Effects of Atmospheric Dry Deposition on External Nitrogen Supply and New Production in the Northern South China Sea
Abstract
:1. Introduction
2. Methodology
2.1. Sampling
2.2. Chemical Analysis
3. Results and Discussion
3.1. Meteorological Characteristics and Air Masses
- (1)
- Northern sources: air masses originating from inland and north-eastern China that are transported by the north-east monsoon.
- (2)
- Southern sources: air masses originating from the Indochinese Peninsula and SCS that are transported by the south-west monsoon.
- (3)
- Marine sources: air masses originating from high-pressure areas over the Pacific Ocean that do not pass over land.
3.2. Concentration of Major Water-Soluble Ions
3.3. Concentrations of Water-Soluble Total Nitrogen (WSTN), Water-Soluble Inorganic Nitrogen (WSIN), and Water-Soluble Organic Nitrogen (WSON) Species
3.4. Correlation Analysis and Principal Component Analysis (PCA)
3.5. Fluxes of Nitrogen Species
3.6. Contribution of Atmospheric N Deposition to New Production in the South China Sea (SCS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
References
- Boreddy, S.K.R; Kawamura, K. A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: An outflow region of Asian dust. Atmos. Chem. Phys. 2015, 15, 6437–6453. [Google Scholar] [CrossRef]
- Arakaki, T.; Azechi, S.; Somada, Y.; Ijyu, M.; Nakaema, F.; Hitomi, Y.; Handa, D.; Oshiro, Y.; Miyagi, Y.; Tsuhako, A.; et al. Spatial and temporal variations of chemicals in the TSP aerosols simultaneously collected at three islands in Okinawa, Japan. Atmos. Environ. 2014, 97, 479–485. [Google Scholar] [CrossRef]
- Jickells, T. The role of air-sea exchange in the marine nitrogen cycle. Biogeosciences 2006, 3, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, X.; Yang, X.; Li, W.; Xue, L.; Wang, T.; Chen, J.; Wang, W. Mixed Chloride Aerosols and their Atmospheric Implications: A Review. Aerosol Air Qual. Res. 2017, 17, 878–887. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, N.; Osada, K.; Nishita, C.; Yabuki, M.; Kobayashi, H.; Hara, K.; Shiobara, M. Factors controlling sea salt modification and dry deposition of nonsea-salt components to the ocean. J. Geophys. Res. [CrossRef]
- Yao, X.; Zhang, L. Chemical processes in sea-salt chloride depletion observed at a Canadian rural coastal site. Atmos. Environ. 2012, 46, 189–194. [Google Scholar] [CrossRef]
- Hsu, S.C.; Liu, S.C.; Kao, S.J.; Jeng, W.L.; Huang, Y.T.; Tseng, C.M.; Tsai, F.; Tu, J.Y; Yang, Y. Water-soluble species in the marine aerosol from the northern South China Sea: High chloride depletion related to air pollution. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Yao, X.; Fang, M; Chan, C.K. The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmos. Environ. 2003, 37, 743–751. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends. Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, B.; Ju, X.; Chang, J.; Ge, Y.; Vitousek, P.M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. USA 2015, 112, 8792–8797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gu, B.; Erisman, J.W.; Reis, S.; Fang, Y.; Lu, X.; Zhang, X. PM2.5 pollution is substantially affected by ammonia emissions in China. Environ. Pollut. 2016, 218, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Kumar, M.; Zhu, C.; Zhong, J.; Francisco, J.S; Zeng, X.C. Near-Barrierless Ammonium Bisulfate Formation via a Loop-Structure Promoted Proton-Transfer Mechanism on the Surface of Water. J. Am. Chem. Soc. 2016, 138, 1816–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Chen, Y.; Guo, L.; Wang, F. Estimate of dry deposition fluxes of nutrients over the East China Sea: The implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans. Atmos. Environ. 2013, 69, 131–138. [Google Scholar] [CrossRef]
