Application of Integrated Artificial Neural Networks Based on Decomposition Methods to Predict Streamflow at Upper Indus Basin, Pakistan
Abstract
:1. Introduction
2. Study Area
3. Data Collection
4. Methodology
4.1. Artificial Neural Networks
4.1.1. Feed Forward Backpropagation
- (1)
- Calculate outputs for all hidden layer units using normalized input-output data pairs.
- (2)
- Calculate output values of the BP neural network.
- (3)
- Compute the global error E of the output node.
4.1.2. Radial Basis Function Neural Network
4.2. Discrete Wavelet Transform
4.3. Empirical Mode Decomposition and Ensemble Empirical Mode Decomposition
- (1)
- Initialize ensemble number En and the amplitude of the additional white noise.
- (2)
- Add a white noise series to the original time series and then a new time series can be obtained.
- (3)
- Decompose the new time series into several IMFs using a traditional EMD method.
- (4)
- Repeat steps (2) and (3) En times and add different white noise series at each time (In this work, En = 20 times).
- (5)
- Calculate the ensemble average values of all IMF components and residue components as the final result.
4.4. Decomposition of Original Data
4.4.1. Application of DWT
4.4.2. Applying EEMD
4.5. The Establishment of the Hybrid Artificial Neural Network
5. Results and Discussions
5.1. Model Development
5.2. Model Performance Evaluation
5.3. Results Analysis
5.4. Peak Value Analysis
6. Conclusions
- The results are improved by adding the temperature and precipitation to the model as input. All models that include (QTP) as input has performed with great accuracy. FFBP-QTP, RBFNN-QTP, DWT-FFPB-QTP, DWT-RBFNN-QTP, EEMD-FFBP-QTP, and EEMD-RBFNN-QTP are the best performing models based on inputs.
- Applied neural networks such as (FFBPNN and RBFNN), RBFNN has shown better results as compared to FFBBNN. Therefore, on an individual basis, RBFNN-QTP is considered to be a better model.
- Among applied decomposition methods (DWT and EEMD), EEMD has performed well in all cases. Both DWT and EEMD have significantly improved the results of individual-based neural network models.
- In comparison, it is revealed that, among FFBP-Q, FFBP-QTP, RBFNN-Q, RBFNN-QTP, DWT-FFBP-Q, DWT-FFPB-QTP, DWT-RBFNN-Q, DWT-RBFNN-QTP, EEMD-FFBP-Q, EEMD-FFBP-QTP, EEMD-RBFNN-Q, and EEMD-RBFNN-QTP EEMD-RBFNN-QTP gives the greatest accuracy.
- The EEMD method has the precision of monthly streamflow prediction. Meanwhile, it can be seen that EEMD-FFBP-QTP overtakes EEMD-RBF-QTP in terms of the performance indices and flow hydrograph.
- For peak value estimation during the flood season, EEMD-RBFNN-QTP increases the eligible rate (ER) from 67% of DWT-RBFNN-QTP to 82% at zone one (z1). For the zone two (z2) it increases from 85% to 91% and similarly for zone three (z3), EEMD-RBFNN-QTP dominates with an 89% eligible rate (ER) to 76% of DWT-RBFNN-QTP.
- Therefore, the optimum model for this research is EEMD-RBFNN-QTP and it attains the highest predicting capacity in all cases and all zones of UIB.
- Limitations and future directions: The quality and the quantity of data available are the success factors of an ANN application and this requirement cannot be easily met. Even though long historic records are accessible, we are not sure that circumstances stayed consistent over this period. Another major limitation of ANNs is the lack of physical concepts and relations. This makes the resulting ANN structure more complicated. Future investigations can be done on a large-deep foundation pit of a hydraulic structure rehabilitation program across the River Indus in the Punjab province of Pakistan. Construction and rehabilitation programs of hydraulic river structures invariably involve structural activities in the riverbed and efficient dewatering of construction sites always plays a crucial role for undisturbed structural works.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tayyab, M.; Zhou, J.; Zeng, X.; Chen, L.; Ye, L. Optimal application of conceptual rainfall-runoff hydrological models in the Jinshajiang River basin, China. Remote Sens. GIS Hydrol. Water Resour. 2015, 368, 227–232. [Google Scholar] [CrossRef]
