The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures
Abstract
1. Introduction
2. Cloud Radiative Effects in Tropics
3. Radiative–Convective Model and Simulations
4. Impact of Cloud Radiative Effects
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Highwood, E.J.; Hoskins, B.J. The tropical tropopause. Q. J. R. Meteorol. Soc. 1998, 124, 1579–1604. [Google Scholar] [CrossRef]
- Folkins, I.; Loewenstein, M.; Podolske, J.; Oltmans, S.J.; Proffitt, M. A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res. Atmos. 1999, 104, 22095–22102. [Google Scholar] [CrossRef]
- Holton, J.R.; Gettelman, A. Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett. 2001, 28, 2799–2802. [Google Scholar] [CrossRef]
- Gettelman, A.; de Forster, P.M.; Fujiwara, M.; Fu, Q.; Vömel, H.; Gohar, L.K.; Johanson, C.; Ammerman, M. Radiation balance of the tropical tropopause layer. J. Geophys. Res. 2004, 109, 7103. [Google Scholar] [CrossRef]
- Fu, Q.; Hu, Y.; Yang, Q. Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations. Geophys. Res. Lett. 2007, 34, L14813. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Dessler, A.E.; Dunkerton, T.J.; Folkins, I.; Fu, Q.; Mote, P.W. Tropical tropopause layer. Rev. Geophys. 2009, 47, RG1004. [Google Scholar] [CrossRef]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Dessler, A.E.; Schoeberl, M.R.; Wang, T.; Davis, S.M.; Rosenlof, K.H. Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA 2013, 110, 18087–18091. [Google Scholar] [CrossRef] [PubMed]
- Randel, W.J.; Jensen, E.J. Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci. 2013, 6, 169–176. [Google Scholar] [CrossRef]
- Brewer, A.W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. R. Meteorol. Soc. 1949, 75, 351–363. [Google Scholar] [CrossRef]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-troposphere exchange. Rev. Geophys. 1995, 33, 403. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Haynes, P.H. Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res. 2005, 110, D24108. [Google Scholar] [CrossRef]
- Ding, Q.; Fu, Q. A warming tropical central Pacific dries the lower stratosphere. Clim. Dyn. 2018, 50, 2813–2827. [Google Scholar] [CrossRef]
- Thuburn, J.; Craig, G.C. On the temperature structure of the tropical substratosphere. J. Geophys. Res. 2002, 107, 4017. [Google Scholar] [CrossRef]
- Birner, T. Residual Circulation and Tropopause Structure. J. Atmos. Sci. 2010, 67, 2582–2600. [Google Scholar] [CrossRef]
- Birner, T.; Charlesworth, E.J. On the relative importance of radiative and dynamical heating for tropical tropopause temperatures. J. Geophys. Res. Atmos. 2017, 122, 6782–6797. [Google Scholar] [CrossRef]
- Sinha, A.; Shine, K.P. A One-Dimensional study of possible cirrus cloud feedbacks. J. Clim. 1994, 7, 158–173. [Google Scholar] [CrossRef]
- Thuburn, J.; Craig, G.C. Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci. 2000, 57, 17–28. [Google Scholar] [CrossRef]
- Corti, T.; Luo, B.P.; Peter, T.; Vömel, H.; Fu, Q. Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere. Geophys. Res. Lett. 2005, 32, L06802. [Google Scholar] [CrossRef]
- Corti, T.; Luo, B.P.; Fu, Q.; Vömel, H.; Peter, T. The impact of cirrus clouds on tropical troposphere-to-stratosphere transport. Atmos. Chem. Phys. 2006, 6, 2539–2547. [Google Scholar] [CrossRef]
- Yang, Q.; Fu, Q.; Hu, Y. Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res. 2010, 115, D00H12. [Google Scholar] [CrossRef]