- Duce, R.A.; LaRoche, J.; Altieri, K.; Arrigo, K.R.; Baker, A.R.; Capone, D.G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R.S.; et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 2008, 320, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Chen, L.D.; Chiang, Z.Y.; Hung, C.C.; Lin, F.J.; Chou, W.C.; Gong, G.C; Wen, L.S. Size fractionation and molecular composition of water-soluble inorganic and organic nitrogen in aerosols of a coastal environment. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chen, H.Y.; Wang, W.; Yeh, J.X.; Chou, W.C.; Gong, G.C.; Tsai, F.J.; Huang, S.J.; Lin, C.T. Dissolved organic nitrogen in wet deposition in a coastal city (Keelung) of the southern East China Sea: Origin. Molecular composition and flux. Atmos. Environ. 2015, 112, 20–31. [Google Scholar] [CrossRef]
- Bronk, D.A.; See, J.H.; Bradley, P.; Killberg, L. DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences 2007, 4, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Gao, H.; Qi, J.; Zhang, J.; Yao, X. Sources, compositions, and distributions of water-soluble organic nitrogen in aerosols over the China Sea. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Yang, J.Y.T.; Hsu, S.C.; Dai, M.H.; Hsiao, S.S.Y.; Kao, S.J. Isotopic composition of water-soluble nitrate in bulk atmospheric deposition at Dongsha Island: Sources and implications of external N supply to the northern South China Sea. Biogeosciences 2014, 11, 1833–1846. [Google Scholar] [CrossRef]
- Kim, T.W.; Lee, K.; Duce, R.A.; Liss, P. Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea. Geophys. Res. Lett. 2014, 41, 3156–3162. [Google Scholar] [CrossRef] [Green Version]
- Grosse, J.; Bombar, D.; Doan, H.N.; Nguyen, L.N.; Voss, M. The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low and high discharge season. Limnol. Oceanogr. 2010, 55, 1668–1680. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.M.; Hong, G.H.; Zhang, J.; Ye, X.W.; Jiang, X.L. Nutrient budgets for large Chinese estuaries. Biogeosciences 2009, 6, 2245–2263. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.W.; Lee, K.; Lee, C.K.; Jeong, H.D.; Suh, Y.S.; Lim, W.A.; Kim, K.Y; Jeong, H.J. Interannual nutrient dynamics in Korean coastal waters. Harmful Algae 2013, 30, S15–S27. [Google Scholar] [CrossRef]
- Mace, K.A. Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Pai, S.C.; Tsau, Y.J.; Yang, T.I. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Anal. Chim. Acta 2001, 434, 209–216. [Google Scholar] [CrossRef]
- Pai, S.C.; Yang, C.C. Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Anal. Chim. Acta 1990, 232, 345–349. [Google Scholar] [CrossRef]
- Pai, S.C; Riley, J.P. Determination of Nitrate in the Presence of Nitrite in Natural Waters by Flow Injection Analysis with a Non-Quantitative On-Line Cadmium Reductor. Int. J. Environ. Anal. Chem. 1994, 57, 263–277. [Google Scholar] [CrossRef]
- Bronk, D.A.; Lomas, M.W.; Glibert, P.M.; Schukert, K.J.; Sanderson, M.P. Total dissolved nitrogen analysis: Comparisons between the persulfate. UV and high temperature oxidation methods. Mar. Chem. 2000, 69, 163–178. [Google Scholar] [CrossRef]
- Chen, H.Y; Chen, L.D. Importance of anthropogenic inputs and continental-derived dust for the distribution and flux of water-soluble nitrogen and phosphorus species in aerosol within the atmosphere over the East China Sea. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, L.D. Occurrence of water soluble organic nitrogen in aerosols at a coastal area. J. Atmos. Chem. 2010, 65, 49–71. [Google Scholar] [CrossRef]
- Libes, S.M. Introduction to Marine Biogeochemistry, 2nd ed.; Amsterdam Academic Press: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Wang, Y.; Zhuang, G.; Zhang, X.; Huang, K.; Xu, C.; Tang, A.; Chen, J.; An, Z. The ion chemistry. Seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos. Environ. 2006, 40, 2935–2952. [Google Scholar] [CrossRef]