- Fotovatikhah, F.; Herrera, M.; Shamshirband, S.; Chau, K.-W.; Ardabili, S.F.; Piran, M.J. Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Eng. Appl. Comput. Fluid Mech. 2018, 12, 411–437. [Google Scholar] [CrossRef]
- Penman, H.L. Weather, plant and soil factors in hydrology. Weather 1961, 16, 207–219. [Google Scholar] [CrossRef]
- Dariane, A.B.; Karami, F. Deriving hedging rules of multi-reservoir system by online evolving neural networks. Water Resour. Manag. 2014, 28, 3651–3665. [Google Scholar] [CrossRef]
- Boughton, W.; Droop, O. Continuous simulation for design flood estimation—A review. Environ. Model. Softw. 2003, 18, 309–318. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K.W.; Sivakumar, B. Neural network river forecasting through baseflow separation and binary-coded swarm optimization. J. Hydrol. 2015, 529, 1788–1797. [Google Scholar] [CrossRef]
- Cheng, C.T.; Chau, K.W. Flood control management system for reservoirs. Environ. Model. Softw. 2004, 19, 1141–1150. [Google Scholar] [CrossRef] [Green Version]
- Bürger, C.M.; Kolditz, O.; Fowler, H.J.; Blenkinsop, S. Future climate scenarios and rainfall–runoff modelling in the Upper Gallego catchment (Spain). Environ. Pollut. 2007, 148, 842–854. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sun, N.; Zhou, C.; Zhou, J.; Zhou, Y.; Zhang, J.; Zhou, Q. Flood forecasting based on an improved extreme learning machine model combined with the backtracking search optimization algorithm. Water 2018, 10, 1362. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, N.; Chen, L.; Ding, Y.; Zhou, J.; Zha, G.; Luo, G.; Dai, L.; Yang, X. Optimal operation of cascade reservoirs for flood control of multiple areas downstream: A case study in the Upper Yangtze River basin. Water 2018, 10, 1250. [Google Scholar] [CrossRef]
- Tayyab, M.; Zhou, J.; Dong, X.; Ahmad, I.; Sun, N. Rainfall-runoff modeling at Jinsha River basin by integrated neural network with discrete wavelet transform. Meteorol. Atmos. Phys. 2017, 1–11. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, S.; Singh, V.P. Machine learning model coupled with variational mode decomposition: A new approach for modeling daily rainfall-runoff. Atmosphere 2018, 9, 251. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W. Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399, 394–409. [Google Scholar] [CrossRef] [Green Version]
- Barge, J.T.; Sharif, H.O. An ensemble empirical mode decomposition, self-organizing map, and linear genetic programming approach for forecasting river streamflow. Water 2016, 8, 247. [Google Scholar] [CrossRef]
- Carlson, R.F.; Maccormick, A.J.A.; Watts, D.G. Application of linear random models to four annual streamflow series. Water Resour. Res. 1970, 6, 1070–1078. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Qin, H. A data-driven model based on fourier transform and support vector regression for monthly reservoir inflow forecasting. J. Hydro-Environ. Res. 2017, 18, 12–24. [Google Scholar] [CrossRef]
- Sudheer, K.P.; Gosain, A.K.; Rangan, D.M.; Saheb, S.M. Modelling evaporation using an artificial neural network algorithm. Hydrol. Process. 2002, 16, 3189–3202. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, Rev. ed; Holden-Day: San Francisco, CA, USA, 1976; Volume 31, pp. 238–242. [Google Scholar]
- Karami, F.; Dariane, A.B. Optimizing signal decomposition techniques in artificial neural network-based rainfall-runoff model. Int. J. River Basin Manag. 2017, 15, 1–8. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Kazempour, R.; Chau, K.-W.; Shamshirband, S.; Ghazvinei, P.T. Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 724–737. [Google Scholar] [CrossRef]
