A Study on Elevated Concentrations of Submicrometer Particles in an Urban Atmosphere
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines That Connect. J. Air Waste Manag. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Cassee, F.R.; Heroux, M.E.; Gerlofs-Nijland, M.E.; Kelly, F.J. Particulate Matter Beyond Mass: Recent Health Evidence on the Role of Fractions, Chemical Constituents and Sources of Emission. Inhal. Toxicol. 2013, 25, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Pöschl, U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Park, J.Y.; Kwak, J.-H.; Cho, G.N.; Kim, J.-S. Seasonal and Diurnal Variations of Ultrafine Particle Concentration in Urban Gwangju, Korea: Observation of Ultrafine Particle Events. Atmos. Environ. 2008, 42, 788–799. [Google Scholar] [CrossRef]
- Maskey, S.; Kim, J.S.; Cho, H.J.; Park, K. Ultrafine Particle Events in the Ambient Atmosphere in Korea. Asian J. Atmos. Environ. 2012, 6, 288–303. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; et al. Elucidating Severe Urban Haze Formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Park, J.; Kang, M.; Kim, D.; Batmunkh, T.; Bae, M.-S.; Park, K. Chemical Characteristics of Aerosols in Coastal and Urban Ambient Atmospheres. Aerosol Air Qual. Res. 2017, 17, 908–919. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Kim, Y.J. Tracking Sources of Severe Haze Episodes and Their Physicochemical and Hygroscopic Properties under Asian Continental Outflow: Long-Range Transport Pollution, Postharvest Biomass Burning, and Asian Dust. J. Geophys. Res. Atmos. 2011, 116, D02206. [Google Scholar] [CrossRef]
- Jung, J.; Lee, K.; Cayetano, M.G.; Batmunkh, T.; Kim, Y.J. Optical and Hygroscopic Properties of Long-Range Transported Haze Plumes Observed at Deokjeok Island Off the West Coast of the Korean Peninsula under the Asian Continental Outflows. J. Geophys. Res. Atmos. 2015, 120, 8861–8877. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Yue, D.; Shang, D.; Guo, S.; Sun, J.; Ding, A.; Wang, L.; Jiang, J.; Guo, H.; et al. New Particle Formation in China: Current Knowledge and Further Directions. Sci. Total Environ. 2017, 577, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ren, L.; Kanawade, V.P. New Particle Formation and Growth Mechanisms in Highly Polluted Environments. Curr. Pollut. Rep. 2017, 245–253. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Kang, M.; Cho, H.J.; Lee, K.; Park, K. Seasonal Characteristics of Submicrometer Organic Aerosols in Urban Gwangju, Korea Using an Aerosol Mass Spectrometer. Atmos. Environ. 2013, 80, 445–454. [Google Scholar] [CrossRef]
- Merikanto, J.; Spracklen, D.V.; Mann, G.W.; Pickering, S.J.; Carslaw, K.S. Impact of Nucleation on Global Ccn. Atmos. Chem. Phys. 2009, 9, 8601–8616. [Google Scholar] [CrossRef]
- Kulmala, M.; Vehkamäki, H.; Petäjä, T.; Dal Maso, M.; Lauri, A.; Kerminen, V.M.; Birmili, W.; McMurry, P.H. Formation and Growth Rates of Ultrafine Atmospheric Particles: A Review of Observations. J. Aerosol Sci. 2004, 35, 143–176. [Google Scholar] [CrossRef]
- McMurry, P.H.; Fink, M.; Sakurai, H.; Stolzenburg, M.R.; Mauldin, R.L.; Smith, J.; Eisele, F.; Moore, K.; Sjostedt, S.; Tanner, D.; et al. A Criterion for New Particle Formation in the Sulfur-Rich Atlanta Atmosphere. J. Geophys. Res. 2005, 110, D22S02. [Google Scholar] [CrossRef]
- Park, K.; Park, J.; Lee, S.; Cho, H.J.; Kang, M. Real Time Measurement of Chemical Composition of Submicrometer Aerosols at Urban Gwangju in Korea by Aerosol Mass Spectrometer. Atmos. Enviro. 2012, 62, 281–290. [Google Scholar] [CrossRef]