- Keene, W.C.; Pszenny, A.A.P.; Galloway, J.N; Hawley, M.E. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. Atmos. 1986, 91, 6647–6658. [Google Scholar] [CrossRef]
- Yeatman, S.G.; Spokes, L.J.; Jickells, T.D. Comparisons of coarse-mode aerosol nitrate and ammonium at two polluted coastal sites. Atmos. Environ. 2001, 35, 1321–1335. [Google Scholar] [CrossRef]
- Lawrence, M.G; Lelieveld, J. Atmospheric pollutant outflow from southern Asia: A review. Atmos. Chem. Phys. 2010, 10, 11017–11096. [Google Scholar] [CrossRef]
- Xiao, H.W.; Xiao, H.Y.; Luo, L.; Shen, C.Y.; Long, A.M.; Chen, L.; Long, Z.H; Li, D.N. Atmospheric aerosol compositions over the South China Sea: Temporal variability and source apportionment. Atmos. Chem. Phys. 2017, 17, 3199–3214. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.M.; Wang, T.; Cheng, T.T.; Lin, L.; Bhatia, R.S; Hanvey, M. Chemical characterization of aerosols over the Atlantic Ocean and the Pacific Ocean during two cruises in 2007 and 2008. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Baker, A.R.; Lesworth, T.; Adams, C.; Jickells, T.D; Ganzeveld, L. Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50° N to 50° S based on large-scale field sampling: Fixed nitrogen and dry deposition of phosphorus. Glob. Biogeochem. Cycles 2010, 24, GB3006. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past. Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Jickells, T.D.; Kelly, S.D.; Baker, A.R.; Biswas, K.; Dennis, P.F.; Spokes, L.J.; Witt, M.; Yeatman, S.G. Isotopic evidence for a marine ammonia source. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM 2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef]
- Aneja, V.P.; Roelle, P.A.; Murray, G.C.; Southerland, J.; Erisman, J.W.; Fowler, D.; Asman, W.A.H; Patni, N. Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition and assessment. Atmos. Environ. 2001, 35, 1903–1911. [Google Scholar] [CrossRef]
- Pryor, S.C; Sørensen, L.L. Dry deposition of reactive nitrogen to marine environments: Recent advances and remaining uncertainties. Mar. Pollut. Bull. 2002, 44, 1336–1340. [Google Scholar] [CrossRef]
- Luo, L.; Kao, S.J.; Bao, H.; Xiao, H.; Xiao, H.; Yao, X.; Gao, H.; Li, J.; Li, Y. Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring. Atmos. Chem. Phys. Discuss. 2017, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Yao, X.H.; Gao, H.W.; Hsu, S.C.; Li, J.W; Kao, S.J. Nitrogen speciation in various types of aerosols in spring over the northwestern Pacific Ocean. Atmospheric Chem. Phys. 2016, 16, 325–341. [Google Scholar] [CrossRef]
- Srinivas, B.; Sarin, M.M.; Sarma, V.V.S.S. Atmospheric dry deposition of inorganic and organic nitrogen to the Bay of Bengal: Impact of continental outflow. Mar. Chem. 2011, 127, 170–179. [Google Scholar] [CrossRef]
- Zamora, L.M.; Prospero, J.M; Hansell, D.A. Organic nitrogen in aerosols and precipitation at Barbados and Miami: Implications regarding sources, transport and deposition to the western subtropical North Atlantic. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Nehir, M.; Koçak, M. Atmospheric Water-Soluble Organic Nitrogen (WSON) in the Eastern Mediterranean: Origin and Ramifications Regarding Marine Productivity. Atmos. Chem. Phys. Discuss. [CrossRef]
- Chen, Y.; Mills, S.; Street, J.; Golan, D.; Post, A.; Jacobson, M.; Paytan, A. Estimates of atmospheric dry deposition and associated input of nutrients to Gulf of Aqaba seawater. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Martino, M.; Hamilton, D.; Baker, A.R.; Jickells, T.D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P.W. Western Pacific atmospheric nutrient deposition fluxes. their impact on surface ocean productivity. Glob. Biogeochem. Cycles 2014, 28, 712–728. [Google Scholar] [CrossRef]