- Cheng, C.T.; Wu, X.Y.; Chau, K.W. Multiple criteria rainfall-runoff model calibration using a parallel genetic algorithm in a cluster of computers. Hydrol. Sci. J. 2005, 50, 1069–1087. [Google Scholar] [CrossRef]
- Chau, K.W. Use of meta-heuristic techniques in rainfall-runoff modelling. Water 2017, 9, 186. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; p. 14. [Google Scholar]
- Chen, H.L.; Rao, A.R. Linearity analysis on stationary segments of hydrologic time series. J. Hydrol. 2003, 277, 89–99. [Google Scholar] [CrossRef]
- Gilroy, K.L.; Mccuen, R.H. A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. J. Hydrol. 2012, 414, 40–48. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Xiao, M.; Chen, X. Evaluation of flood frequency under non-stationarity resulting from climate indices and reservoir indices in the East River basin, China. J. Hydrol. 2015, 527, 565–575. [Google Scholar] [CrossRef]
- Milly, P.; Julio, B.; Malin, F.; Robert, M.H.; Zbigniew, W.K.; Dennis, P.L.; Ronald, J.S. Stationarity is dead. Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Chau, K.W.; Cheng, C.T.; Qiu, L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Kisi, O. Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering. Water Resour. Manag. 2015, 29, 5109–5127. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, Z.; Xie, J.; Li, C. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. J. Hydrol. 2016, 532, 193–206. [Google Scholar] [CrossRef]
- Dariane, A.B.; Farhani, M.; Azimi, S. Long term streamflow forecasting using a hybrid entropy model. Water Resour. Manag. 2018, 32, 1439–1451. [Google Scholar] [CrossRef]
- Abdellatif, M.E.; Osman, Y.Z.; Elkhidir, A.M. Comparison of artificial neural networks and autoregressive model for inflows forecasting of roseires reservoir for better prediction of irrigation water supply in Sudan. Int. J. River Basin Manag. 2015, 13, 203–214. [Google Scholar] [CrossRef]
- Lin, G.F.; Wu, M.C. An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model. J. Hydrol. 2011, 405, 439–450. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobée, B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230, 244–257. [Google Scholar] [CrossRef]
- Sattari, M.T.; Yurekli, K.; Pal, M. Performance evaluation of artificial neural network approaches in forecasting reservoir inflow. Appl. Math. Model. 2012, 36, 2649–2657. [Google Scholar] [CrossRef]
- Lohani, A.K.; Goel, N.K.; Bhatia, K.K.S. Improving real time flood forecasting using fuzzy inference system. J. Hydrol. 2014, 509, 25–41. [Google Scholar] [CrossRef]
- Wang, W.; Nie, X.; Qiu, L. Support vector machine with particle swarm optimization for reservoir annual inflow forecasting. In Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence, Sanya, China, 23–24 October 2010; pp. 184–188. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Unsupervised feature learning and deep learning: A review and new perspectives. arXiv, 2012; arXiv:1206.5538. [Google Scholar]
- Xu, J.; Chen, Y.; Li, W.; Nie, Q.; Song, C.; Wei, C. Integrating wavelet analysis and BPANN to simulate the annual runoff with regional climate change: A case study of Yarkand River, Northwest China. Water Resour. Manag. 2014, 28, 2523–2537. [Google Scholar] [CrossRef]
- Sattari, M.T.; Apaydin, H.; Ozturk, F. Flow estimations for the Sohu Stream using artificial neural networks. Environ. Earth Sci. 2012, 66, 2031–2045. [Google Scholar] [CrossRef]
- Yilmaz, A.G.; Imteaz, M.A.; Jenkins, G. Catchment flow estimation using artificial neural networks in the mountainous Euphrates basin. J. Hydrol. 2011, 410, 134–140. [Google Scholar] [CrossRef]
- Abudu, S.; King, J.P.; Bawazir, A.S. Forecasting Monthly Streamflow of Spring-Summer Runoff Season in Rio Grande Headwaters Basin Using Stochastic Hybrid Modeling Approach. J. Hydrol. Eng. 2011, 16, 384–390. [Google Scholar] [CrossRef]
- Chokmani, K.; Ouarda, T.; Hamilton, S. Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques. J. Hydrol. 2008, 349, 383–396. [Google Scholar] [CrossRef]