- Jayne, J.T.; Leard, D.C.; Zhang, X.; Davidovits, P.; Smith, K.A.; Kolb, C.E.; Worsnop, D.R. Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Technol. 2000, 33, 49–70. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.D.; Jimenez, J.L.; Williams, P.I.; Alfarra, M.R.; Bower, K.N.; Jayne, J.T.; Coe, H.; Worsnop, D.R. Quantitative Sampling Using an Aerodyne Aerosol Mass Spectrometer 1. Techniques of Data Interpretation and Error Analysis. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Takegawa, N.; Miyazaki, Y.; Kondo, Y.; Komazaki, Y.; Miyakawa, T.; Jimenez, J.L.; Jayne, J.T.; Worsnop, D.R.; Allan, J.D.; Weber, R.J. Characterization of an Aerodyne Aerosol Mass Spectrometer (Ams): Intercomparison with Other Aerosol Instruments. Aerosol Sci. Technol. 2005, 39, 760–770. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Jayne, J.T.; Shi, Q.; Kolb, C.E.; Worsnop, D.R.; Yourshaw, I.; Seinfeld, J.H.; Flagan, R.C.; Zhang, X.; Smith, K.A. Ambient Aerosol Sampling Using the Aerodyne Aerosol Mass Spectrometer. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Ulbrich, I.; Canagaratna, M.; Zhang, Q.; Worsnop, D.; Jimenez, J. Interpretation of Organic Components from Positive Matrix Factorization of Aerosol Mass Spectrometric Data. Atmos. Chem. Phys. 2009, 9, 2891–2918. [Google Scholar] [CrossRef]
- Ng, N.; Canagaratna, M.; Jimenez, J.; Zhang, Q.; Ulbrich, I.; Worsnop, D. Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data. Environ. Sci. Technol. 2010, 45, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Ulbrich, I.M.; Ng, N.L.; Worsnop, D.R.; Sun, Y. Understanding Atmospheric Organic Aerosols Via Factor Analysis of Aerosol Mass Spectrometry: A Review. Anal. Bioanal. Chem. 2011, 401, 3045–3067. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Rosen, H.; Novakov, T. The Aethalometer—an Instrument for the Real-Time Measurement of Optical Absorption by Aerosol Particles. Sci. Total Environ. 1984, 36, 191–196. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Lin, M.-H. Real-Time Performance of the Microaeth® Ae51 and the Effects of Aerosol Loading on Its Measurement Results at a Traffic Site. Aerosol Air Qual. Res. 2013, 13, 1853–1863. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties Behavior, and Measurement of airborne Particles, 2nd ed.; John Wiley & Sons: Toronto, ON, Canada, 1999. [Google Scholar]
- Air Resources Laboratory. Real-Time Environmental Applications and Display System. Available online: http://ready.arl.noaa.gov (accessed on 30 January 2018).
- Ashbaugh, L.L.; Malm, W.C.; Sadeh, W.Z. A Residence Time Probability Analysis of Sulfur Concentrations at Grand Canyon National Park. Atmos. Environ. (1967) 1985, 19, 1263–1270. [Google Scholar] [CrossRef]
- Ara Begum, B.; Kim, E.; Jeong, C.-H.; Lee, D.-W.; Hopke, P.K. Evaluation of the Potential Source Contribution Function Using the 2002 Quebec Forest Fire Episode. Atmos. Environ. 2005, 39, 3719–3724. [Google Scholar] [CrossRef]
- Kim, I.S.; Wee, D.; Kim, Y.P.; Lee, J.Y. Development and Application of Three-Dimensional Potential Source Contribution Function (3d-Pscf). Environ. Sci. Pollut. Res. Int. 2016, 23, 16946–16954. [Google Scholar] [CrossRef] [PubMed]
- NASA Earth Observations. Available online: https://neo.sci.gsfc.nasa.gov (accessed on 30 January 2018).
- Jimenez, J.; Canagaratna, M.; Donahue, N.; Prevot, A.; Zhang, Q.; Kroll, J.; DeCarlo, P.; Allan, J.; Coe, H.; Ng, N. Evolution of Organic Aerosols in the Atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Dal Maso, M.; Kulmala, M.; Riipinen, I.; Wagner, R.; Hussein, T.; Aalto, P.P.; Lehtinen, K.E. Formation and Growth of Fresh Atmospheric Aerosols: Eight Years of Aerosol Size Distribution Data from Smear Ii, Hyytiala, Finland. Boreal Environ. Res. 2005, 10, 323. [Google Scholar]
- He, Z.; Kim, Y.J.; Ogunjobi, K.O.; Hong, C.S. Characteristics of Pm2.5 Species and Long-Range Transport of Air Masses at Taean Background Station, South Korea. Atmos. Environ. 2003, 37, 219–230. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High Secondary Aerosol Contribution to Particulate Pollution During Haze Events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Liu, X.; Wang, H.; Wang, Z. Effects of Aerosols on Radiative Forcing and Climate over East Asia with Different So2 Emissions. Atmosphere 2016, 7, 99. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; Elsevier: San Diego, CA, USA, 2006; Volume 92. [Google Scholar]