- Matsumoto, K.; Yamamoto, Y.; Nishizawa, K.; Kaneyasu, N.; Irino, T.; Yoshikawa-Inoue, H. Origin of the water-soluble organic nitrogen in the maritime aerosol. Atmos. Environ. 2017, 167, 97–103. [Google Scholar] [CrossRef]
- Zhang, Q.; Duan, F.; He, K.; Ma, Y.; Li, H.; Kimoto, T.; Zheng, A. Organic nitrogen in PM 2.5 in Beijing. Front. Environ. Sci. Eng. 2015, 9, 1004–1014. [Google Scholar] [CrossRef]
- Ho, K.F.; Ho, S.S.H.; Huang, R.J.; Liu, S.X.; Cao, J.J.; Zhang, T.; Chuang, H.C.; Chan, C.S.; Hu, D.; Tian, L. Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China. Atmos. Environ. 2015, 106, 252–261. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Liu, S.; Jiang, Y.; Huang, X. Aerosol concentrations and atmospheric dry deposition fluxes of nutrients over Daya Bay. South China Sea. Mar. Pollut. Bull. 2018, 128, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yu, Q.; Zhu, M.; Tang, M.; Li, S.; Yang, W.; Zhang, Y.; Deng, W.; Li, G.; Yu, Y.; et al. Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations and Source Apportionment. J. Geophys. Res. Atmos. 2017, 122, 13045–13060. [Google Scholar] [CrossRef]
- Karthikeyan, S.; He, J.; Palani, S.; Balasubramanian, R.; Burger, D. Determination of total nitrogen in atmospheric wet and dry deposition samples. Talanta 2009, 77, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.H.; Kim, W.H.; Ko, H.J.; Hong, S.B. Asian Dust effects on Total Suspended Particulate (TSP) compositions at Gosan in Jeju Island. Korea. Atmos. Res. 2009, 94, 345–355. [Google Scholar] [CrossRef]
- Jickells, T.; Baker, A.R.; Cape, J.N.; Cornell, S.E; Nemitz, E. The cycling of organic nitrogen through the atmosphere. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130115. [Google Scholar] [CrossRef] [PubMed]
- Kanakidou, M.; Duce, R.A.; Prospero, J.M.; Baker, A.R.; Benitez-Nelson, C.; Dentener, F.J.; Hunter, K.A.; Liss, P.S.; Mahowald, N.; Okin, G.S.; et al. Atmospheric fluxes of organic N and P to the global ocean. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef] [Green Version]
- Hoppel, W.A. Surface source function for sea-salt aerosol and aerosol dry deposition to the ocean surface. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Hsu, C.A.; Lee, C.S.L.; Huh, C.A.; Shaheen, R.; Lin, F.J.; Liu, S.C.; Liang, M.C.; Tao, J. Ammonium deficiency caused by heterogeneous reactions during a super Asian dust episode. J. Geophys. Res. 2014, 119. [Google Scholar] [CrossRef]
- Duce, R.A.; Galloway, J.N.; Liss, P.S. The impacts of atmospheric deposition to the ocean on marine ecosystems and climate. WMO Bull. 2009, 58, 61–66. [Google Scholar]
- Nakamura, T.; Matsumoto, K.; Uematsu, M. Chemical characteristics of aerosols transported from Asia to the East China Sea: An evaluation of anthropogenic combined nitrogen deposition in autumn. Atmos. Environ. 2005. [Google Scholar] [CrossRef]
- Jung, J.; Furutani, H.; Uematsu, M.; Kim, S.; Yoon, S. Atmospheric inorganic nitrogen input via dry. wet, and sea fog deposition to the subarctic western North Pacific Ocean. Atmos. Chem. Phys. 2013, 13, 411–428. [Google Scholar] [CrossRef]
- Lesworth, T.; Baker, A.R; Jickells, T. Aerosol organic nitrogen over the remote Atlantic Ocean. Atmos. Environ. 2010, 44, 1887–1893. [Google Scholar] [CrossRef]
- Srinivas, B.; Sarin, M.M. Atmospheric deposition of N, P and Fe to the Northern Indian Ocean: Implications to C- and N-fixation. Sci. Total Environ. [CrossRef]