- Nilsson, P.; Uvo, C.B.; Berndtsson, R. Monthly runoff simulation: Comparing and combining conceptual and neural network models. J. Hydrol. 2006, 321, 344–363. [Google Scholar] [CrossRef]
- Cannas, B.; Fanni, A.; See, L.; Sias, G. Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning. Phys. Chem. Earth 2006, 31, 1164–1171. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [Google Scholar] [CrossRef] [Green Version]
- Kisi, O.; Cimen, M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol. 2011, 399, 132–140. [Google Scholar] [CrossRef]
- Budu, K. Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting. J. Hydrol. Eng. 2013, 19, 1385–1400. [Google Scholar] [CrossRef]
- Abrahart, R.J.; See, L. Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments. Hydrol. Earth Syst. Sci. 2002, 6, 655–670. [Google Scholar] [CrossRef]
- Ajami, N.K.; Duan, Q.; Gao, X.; Sorooshian, S. Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results. Lang. Soc. 2006, 15, 267–283. [Google Scholar] [CrossRef]
- Coulibaly, P.; Haché, M.; Fortin, V.; Bobée, B. Improving daily reservoir inflow forecasts with model combination. J. Hydrol. Eng. 2005, 10, 91–99. [Google Scholar] [CrossRef]
- Hsu, K.L.; Moradkhani, H.; Sorooshian, S. A sequential Bayesian approach for hydrologic model selection and prediction. Water Resour. Res. 2009, 45, 1079. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W. Comparative study of different wavelet based neural network models for rainfall–runoff modeling. J. Hydrol. 2014, 515, 47–58. [Google Scholar] [CrossRef]
- Peng, T.; Zhou, J.; Zhang, C.; Fu, W. Streamflow forecasting using empirical wavelet transform and artificial neural networks. Water 2017, 9, 406. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, N.; Jia, B.; Peng, T. A novel decomposition-optimization model for short-term wind speed forecasting. Energies 2018, 11, 1752. [Google Scholar] [CrossRef]
- Sun, N.; Zhou, J.; Chen, L.; Jia, B.; Tayyab, M.; Peng, T. An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine. Energy 2018, 165, 939–957. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W.; Khan, M.M. Hybrid wavelet neuro-fuzzy approach for rainfall-runoff modeling. J. Comput. Civ. Eng. 2016, 30, 04014125. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W.; Khan, M.M. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction. J. Hydrol. 2016, 535, 211–225. [Google Scholar] [CrossRef]
- Wang, H.; Xing, C.; Yu, F. Study of the Hydrological Time Series Similarity Search Based on Daubechies Wavelet Transform; Springer: New York, NY, USA, 2014; pp. 2051–2057. [Google Scholar]
- Sang, Y.F. Improved wavelet modeling framework for hydrologic time series forecasting. Water Resour. Manag. 2013, 27, 2807–2821. [Google Scholar] [CrossRef]
- Ünal, N.E.; Aksoy, H.; Akar, T. Annual and monthly rainfall data generation schemes. Stoch. Environ. Res. Risk Assess. 2004, 18, 245–257. [Google Scholar] [CrossRef]
- Adamowski, J.; Prokoph, A. Determining the amplitude and timing of streamflow discontinuities: A cross wavelet analysis approach. Hydrol. Process. 2013, 28, 2782–2793. [Google Scholar] [CrossRef]
- Barzegar, R.; Adamowski, J.; Moghaddam, A.A. Application of wavelet-artificial intelligence hybrid models for water quality prediction: A case study in Aji-Chay River, Iran. Stoch. Environ. Res. Risk Assess. 2016, 30, 1–23. [Google Scholar] [CrossRef]
- Carl, G.; Kühn, I. Analyzing spatial ecological data using linear regression and wavelet analysis. Stoch. Environ. Res. Risk Assess. 2008, 22, 315–324. [Google Scholar] [CrossRef]
- Demyanov, V.; Soltani, S.; Kanevski, M.; Canu, S.; Maignan, M.; Savelieva, E.; Timonin, V.; Pisarenko, V. Wavelet analysis residual kriging vs. Neural network residual kriging. Stoch. Environ. Res. Risk Assess. 2001, 15, 18–32. [Google Scholar] [CrossRef]
