, 175–192. [Google Scholar] [CrossRef]
- Druyan, L.; Fulakeza, M. The impact of the Atlantic cold tongue on West African monsoon onset in regional model simulations for 1998–2002. Int. J. Clim. 2014, 35, 275–287. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Druyan, L.M.; Fulakeza, M. Downscaling Atmosphere-Ocean Global Climate Model Precipitation Simulations over Africa Using Bias-Corrected Lateral and Lower Boundary Conditions. Atmosphere 2018, 9, 493. https://doi.org/10.3390/atmos9120493
Druyan LM, Fulakeza M. Downscaling Atmosphere-Ocean Global Climate Model Precipitation Simulations over Africa Using Bias-Corrected Lateral and Lower Boundary Conditions. Atmosphere. 2018; 9(12):493. https://doi.org/10.3390/atmos9120493
Chicago/Turabian StyleDruyan, Leonard M., and Matthew Fulakeza. 2018. "Downscaling Atmosphere-Ocean Global Climate Model Precipitation Simulations over Africa Using Bias-Corrected Lateral and Lower Boundary Conditions" Atmosphere 9, no. 12: 493. https://doi.org/10.3390/atmos9120493
APA StyleDruyan, L. M., & Fulakeza, M. (2018). Downscaling Atmosphere-Ocean Global Climate Model Precipitation Simulations over Africa Using Bias-Corrected Lateral and Lower Boundary Conditions. Atmosphere, 9(12), 493. https://doi.org/10.3390/atmos9120493