- Jung, J.; Furutani, H.; Uematsu, M. Atmospheric inorganic nitrogen in marine aerosol and precipitation and its deposition to the North and South Pacific Oceans. J. Atmos. Chem. 2011, 68, 157–181. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.; Shao, M.; Fang, Y.; Zhang, L.; Chen, F.; Chan, P.-w.; Fan, Q.; Wang, Q.; Zhu, S.; et al. Atmospheric nitrogen deposition to forest and estuary environments in the Pearl River Delta region. southern China. Tellus B Chem. Phys. Meteorol. 2013, 65, 20480. [Google Scholar] [CrossRef]
- Shih, Y.Y.; Hung, C.C.; Gong, G.C.; Chung, W.C.; Wang, Y.H.; Lee, I.H.; Chen, K.S; Ho, C.Y. Enhanced Particulate Organic Carbon Export at Eddy Edges in the Oligotrophic Western North Pacific Ocean. PLoS ONE 2015, 10, e0131538. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.C; Gong, G. CPOC/234Th ratios in particles collected in sediment traps in the northern South China Sea. Estuar. Coast. Shelf Sci. 2010, 88, 303–310. [Google Scholar] [CrossRef]
- Yan, G.; Kim, G. Sources and fluxes of organic nitrogen in precipitation over the southern East Sea/Sea of Japan. Atmos. Chem. Phys. 2015, 15, 2761–2774. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chou, W.C.; Shih, Y.Y.; Chen, G.Y.; Chang, Y.; Chow, C.H.; Lin, T.Y; Hung, C.C. Elevated particulate organic carbon export flux induced by internal waves in the oligotrophic northern South China Sea. Sci. Rep. 2018, 8, 2042. [Google Scholar] [CrossRef] [PubMed]
- Sandroni, V.; Raimbault, P.; Migon, C.; Raimbault, P.; Migon, C.; Garcia, N.; Gouze, E. Dry atmospheric deposition and diazotrophy as sources of new nitrogen to northwestern Mediterranean oligotrophic surface waters. Deep Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 1859–1870. [Google Scholar] [CrossRef]
Recovery (%) | |||
---|---|---|---|
This Study | Chen et al. [18] | Bronk et al. [30] | |
(n = 10) | (n = 8) | (n = 5) | |
Antipyrine | 68 ± 6 | ||
EDTA | 99 ± 5 | 92 ± 3 | 94 ± 2 |
Quinoline | 92 ± 15 | 94 ± 4 | |
Urea | 102 ± 7 | 94 ± 5 | 92 ± 9 |
Blank (nmol m−3) | LOD a (nmol m−3) | |
---|---|---|
NH4+ | 0.09 ± 0.01 | 0.03 |
NO2− | 0.005 ± 0.002 | 0.005 |
NO3− | 0.08 ± 0.03 | 0.08 |
Na+ | 0.03 ± 0.01 | 0.03 |
K+ | 0.005 ± 0.002 | 0.005 |
Mg2+ | 0.010 ± 0.003 | 0.009 |
Ca2+ | 0.07 ± 0.02 | 0.06 |
Cl− | 0.31 ± 0.09 | 0.26 |
SO42− | 0.12 ± 0.04 | 0.12 |
North (n = 157) | South (n = 75) | Sea (n = 8) | |
---|---|---|---|
Spring | 82% | 15% | 3% |
Summer | 0% | 90% | 10% |
Autumn | 83% | 17% | 0% |
Winter | 97% | 3% | 0% |
Wind Speeds | Na+ | Mg2+ | Cl− | nss-SO42− | nss-K+ | nss-Ca2+ | |
---|---|---|---|---|---|---|---|
April 2007 | 5.1 ± 1.3 | 343 ± 102 | 36.0 ± 11.1 | 281 ± 106 | 122 ± 85.4 | 5.45 ± 5.41 | 8.44 ± 3.74 |
May 2007 | 3.6 ± 0.8 | 211 ± 90.4 | 24.5 ± 11.4 | 181 ± 75.2 | 131 ± 98.0 | 7.31 ± 5.70 | 10.7 ± 5.34 |
June 2007 | 3.0 ± 0.9 | 123 ± 57.3 | 12.2 ± 6.35 | 136 ± 57.4 | 18.5 ± 6.25 | 1.05 ± 0.47 | 2.70 ± 0.75 |
July 2007 | 3.3 ± 0.7 | 123 ± 73.2 | 12.2 ± 7.69 | 134 ± 76.3 | 25.0 ± 6.29 | 1.77 ± 0.60 | 4.34 ± 1.49 |
August 2007 | 3.8 ± 1.7 | 229 ± 193 | 24.5 ± 21.8 | 254 ± 199 | 23.2 ± 17.6 | 2.13 ± 1.55 | 3.68 ± 1.18 |
September 2007 | 3.6 ± 1.6 | 201 ± 162 | 24.0 ± 18.3 | 170 ± 148 | 155 ± 155 | 13.4 ± 14.6 | 9.12 ± 7.75 |
October 2007 | 6.3 ± 1.3 | 414 ± 148 | 47.7 ± 16.6 | 356 ± 150 | 140 ± 76.1 | 7.93 ± 7.42 | 9.21 ± 3.78 |
November 2007 | 8.9 ± 1.4 | 570 ± 173 | 63.4 ± 17.0 | 478 ± 155 | 136 ± 37.1 | 9.69 ± 3.16 | 13.1 ± 2.72 |
December 2007 | 6.6 ± 1.8 | 344 ± 96.2 | 35.2 ± 12.0 | 235 ± 74.9 | 170 ± 73.4 | 12.3 ± 5.97 | 11.7 ± 6.67 |
January 2008 | 6.4 ± 2.5 | 381 ± 105 | 36.6 ± 11.8 | 317 ± 113 | 83.2 ± 45.8 | 3.88 ± 3.80 | 6.38 ± 4.82 |
February 2008 | 7.5 ± 1.1 | 330 ± 101 | 36.2 ± 10.2 | 232 ± 109 | 203 ± 45.1 | 14.9 ± 6.36 | 9.59 ± 4.59 |
March 2008 | 5.3 ± 1.3 | 295 ± 94.7 | 34.0 ± 8.12 | 201 ± 91.5 | 160 ± 52.1 | 11.3 ± 5.30 | 12.2 ± 5.19 |
April 2008 | 3.5 ± 1.3 | 205 ± 108 | 21.3 ± 11.9 | 156 ± 78.3 | 90.7 ± 29.7 | 5.66 ± 2.14 | 8.36 ± 3.19 |