- Deo, R.C.; Tiwari, M.K.; Adamowski, J.F.; Quilty, J.M. Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stoch. Environ. Res. Risk Assess. 2017, 31, 1211–1240. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, P.; Chen, G.; Guo, L. Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting. J. Hydrol. 2014, 519, 2822–2831. [Google Scholar] [CrossRef]
- Mehr, A.D.; Kahya, E.; Özger, M. A gene–wavelet model for long lead time drought forecasting. J. Hydrol. 2014, 517, 691–699. [Google Scholar] [CrossRef]
- Moosavi, V.; Malekinezhad, H.; Shirmohammadi, B. Fractional snow cover mapping from MODIS data using wavelet-artificial intelligence hybrid models. J. Hydrol. 2014, 511, 160–170. [Google Scholar] [CrossRef]
- Nourani, V.; Alami, M.T.; Aminfar, M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22, 466–472. [Google Scholar] [CrossRef]
- Nourani, V.; Komasi, M.; Mano, A. A multivariate Ann-wavelet approach for rainfall–runoff modeling. Water Resour. Manag. 2009, 23, 2877. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W.; Khan, M.M. Runoff forecasting using hybrid wavelet gene expression programming (WGEP) approach. J. Hydrol. 2015, 527, 326–344. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W.; Li, Y.S. Methods to improve neural network performance in daily flows prediction. J. Hydrol. 2009, 372, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.L.; Chau, K.W.; Li, Y.S. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 2009, 45, 2263–2289. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Chi, C.T.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, Z.; Liu, C. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol. 2014, 510, 293–298. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Ouarda, T.B.M.J. Long-term prediction of precipitation and hydrologic extremes with nonstationary oscillation processes. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, G.; Serinaldi, F.; See, L. Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination. J. Hydrol. 2011, 406, 199–214. [Google Scholar] [CrossRef]
- Wang, W.C.; Chau, K.W.; Qiu, L.; Chen, Y.B. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environ. Res. 2015, 139, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Kwokwing, C.; Xu, D.M.; Chen, X.Y. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag. 2015, 29, 2655–2675. [Google Scholar] [CrossRef]
- Li, X. Temporal structure of neuronal population oscillations with empirical model decomposition. Phys. Lett. A 2006, 356, 237–241. [Google Scholar] [CrossRef]
- Di, C.; Yang, X.; Wang, X. A four-stage hybrid model for hydrological time series forecasting. PLoS ONE. 2014, 9, e104663. [Google Scholar] [CrossRef]
- Wang, H.; Su, Z.; Cao, J.; Wang, Y.; Zhang, H. Empirical mode decomposition on surfaces. Graph. Model. 2012, 74, 173–183. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhang, F.; Tayyab, M.; Anjum, M.N.; Zaman, M.; Liu, J.; Farid, H.U.; Saddique, Q. Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper indus river basin. Atmos. Res. 2018, 213, 346–360. [Google Scholar] [CrossRef]
- Lutz, A.F.; Maat, H.W.T.; Biemans, H.; Shrestha, A.B.; Wester, P.; Immerzeel, W.W. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J. Clim. 2016, 36, 3988–4005. [Google Scholar] [CrossRef]
- Archer, D.R.; Forsythe, N.; Fowler, H.J.; Shah, S.M. Sustainability of water resources management in the indus basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci. 2010, 7, 1669–1680. [Google Scholar] [CrossRef]
- Fowler, H.J.; Archer, D.R.; Wagener, T.; Franks, S.; Gupta, H.V.; Bøgh, E.; Bastidas, L.; Nobre, C.; Galvão, C.O.D. Hydro-climatological variability in the Upper Indus basin and implications for water resources. In Proceedings of the International Symposium on Regional Hydrological Impacts of Climatic Variability & Change with An Emphasis on Less Developed Countries, Foz do Iguaçu, Brazil, 3–9 April 2005. [Google Scholar]
- Akhtar, M.; Ahmad, N.; Booij, M.J. The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar] [CrossRef]