- Cai, R.; Yang, D.; Fu, Y.; Wang, X.; Li, X.; Ma, Y.; Hao, J.; Zheng, J.; Jiang, J. Aerosol surface area concentration: A governing factor in new particle formation in Beijing. Atmos. Chem. Phys. 2017, 17, 12327–12340. [Google Scholar] [CrossRef]
Measured Parameters | Instruments | Sampling Period |
---|---|---|
PM2.5 mass concentration a | BAM-1020 (Met One Instruments, USA) | 18 May 2015–14 June 2015 |
Chemical constituents in PM1 | ||
Sulfate, Nitrate, Ammonium, Chloride, Organics | AMS (Aerodyne, USA) | 18 May 2015–14 June 2015 |
BC | Aethalometer (AE-51, Magee Scientific, USA) | 18 May 2015–7 June 2015 |
Number size distribution | ||
10–420 nm | NanoScan SMPS (3910, TSI, USA) | 18 May 2015–14 June 2015 |
11–608 nm | DMPS (DMA (3081, TSI, USA) and CPC (3022a, TSI, USA) | 18 May 2015–14 June 2015 |
0.3–20 μm | OPC (1.108, Grimm, Germany) | 18 May 2015–14 June 2015 |
Gases a | ||
CO | CO analyzer (300E, Teledyne API., USA), | 18 May 2015–14 June 2015 |
SO2 | SO2 Analyzer (100E, Teledyne API., USA) | 18 May 2015–14 June 2015 |
NO2 | NOx Analyzer (200E, Teledyne API., USA) | 18 May 2015–14 June 2015 |
O3 | O3 Analyzer (400E, Teledyne API., USA) | 18 May 2015–14 June 2015 |
Meteorological parameters | ||
Wind speed b | Wind speed sensor (JY-WS161C, Jinyang Industrial, Korea) | 18 May 2015–14 June 2015 |
Wind direction b | Wind direction sensor (JY100829, Jinyang Industrial, Korea) | 18 May 2015–14 June 2015 |
Precipitation b | Rain Gauge (JY100097-2, Jinyang Industrial, Korea) | 18 May 2015–14 June 2015 |
Temperature b | Temperature sensor (JY100829, Jinyang Industrial, Korea) | 18 May 2015–14 June 2015 |
Relative humidity c | Thermo-hygrometer (HTP-20, Wellbian System, Korea) | 18 May 2015–14 June 2015 |
Solar radiation c | Pyrheliometer (CMP-21, Kipp & Zonen, Netherlands) | 18 May 2015–14 June 2015 |
Measured Parameters | Unit | All Sampling Periods | PM1 Event |
---|---|---|---|
T | °C | 20.5 ± 5.47 | 23.7 ± 3.84 |
RH | % | 54.8 ± 20.3 | 58.2 ± 18.3 |
Wind speed | m/s | 1.2 ± 0.87 | 1.4 ± 0.87 |
Solar radiation | W/m2 | 334 ± 336 | 170 ± 235 |
O3 | ppb | 47.6 ± 18.8 | 57.8 ± 16.4 |
NO2 | ppm | 0.018 ± 0.008 | 0.015 ± 0.009 |
CO | ppm | 0.76 ± 0.11 | 0.92 ± 0.08 |
SO2 | ppm | 0.003 ± 0.001 | 0.004 ± 0.001 |
PM2.5 | μg/m3 | 30.3 ± 13.5 | 57.8 ± 20.5 |
PM1 | μg/m3 | 20.8 ± 10.9 | 43.3 ± 12.9 |
BC | μg/m3 | 1.3 ± 0.6 | N/A |
Ammonium | μg/m3 | 2.6 ± 1.6 | 5.8 ± 2.0 |
Nitrate | μg/m3 | 3.2 ± 2.6 | 6.4 ± 3.9 |
Sulfate | μg/m3 | 4.7 ± 2.9 | 11.1 ± 2.03 |
Organics | μg/m3 | 9.1 ± 5.5 | 19.4 ± 8.83 |
OOA | μg/m3 | 3.9 ± 2.2 | 9.0 ± 2.5 |
HOA | μg/m3 | 4.4 ± 3.2 | 8.8 ± 6.2 |
N (10 nm–608 nm) | particles/cm3 | 6876 ± 2827 | 7624 ± 2465 |
N (650 nm–20 μm) | particles/cm3 | 106 ± 109 | 322 ± 264 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.-J.; Kang, J.; Kim, D.; Seo, A.; Park, M.; Joo, H.; Park, K. A Study on Elevated Concentrations of Submicrometer Particles in an Urban Atmosphere. Atmosphere 2018, 9, 393. https://doi.org/10.3390/atmos9100393
Cho H-J, Kang J, Kim D, Seo A, Park M, Joo H, Park K. A Study on Elevated Concentrations of Submicrometer Particles in an Urban Atmosphere. Atmosphere. 2018; 9(10):393. https://doi.org/10.3390/atmos9100393
Chicago/Turabian StyleCho, Hee-Joo, Jia Kang, Dohyeong Kim, Arom Seo, Minhan Park, Hungsoo Joo, and Kihong Park. 2018. "A Study on Elevated Concentrations of Submicrometer Particles in an Urban Atmosphere" Atmosphere 9, no. 10: 393. https://doi.org/10.3390/atmos9100393
APA StyleCho, H. -J., Kang, J., Kim, D., Seo, A., Park, M., Joo, H., & Park, K. (2018). A Study on Elevated Concentrations of Submicrometer Particles in an Urban Atmosphere. Atmosphere, 9(10), 393. https://doi.org/10.3390/atmos9100393