May 2008 | 3.6 ± 2.0 | 220 ± 169 | 24.3 ± 18.6 | 158 ± 116 | 116 ± 66.6 | 6.85 ± 2.92 | 9.56 ± 4.31 |
June 2008 | 3.5 ± 0.9 | 173 ± 94.2 | 16.2 ± 8.97 | 182 ± 114 | 17.6 ± 7.54 | 1.84 ± 0.60 | 5.00 ± 1.73 |
July 2008 | 2.9 ± 1.1 | 146 ± 75.2 | 13.9 ± 7.31 | 145 ± 81.7 | 17.3 ± 8.15 | 2.70 ± 0.61 | 4.24 ± 1.50 |
August 2008 | 2.5 ± 0.9 | 102 ± 65.9 | 9.46 ± 7.22 | 101 ± 76.4 | 23.6 ± 12.3 | 2.34 ± 1.10 | 4.67 ± 0.89 |
September 2008 | 3.4 ± 1.9 | 149 ± 169 | 15.7 ± 18.4 | 128 ± 187 | 126 ± 130 | 7.45 ± 6.79 | 9.57 ± 4.65 |
October 2008 | 6.3 ± 2.3 | 288 ± 82.1 | 30.4 ± 10.0 | 242 ± 82.8 | 111 ± 65.1 | 7.38 ± 5.98 | 9.20 ± 3.49 |
November 2008 | 7.5 ± 1.6 | 393 ± 96.4 | 41.3 ± 11.2 | 345 ± 107 | 66.8 ± 109 | 5.45 ± 4.14 | 6.87 ± 2.18 |
December 2008 | 7.8 ± 1.6 | 458 ± 104 | 50.1 ± 10.9 | 396 ± 137 | 109 ± 73.0 | 11.5 ± 7.80 | 13.1 ± 4.99 |
January 2009 | 8.0 ± 2.0 | 393 ± 145 | 42.8 ± 15.5 | 342 ± 134 | 76.1 ± 27.5 | 8.98 ± 4.60 | 8.64 ± 2.96 |
February 2009 | 5.4 ± 2.6 | 309 ± 151 | 34.4 ± 16.7 | 291 ± 166 | 58.9 ± 25.2 | 4.73 ± 1.91 | 7.19 ± 1.26 |
March 2009 | 6.7 ± 1.7 | 333 ± 104 | 38.4 ± 11.9 | 306 ± 85.5 | 69.7 ± 15.8 | 4.75 ± 1.46 | 10.6 ± 3.40 |
Average | 5.2 ± 2.4 | 280 ± 165 | 30.2 ± 18.4 | 240 ± 149 | 93.8 ± 80.6 | 6.70 ± 6.33 | 8.26 ± 4.73 |
NH4+ | NO3− | WSIN # | WSON # | WSTN # | |
---|---|---|---|---|---|
April 2007 | 66.1 ± 45.3 | 41.4 ± 12.2 | 104 ± 54.2 | 137 ± 32.6 | 240 ± 80.7 |
May 2007 | 115 ± 95.0 | 48.0 ± 32.0 | 156 ± 116 | 115 ± 86.5 | 271 ± 197 |
June 2007 | 19.1 ± 9.32 | 18.5 ± 7.26 | 38.2 ± 15.2 | 40.7 ± 15.2 | 78.9 ± 25.6 |
July 2007 | 21.4 ± 5.86 | 27.6 ± 7.18 | 49.4 ± 9.32 | 40.7 ± 22.0 | 90.1 ± 20.0 |
August 2007 | 27.6 ± 33.9 | 18.1 ± 8.30 | 46.0 ± 40.5 | 50.4 ± 28.1 | 96.4 ± 68.2 |
September 2007 | 155 ± 145 | 77.7 ± 37.6 | 201 ± 155 | 63.8 ± 18.9 | 265 ± 170 |
October 2007 | 118 ± 61.5 | 81.6 ± 13.6 | 201 ± 66.7 | 42.1 ± 24.6 | 243 ± 69.0 |
November 2007 | 107 ± 26.9 | 70.5 ± 13.8 | 178 ± 37.5 | 54.2 ± 22.5 | 232 ± 46.7 |
December 2007 | 130 ± 55.3 | 74.1 ± 18.8 | 205 ± 69.0 | 57.5 ± 14.4 | 263 ± 78.4 |
January 2008 | 77.1 ± 29.1 | 65.8 ± 20.3 | 144 ± 43.6 | 65.4 ± 16.4 | 209 ± 50.6 |
February 2008 | 127 ± 47.7 | 70.9 ± 26.3 | 202 ± 75.6 | 101 ± 32.7 | 303 ± 101 |
March 2008 | 110 ± 48.9 | 81.4 ± 20.7 | 205 ± 82.2 | 159 ± 34.9 | 363 ± 110 |
April 2008 | 52.0 ± 31.6 | 62.8 ± 21.2 | 121 ± 46.0 | 126 ± 23.1 | 247 ± 59.3 |
May 2008 | 110 ± 51.8 | 52.2 ± 22.6 | 162 ± 72.8 | 127 ± 52.3 | 290 ± 109 |
June 2008 | 20.6 ± 11.4 | 24.6 ± 8.49 | 45.5 ± 17.6 | 63.8 ± 24.8 | 109 ± 36.5 |
July 2008 | 16.0 ± 3.37 | 22.3 ± 6.44 | 39.0 ± 7.07 | 61.6 ± 23.0 | 101 ± 27.8 |
August 2008 | 22.8 ± 19.5 | 22.2 ± 8.60 | 45.5 ± 25.0 | 54.7 ± 19.9 | 100 ± 43.2 |
September 2008 | 117 ± 107 | 56.6 ± 30.1 | 170 ± 117 | 83.2 ± 36.0 | 254 ± 129 |
October 2008 | 101 ± 64.6 | 59.8 ± 26.6 | 161 ± 89.4 | 104 ± 31.4 | 266 ± 113 |
November 2008 | 64.8 ± 47.5 | 62.5 ± 19.2 | 133 ± 61.8 | 112 ± 40.0 | 246 ± 91.2 |
December 2008 | 98.9 ± 63.6 | 79.6 ± 25.4 | 179 ± 84.3 | 77.4 ± 27.4 | 256 ± 101 |
January 2009 | 62.9 ± 34.2 | 76.8 ± 11.9 | 143 ± 51.7 | 77.4 ± 27.0 | 220 ± 42.7 |
February 2009 | 73.2 ± 28.3 | 49.5 ± 21.1 | 123 ± 46.2 | 100 ± 28.6 | 224 ± 73.8 |
March 2009 | 68.6 ± 29.7 | 57.8 ± 18.2 | 127 ± 42.8 | 126 ± 29.7 | 253 ± 50.2 |
Average | 78.4 ± 67.2 | 54.3 ± 28.7 | 132 ± 87.9 | 85.0 ± 46.1 | 217 ± 115 |
Sampling Periods | Location | Station Type | WSIN | WSON | WSTN | Reference | ||
---|---|---|---|---|---|---|---|---|
nmol m−3 | % | nmol m−3 | % | nmol m−3 | ||||
May 2007–July 2009 | Miaimi, USA | Coastal city | 51 ± 26 | 96 ± 69 | 2.4 ± 3.1 | 4 ± 6 | 53 ± 26 | [49] |
August–September 2007 & 2008 | Barbados, Atlantic Ocean | Island | 20 ± 8.8 | 94 ± 57 | 1.3 ± 1.5 | 6 ± 7 | 21 ± 8.9 | [49] |
March 2014–April 2015 | Erdemli, Turkey | Coastal city | 40 ± 28 | 63 ± 54 | 24 ± 16 | 37 ± 32 | 64 ± 33 | [50] |