- Archer, D.R.; Fowler, H.J. Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. J. Hydrol. 2008, 361, 10–23. [Google Scholar] [CrossRef]
- Mir, R.A.; Jain, S.K.; Saraf, A.K. Analysis of current trends in climatic parameters and its effect on discharge of Satluj River basin, western Himalaya. Nat. Hazards 2015, 79, 587–619. [Google Scholar] [CrossRef]
- Ye, Z.; Kim, M.K. Predicting electricity consumption in a building using an optimized back-propagation and levenberg–marquardt back-propagation neural network: Case study of a shopping mall in China. Sustain. Cities Soc. 2018, 42, 176–183. [Google Scholar] [CrossRef]
- Haykin, S.S.; Haykin, S.S.; Haykin, S.S.; Haykin, S.S. Neural Networks and Learning Machines; Pearson: Upper Saddle River, NJ, USA, 2009; Volume 3. [Google Scholar]
- Broomhead, D.S.; Lowe, D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2, 321–355. [Google Scholar]
- Noorollahi, Y.; Jokar, M.A.; Kalhor, A. Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers. Manag. 2016, 115, 17–25. [Google Scholar] [CrossRef]
- Xiong, T.; Bao, Y.; Hu, Z.; Chiong, R. Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms. Inf. Sci. 2015, 305, 77–92. [Google Scholar] [CrossRef]
- Niu, H.; Wang, J. Financial time series prediction by a random data-time effective RBF neural network. Soft Comput. 2014, 18, 497–508. [Google Scholar] [CrossRef]
- Wu, J.; Long, J.; Liu, M. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing 2015, 148, 136–142. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Nourani, V.; Singh, V.P.; Delafrouz, H. Three geomorphological rainfall–runoff models based on the linear reservoir concept. Catena 2009, 76, 206–214. [Google Scholar] [CrossRef]
- Djerbouai, S.; Souag-Gamane, D. Drought forecasting using neural networks, wavelet neural networks, and stochastic models: Case of the Algerois basin in North Algeria. Water Resour. Manag. 2016, 30, 2445–2464. [Google Scholar] [CrossRef]
- Maheswaran, R.; Khosa, R. Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci. 2012, 46, 284–295. [Google Scholar] [CrossRef]
- Liu, X.; Mi, Z.; Peng, L.; Mei, H. Study on the multi-step forecasting for wind speed based on EMD. In Proceedings of the International Conference on Sustainable Power Generation and Supply, Supergen, Nanjing, China, 6–7 April 2009; pp. 1–5. [Google Scholar]
- Debert, S.; Pachebat, M.; Valeau, V.; Gervais, Y. Ensemble-empirical-mode-decomposition method for instantaneous spatial-multi-scale decomposition of wall-pressure fluctuations under a turbulent flow. Exp. Fluids 2011, 50, 339–350. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, J.; Ye, L.; Meng, C. Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China. Environ. Earth Sci. 2016, 75, 531. [Google Scholar] [CrossRef]
Zone | Hyd. St | Lat (dd) | Lon (dd) | River | Basin | Area | Period | Years | AMS(cumec) |
---|---|---|---|---|---|---|---|---|---|
Z1 | Bunji | 35.7 | 74.6 | Indus | Indus | 142709 | 1962–2012 | 50 | 1792 |
Z2 | Besham Qila | 34.9 | 72.9 | Indus | Indus | 162393 | 1969–2012 | 44 | 2401 |
Z3 | Massan | 33 | 71.7 | Indus | Indus | 286000 | 1972–2012 | 41 | 3703 |
Clim.st | Latitude | Longitude | Elevation (m) | Zone |
---|---|---|---|---|
Sakardu | 35.2 | 75.7 | 2210 | Z1 |
Gupis | 36.2 | 73.4 | 2156 | Z1 |
Khunjerab | 36.9 | 75.4 | 5182 | Z1 |
Ziarat | 36.1 | 73.2 | 2100 | Z1 |
Bunji | 35.7 | 74.6 | 1372 | Z1 |
Gilgit | 35.9 | 74.3 | 1460 | Z2 |
Chilas | 35.4 | 74.1 | 1251 | Z2 |
Astore | 35.4 | 74.9 | 2168 | Z2 |
Chitral | 35.9 | 71.8 | 1500 | Z3 |
Drosh | 35.6 | 71.8 | 1465 | Z3 |
Dir | 35.2 | 71.9 | 1370 | Z3 |
Saidusharif | 34.7 | 72.4 | 962 | Z3 |
Peshawar | 34 | 71.6 | 360 | Z3 |
Risalpur | 34 | 72 | 305 | Z3 |
Kohat | 34 | 72.5 | 466 | Z3 |
Cherat | 33.8 | 71.9 | 1302 | Z3 |
Kakul | 34.2 | 73.3 | 1309 | Z3 |
Model | Inputs |
---|---|
BP-Q | Qt-1, Qt-11, Qt-12 |
BP-QTP | Qt-1, Qt-11, Qt-12, Tt-1, Tt-2, Tt-10, Tt-11, Tt-12, Pt-3, Pt-4, Pt-5 |
RBF-Q | Qt-1, Qt-11, Qt-12 |
RBF-QTP | Qt-1, Qt-11, Qt-12, Tt-1, Tt-2, Tt-10, Tt-11, Tt-12, Pt-3, Pt-4, Pt-5 |
D-BP-Q | Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2) |
D-BP-QTP | Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2), Tt-1(D1-D2, A2), Tt-2(D1-D2, A2), Tt-10(D1-D2, A2), Tt-11(D1-D2, A2), Tt-12(D1-D2, A2) Pt-3(D1-D2, A2), Pt-4(D1-D2, A2), Pt-5(D1-D2, A2) |
D-RBF-Q D-RBF-QTP | Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2) Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2), Tt-1(D1-D2, A2), Tt-2(D1-D2, A2), Tt-10(D1-D2, A2), Tt-11(D1-D2, A2), Tt-12(D1-D2, A2), Pt-3(D1-D2, A2), Pt-4(D1-D2, A2), Pt-5(D1-D2, A2) |
EM-BP-Q EM-BP-QTP EM-RBF-Q EM-BP-QTP | Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r) Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r), Tt-1(IMF1–IMF5, r), Tt-2(IMF1–IMF5, r), Tt-10(IMF1–IMF5, r), Tt-11(IMF1–IMF5, r), Tt-12(IMF1–IMF5, r), Pt-3(IMF1–IMF5, r), Pt-4(IMF1–IMF5, r), Pt-5(IMF1–IMF5, r) Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r) Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r), Tt-1(IMF1–IMF5, r), Tt-2(IMF1–IMF5, r), Tt-10(IMF1–IMF5, r), Tt-11(IMF1–IMF5, r), Tt-12(IMF1–IMF5, r), Pt-3(IMF1–IMF5, r), Pt-4(IMF1–IMF5, r), Pt-5(IMF1–IMF5, r) |
Model | Inputs |
---|---|
BP-Q | Qt-1, Qt-11, Qt-12 |
BP-QTP | Qt-1, Qt-11, Qt-12, Tt-1, Tt-11, Tt-12, Pt-3 |
RBF-Q | Qt-1, Qt-11, Qt-12 |
RBF-QTP | Qt-1, Qt-11, Qt-12, Tt-1, Tt-11, Tt-12, Pt-3 |
D-BP-Q | Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2) |
D-BP-QTP | Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2), Tt-1(D1-D2, A2), Tt-11(D1-D2, A2), Tt-12(D1-D2, A2)Pt-3(D1-D2, A2) |
D-RBF-Q D-RBF-QTP | Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2) Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2), Tt-1(D1-D2, A2), Tt-11(D1-D2, A2), Tt-12(D1-D2, A2), Pt-3(D1-D2, A2) |
EM-BP-Q EM-BP-QTP EM-RBF-Q EM-RBF-QTP | Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r) Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r), Tt-1(IMF1–IMF5, r), Tt-11(IMF1–IMF5, r), Tt-12(IMF1–IMF5, r), Pt-3(IMF1–IMF5, r) Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r) Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r), Tt-1(IMF1–IMF5, r), Tt-11(IMF1–IMF5, r), Tt-12(IMF1–IMF5, r), Pt-3(IMF1–IMF5, r) |
Model | Inputs |
---|---|
BP-Q | Qt-1, Qt-11, Qt-12 |
BP-QTP | Qt-1, Qt-11, Qt-12, Tt-1, Tt-11, Tt-12, Pt-4, Pt-5, Pt-6 |
RBF-Q | Qt-1, Qt-11, Qt-12 |
RBF-QTP | Qt-1, Qt-11, Qt-12, Tt-1, Tt-11, Tt-12, Pt-4, Pt-5, Pt-6 |
D-BP-Q | Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2) |
D-BP-QTP | Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2), Tt-1(D1-D2, A2), Tt-11(D1-D2, A2), Tt-12(D1-D2, A2), Pt-4(D1-D2, A2), Pt-5(D1-D2, A2), Pt-6 (D1-D2, A2) |
D-RBF-Q D-RBF-QTP | Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2) Qt-1(D1-D2, A2), Qt-11(D1-D2, A2), Qt-12(D1-D2, A2), Tt-1(D1-D2, A2), Tt-11(D1-D2, A2), Tt-12(D1-D2, A2), Pt-4(D1-D2, A2), Pt-5(D1-D2, A2), Pt-6 (D1-D2, A2) |
EM-BP-Q EM-BP-QTP EM-RBF-Q EM-RBF-QTP | Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r) Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r), Tt-1(IMF1–IMF5, r), Tt-11(IMF1–IMF5, r), Tt-12(IMF1–IMF5, r), Pt-4 (IMF1–IMF5, r), Pt-5 (IMF1–IMF5, r), Pt-6 (IMF1–IMF5, r) Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r) Qt-1(IMF1–IMF5, r), Qt-11(IMF1–IMF5, r), Qt-12(IMF1–IMF5, r), Tt-1(IMF1–IMF5, r), Tt-11(IMF1–IMF5, r), Tt-12(IMF1–IMF5, r), Pt-4 (IMF1–IMF5, r), Pt-5 (IMF1–IMF5, r), Pt-6 (IMF1–IMF5, r) |
Model | R | RMSE | Nash-EFF | MAPE | MAE |
---|---|---|---|---|---|
BP-Q | 2274 | ||||
BP-QTP | 2047 | ||||
RBF-Q | 1956 | ||||
RBF-QTP | 1861 | ||||
DWT-BP-Q | 1685 | ||||
DWT-BP-QTP | 0.85 | 1611 | |||
DWT-RBF-Q | 1522 | ||||
DWT-RBF-QTP | 1463 | ||||
EEMD-BP-Q | 1421 | ||||
EEMD-BP-QTP | 10 | 1193 | |||
EEMD-RBF-Q | 0.94 | 1037 | |||
EEMD-RBF-QTP | 921 |
Model | R | RMSE | Nash-EFF | MAPE | MAE |
---|---|---|---|---|---|
BP-Q | 2416 | ||||
BP-QTP | 2103 | ||||
RBF-Q | 2063 | ||||
RBF-QTP | 1901 | ||||
DWT-BP-Q | 1832 | ||||
DWT-BP-QTP | 0.83 | 1721 | |||