August 2003–September 2005 | Eilat, Israel | Coastal city | 65 ± 24 | 89 ± 47 | 8 ± 5 | 11 ± 8 | 73 ± 28 | [51] |
March–April 2006 | northern Indian Ocean | Marginal sea | 47 | 81 | 11 | 19 | 58 | [48] |
May 2007–Oct 2009 | western Pacific Ocean | Open ocean | 11 ± 4.8 | 72 ± 39 | 4.3 ± 1.7 | 28 ± 15 | 15 ± 5.1 | [52] |
March–April 2014 | northwestern Pacific Ocean | Open ocean | 80 ± 55 | 88 ± 80 | 11 ± 7 | 12 ± 11 | 91 ± 55 | [47] |
April 2010–November 2012 | Rishiri Island, Japan | Island | 35 ± 11 | 86 ± 37 | 5.5 ± 4.1 | 14 ± 11 | 41 ± 12 | [53] |
March–April 2006 | Qindao, China | Coastal city | 783 | 81 | 180 | 19 | 963 | [20] |
January–July 2013 | Beijing, China | Inland city | 758 | 79 | 204 | 21 | 962 | [54] |
July 2008–August 2009 | Xian, China | Inland city | 377 ± 349 | 56 ± 71 | 300 ± 263 | 44 ± 55 | 677 ± 594 | [55] |
March–May 2015 | East China Sea | Marginal sea | 219 | 68 | 102 | 32 | 321 | [46] |
January–December 2006 | Keelung, Taiwan | Coastal city | 213 ± 81 | 74 ± 38 | 76 ± 28 | 26 ± 13 | 289 ± 102 | [17] |
September 2015–March 2017 | Daya Bay, China | Coastal city | 19 ± 18 | 36 ± 40 | 33 ± 22 | 63 ± 56 | 52 ± 29 | [56] |
August 2013–May 2014 | Guangzhou, China | Coastal city | 260 ± 180 | 86 ± 81 | 43 ± 32 | 14 ± 11 | 303 ± 196 | [57] |
April–May 2005 | South China Sea | Marginal sea | 131 | 67 | 65 | 33 | 196 | [20] |
March–April 2007 | Singapore | Coastal city | 98 ± 35 | 70 ± 35 | 43 ± 27 | 30 ± 22 | 141 ± 50 | [58] |
April 2007–March 2009 | Dongsha, Taiwan | Island | 132 ± 88 | 63 ± 53 | 79 ± 42 | 37 ± 27 | 211 ± 112 | This study |
NO3− | NH4+ | WSIN | WSON | WSTN | Na+ | Mg2+ | Cl− | K+ | Ca2+ | SO42− | nss-K+ | nss-Ca2+ | nss-SO42− | Cl− Depletion | Wind Speed | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NO3− | 1 | |||||||||||||||
NH4+ | 0.77 ** | 1 | ||||||||||||||
WSIN | 0.88 ** | 0.96 ** | 1 | |||||||||||||
WSON | 0.39 ** | 0.35 ** | 0.41 ** | 1 | ||||||||||||
WSTN | 0.83 ** | 0.88 ** | 0.93 ** | 0.72 ** | 1 | |||||||||||
Na+ | 0.42 ** | 0.14 ** | 0.26 ** | 0.07 | 0.23 ** | 1 | ||||||||||
Mg2+ | 0.47 ** | 0.21 ** | 0.33 ** | 0.11 | 0.30 ** | 0.99 ** | 1 | |||||||||
Cl− | 0.25 ** | −0.05 | 0.06 | −0.03 | 0.04 | 0.94 ** | 0.92 ** | 1 | ||||||||
K+ | 0.76 ** | 0.76 ** | 0.81 ** | 0.27 ** | 0.73 ** | 0.59 ** | 0.64 ** | 0.41 ** | 1 | |||||||
Ca2+ | 0.70 ** | 0.58 ** | 0.67 ** | 0.30 ** | 0.63 ** | 0.77 ** | 0.82 ** | 0.65 ** | 0.85 ** | 1 | ||||||
SO42− | 0.76 ** | 0.90 ** | 0.90 ** | 0.40 ** | 0.84 ** | 0.34 ** | 0.40 ** | 0.12 | 0.86 ** | 0.70 ** | 1 | |||||
nss-K+ | 0.69 ** | 0.84 ** | 0.84 ** | 0.29 ** | 0.76 ** | 0.14 ** | 0.21 ** | −0.04 | 0.89 ** | 0.59 ** | 0.85 ** | 1 | ||||
nss-Ca2+ | 0.71 ** | 0.74 ** | 0.78 ** | 0.39 ** | 0.75 ** | 0.37 ** | 0.44 ** | 0.22 ** | 0.79 ** | 0.87 ** | 0.76 ** | 0.76 ** | 1 | |||
nss-SO42− | 0.73 ** | 0.91 ** | 0.90 ** | 0.40 ** | 0.85 ** | 0.23 ** | 0.29 ** | 0.01 | 0.81 ** | 0.63 ** | 0.99 ** | 0.86 ** | 0.75 ** | 1 | ||
Cl− depletion | 0.57 ** | 0.64 ** | 0.66 ** | 0.39 ** | 0.66 ** | 0.17 ** | 0.20 ** | −0.12 | 0.59 ** | 0.42 ** | 0.72 ** | 0.62 ** | 0.49 ** | 0.73 ** | 1 | |
Wind speed | 0.53 ** | 0.25 ** | 0.39 ** | 0.11 | 0.34 ** | 0.82 ** | 0.82 ** | 0.72 ** | 0.62 ** | 0.71 ** | 0.41 ** | 0.29 ** | 0.41 ** | 0.33 ** | 0.24 ** | 1 |
Factor 1 | Factor 2 | Factor 3 | |
---|---|---|---|
NH4+ | −0.884 | −0.336 | 0.139 |
NO3− | −0.871 | 0.003 | 0.048 |
WSIN | −0.936 | −0.224 | −0.047 |
WSON | −0.464 | −0.218 | 0.840 |
WSTN | −0.903 | −0.260 | 0.301 |
Cl− | −0.281 | 0.944 | 0.050 |
Na+ | −0.488 | 0.855 | 0.044 |
Mg2+ | −0.553 | 0.818 | 0.049 |
SO42− | −0.941 | −0.157 | −0.102 |
K+ | −0.929 | 0.166 | 0.193 |
Ca2+ | −0.845 | 0.456 | 0.003 |
nss-SO42− | −0.915 | −0.267 | −0.111 |
nss-K+ | −0.855 | −0.287 | 0.261 |