DWT-RBF-Q | 1768 | ||||
DWT-RBF-QTP | 1611 | ||||
EEMD-BP-Q | 1433 | ||||
EEMD-BP-QTP | 1265 | ||||
EEMD-RBF-Q | 1124 | ||||
EEMD-RBF-QTP | 1074 |
Model | R | RMSE | Nash-EFF | MAPE | MAE |
---|---|---|---|---|---|
BP-Q | 0.75 | 32 | 2189 | ||
BP-QTP | 0.79 | 25 | 1921 | ||
RBF-Q | 0.81 | 23 | 1785 | ||
RBF-QTP | 0.84 | 21 | 1642 | ||
DWT-BP-Q | 0.82 | 18 | 1539 | ||
DWT-BP-QTP | 0.86 | 18 | 1511 | ||
DWT-RBF-Q | 0.85 | 16 | 1488 | ||
DWT-RBF-QTP | 0.90 | 13 | 1269 | ||
EEMD-BP-Q | 0.86 | 12 | 1032 | ||
EEMD-BP-QTP | 0.91 | 9 | 999 | ||
EEMD-RBF-Q | 0.92 | 8 | 878 | ||
EEMD-RBF-QTP | 0.96 | 6 | 783 |
Model | R | RMSE | Nash-EFF | MAPE | MAE |
---|---|---|---|---|---|
BP-Q | 0.72 | 34 | 2298 | ||
BP-QTP | 0.76 | 29 | 1963 | ||
RBF-Q | 0.75 | 25 | 2122 | ||
RBF-QTP | 0.80 | 24 | 1752 | ||
DWT-BP-Q | 0.76 | 21 | 1740 | ||
DWT-BP-QTP | 0.82 | 19 | 1599 | ||
DWT-RBF-Q | 0.82 | 17 | 1523 | ||
DWT-RBF-QTP | 0.89 | 16 | 1478 | ||
EEMD-BP-Q | 0.85 | 14 | 1325 | ||
EEMD-BP-QTP | 0.90 | 11 | 1201 | ||
EEMD-RBF-Q | 0.91 | 9 | 1036 | ||
EEMD-RBF-QTP | 0.94 | 8 | 1011 |
Model | R | RMSE | Nash-EFF | MAPE | MAE |
---|---|---|---|---|---|
BP-Q | 0.69 | 31 | 2236 | ||
BP-QTP | 0.73 | 27 | 2147 | ||
RBF-Q | 0.76 | 26 | 2099 | ||
RBF-QTP | 0.80 | 21 | 1857 | ||
DWT-BP-Q | 0.85 | 18 | 1632 | ||
DWT-BP-QTP | 0.86 | 15 | 1596 | ||
DWT-RBF-Q | 0.87 | 14 | 1378 | ||
DWT-RBF-QTP | 0.90 | 12 | 1236 | ||
EEMD-BP-Q | 0.89 | 11 | 1147 | ||
EEMD-BP-QTP | 0.92 | 9 | 1009 | ||
EEMD-RBF-Q | 0.93 | 7 | 963 | ||
EEMD-RBF-QTP | 0.97 | 4 | 701 |
Model | R | RMSE | Nash-EFF | MAPE | MAE |
---|---|---|---|---|---|
BP-Q | 0.67 | 3422 | 0.60 | 35 | 2468 |
BP-QTP | 0.72 | 0.64 | 31 | 2297 | |
RBF-Q | 0.74 | 0.66 | 27 | 2231 | |
RBF-QTP | 0.79 | 0.69 | 23 | 2055 | |
DWT-BP-Q | 0.82 | 0.73 | 20 | 1865 | |
DWT-BP-QTP | 0.84 | 0.77 | 18 | 1637 | |
DWT-RBF-Q | 0.86 | 0.78 | 16 | 1511 | |
DWT-RBF-QTP | 0.89 | 0.81 | 15 | 1367 | |
EEMD-BP-Q | 0.87 | 0.79 | 13 | 1496 | |
EEMD-BP-QTP | 0.90 | 0.83 | 12 | 1247 | |
EEMD-RBF-Q | 0.90 | 0.85 | 10 | 1169 | |
EEMD-RBF-QTP | 0.94 | 0.87 | 9 | 999 |
Model | BP-Q | BP-QTP | RBF-Q | RBF-QTP | DM-BP-Q | DM-BP-QTP | DM-RBF-Q | DM-RBF-Q | EM-BP-Q | EM-BP-QTP | EM-RBF-Q | EM-RBF-QTP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ER% | 47% | 50% | 49% | 52% | 57% | 59% | 62% | 67% | 72% | 75% | 79% | 82% |
Model | BP-Q | BP-QTP | RBF-Q | RBF-QTP | DM-BP-Q | DM-BP-QTP | DM-RBF-Q | DM-RBF-Q | EM-BP-Q | EM-BP-QTP | EM-RBF-Q | EM-RBF-QTP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ER% | 61% | 64% | 67% | 71% | 77% | 79% | 82% | 85% | 87% | 88% | 89% | 91% |
Model | BP-Q | BP-QTP | RBF-Q | RBF-QTP | DM-BP-Q | DM-BP-QTP | DM-RBF-Q | DM-RBF-Q | EM-BP-Q | EM-BP-QTP | EM-RBF-Q | EM-RBF-QTP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ER% | 52% | 59% | 64% | 66% | 68% | 70% | 73% | 76% | 79% | 83% | 86% | 89% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayyab, M.; Ahmad, I.; Sun, N.; Zhou, J.; Dong, X. Application of Integrated Artificial Neural Networks Based on Decomposition Methods to Predict Streamflow at Upper Indus Basin, Pakistan. Atmosphere 2018, 9, 494. https://doi.org/10.3390/atmos9120494
Tayyab M, Ahmad I, Sun N, Zhou J, Dong X. Application of Integrated Artificial Neural Networks Based on Decomposition Methods to Predict Streamflow at Upper Indus Basin, Pakistan. Atmosphere. 2018; 9(12):494. https://doi.org/10.3390/atmos9120494
Chicago/Turabian StyleTayyab, Muhammad, Ijaz Ahmad, Na Sun, Jianzhong Zhou, and Xiaohua Dong. 2018. "Application of Integrated Artificial Neural Networks Based on Decomposition Methods to Predict Streamflow at Upper Indus Basin, Pakistan" Atmosphere 9, no. 12: 494. https://doi.org/10.3390/atmos9120494
APA StyleTayyab, M., Ahmad, I., Sun, N., Zhou, J., & Dong, X. (2018). Application of Integrated Artificial Neural Networks Based on Decomposition Methods to Predict Streamflow at Upper Indus Basin, Pakistan. Atmosphere, 9(12), 494. https://doi.org/10.3390/atmos9120494