nss-Ca2+ | −0.865 | 0.013 | −0.030 |
Cl− depletion % | −0.699 | −0.297 | 0.037 |
Eigenvalue | 9.336 | 3.072 | 0.957 |
% Total variance | 62.24 | 20.48 | 6.38 |
Cumulative % | 62.24 | 82.72 | 89.10 |
Probable source | Combustion, Biomass burning and crustal sources | Marine source | Combined sources |
WSTN | WSON | WSIN | |
---|---|---|---|
April 2007 | 167 ± 36.9 | 118 ± 28.2 | 48.7 ± 16.1 |
May 2007 | 159 ± 110 | 99.4 ± 74.8 | 59.7 ± 40.4 |
June 2007 | 56.0 ± 18.3 | 35.2 ± 13.1 | 20.9 ± 8.10 |
July 2007 | 65.6 ± 14.5 | 35.2 ± 19.0 | 30.4 ± 7.46 |
August 2007 | 64.7 ± 34.9 | 43.5 ± 24.3 | 21.2 ± 11.0 |
September 2007 | 149 ± 63.2 | 55.2 ± 16.4 | 94.0 ± 50.4 |
October 2007 | 131 ± 24.2 | 36.3 ± 21.3 | 94.8 ± 16.5 |
November 2007 | 129 ± 29.2 | 46.8 ± 19.4 | 82.3 ± 15.9 |
December 2007 | 138 ± 31.8 | 49.7 ± 12.5 | 88.1 ± 22.8 |
January 2008 | 131 ± 28.0 | 56.5 ± 14.2 | 74.9 ± 22.5 |
February 2008 | 172 ± 52.0 | 87.6 ± 28.2 | 84.5 ± 30.8 |
March 2008 | 231 ± 48.7 | 137 ± 30.2 | 93.9 ± 25.2 |
April 2008 | 179 ± 36.9 | 109 ± 20.0 | 69.6 ± 24.1 |
May 2008 | 174 ± 65.3 | 110 ± 45.2 | 63.6 ± 27.6 |
June 2008 | 82.5 ± 28.7 | 55.1 ± 21.4 | 27.3 ± 9.40 |
July 2008 | 77.8 ± 24.2 | 53.2 ± 19.9 | 24.5 ± 6.66 |
August 2008 | 72.2 ± 26.1 | 47.2 ± 17.2 | 25.0 ± 9.80 |
September 2008 | 141 ± 58.2 | 71.9 ± 31.1 | 68.8 ± 39.1 |
October 2008 | 161 ± 56.0 | 90.1 ± 27.1 | 70.8 ± 32.7 |
November 2008 | 168 ± 54.1 | 97.2 ± 34.6 | 70.4 ± 23.6 |
December 2008 | 158 ± 49.1 | 66.8 ± 23.7 | 91.0 ± 30.7 |
January 2009 | 152 ± 20.8 | 66.8 ± 23.3 | 85.0 ± 14.7 |
February 2009 | 144 ± 47.8 | 86.8 ± 24.7 | 57.6 ± 23.7 |
March 2009 | 174 ± 37.3 | 109 ± 25.7 | 65.9 ± 20.4 |
Average | 137 ± 62.1 | 73.5 ± 39.9 | 63.0 ± 34.4 |
Sampling Periods | Location | Station Type | NO3− | NH4+ | WSIN | WSON | WSTN | Reference |
---|---|---|---|---|---|---|---|---|
March–April 2014 | North-western Pacific Ocean | Open ocean | 16 ± 20 | 1.7 ± 1.4 | 18 ± 20 | 2.8 ± 2.4 | 21 ± 22 | [47] |
March–May 2015 | North-western Pacific Ocean | Open ocean | 8.0 | 0.5 | 8.5 | 4.0 | 12.5 | [46] |
April 2010–March 2011 | Huaniao, China | Island | 37 | 4.35 | 41.35 | [15] | ||
January–December 2007 | Dinghushan, China | Coastal city | 26 | 52 | 78 | 26 | 104 | [70] |
November 2006–October 2007 | Hengmen, China | Coastal city | 27 | 39 | 66 | 30 | 96 | [70] |
September 2015–March 2017 | Daya Bay, China | Coastal city | 8.46 | 0.93 | 9.44 | 16.33 | 25.77 | 56] |
January–December 2006 | Keelung, Taiwan | Coastal city | 5.6 ± 1.4 | 34 ± 15 | 39 ± 17 | 22 ± 9 | 61 ± 19 | [17] |
July 2010–March 2011 | Dongsha, Taiwan | Island | 16 ± 14 | 7 ± 5 | 23 ± 15 | [21] | ||
April 2007–March 2009 | Dongsha, Taiwan | Island | 21 ± 11 | 2.5 ± 2.1 | 23 ± 13 | 27 ± 15 | 50 ± 23 | This study |
March–April 2007 | Singapore | Coastal city | 18 ± 5.7 | 10 ± 6.4 | 28 ± 8.6 | 16 ± 10 | 54 ± 19 | [58] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-Y.; Huang, S.-Z. Effects of Atmospheric Dry Deposition on External Nitrogen Supply and New Production in the Northern South China Sea. Atmosphere 2018, 9, 386. https://doi.org/10.3390/atmos9100386
Chen H-Y, Huang S-Z. Effects of Atmospheric Dry Deposition on External Nitrogen Supply and New Production in the Northern South China Sea. Atmosphere. 2018; 9(10):386. https://doi.org/10.3390/atmos9100386
Chicago/Turabian StyleChen, Hung-Yu, and Shih-Zhe Huang. 2018. "Effects of Atmospheric Dry Deposition on External Nitrogen Supply and New Production in the Northern South China Sea" Atmosphere 9, no. 10: 386. https://doi.org/10.3390/atmos9100386
APA StyleChen, H. -Y., & Huang, S. -Z. (2018). Effects of Atmospheric Dry Deposition on External Nitrogen Supply and New Production in the Northern South China Sea. Atmosphere, 9(10), 386. https://doi.org/10.3390/atmos9100386