- Lin, L.; Fu, Q.; Zhang, H.; Su, J.; Yang, Q.; Sun, Z. Upward mass fluxes in tropical upper troposphere and lower stratosphere derived from radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transf. 2013, 117, 114–122. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Tseng, H.H.; Fu, Q. Tropical tropopause layer cirrus and its relation to tropopause. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 118–131. [Google Scholar] [CrossRef]
- Austin, R.T.; Heymsfield, A.J.; Stephens, G.L. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res. 2009, 114, D00A23. [Google Scholar] [CrossRef]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Heymsfield, A.; Winker, D.; Avery, M.; Vaughan, M.; Diskin, G.; Deng, M.; Mitev, V.; Matthey, R. Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0°C to −86 °C: Implications for spaceborne lidar retrievals. J. Appl. Meteorol. Climatol. 2014, 53, 479–505. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Fu, Q. Impact of clouds on radiative heating rates in the tropical lower stratosphere. J. Geophys. Res. 2006, 111, 23202. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Holton, J.R.; Fu, Q. The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett. 2001, 28, 1969–1972. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Wee, T.K.; Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D.; Anthes, R. Inversion and error estimation of GPS radio occultation data. J. Meteorol. Soc. 2004, 82, 507–531. [Google Scholar] [CrossRef]
- Anthes, R.A.; Bernhardt, P.A.; Chen, Y.; Cucurull, L.; Dymond, K.F.; Ector, D.; Healy, S.B.; Ho, S.-P.; Hunt, D.C.; Kuo, Y.-H.; et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull. Am. Meteorol. Soc. 2008, 89, 313–334. [Google Scholar] [CrossRef]
- He, W.; Ho, S.; Chen, H.; Zhou, X.; Hunt, D.; Kuo, Y.H. Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett. 2009, 36, L17807. [Google Scholar] [CrossRef]
- Wang, B.R.; Liu, X.Y.; Wang, J.K. Assessment of COSMIC radio occultation retrieval product using global radiosonde data. Atmos. Meas. Tech. 2013, 6, 1073–1083. [Google Scholar] [CrossRef]
- Kishore, P.; Namboothiri, S.P.; Jiang, J.H.; Sivakumar, V.; Igarashi, K. Global temperature estimates in the troposphere and stratosphere: A validation study of COSMIC/FORMOSAT-3 measurements. Atmos. Chem. Phys. 2009, 9, 897–908. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. On the correlated k -Distribution method for radiative transfer in Nonhomogeneous Atmospheres. J. Atmos. Sci. 1992, 49, 2139–2156. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci. 1993, 50, 2008–2025. [Google Scholar] [CrossRef]
- Fu, Q. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Clim. 1996, 9, 2058–2082. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N.; Cribb, M.C.; Charlock, T.P.; Grossman, A. Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci. 1997, 54, 2799–2812. [Google Scholar] [CrossRef]
- Fu, Q.; Yang, P.; Sun, W.B. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Clim. 1998, 11, 2223–2237. [Google Scholar] [CrossRef]
- Kratz, D.P.; Rose, F.G. Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transf. 1999, 61, 83–95. [Google Scholar] [CrossRef]
- Rose, F.; Charlock, T.P. New Fu-Liou code tested with ARM raman lidar and CERES in pre-CALIPSO exercise. In Proceedings of the 11th Conference on Atmospheric Radiation, Odgen, UT, USA, 3 June 2002. [Google Scholar]
- Fu, Q. A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci. 2007, 64, 4140–4150. [Google Scholar] [CrossRef]
- Liou, K.N.; Fu, Q.; Ackerman, T.P. A simple formulation of the Delta-Four-Stream approximation for radiative transfer parameterizations. J. Atmos. Sci. 1988, 45, 1940–1948. [Google Scholar] [CrossRef]
- Tobin, D.C.; Best, F.A.; Brown, P.D.; Clough, S.A.; Dedecker, R.G.; Ellingson, R.G.; Garcia, R.K.; Howell, H.B.; Knuteson, R.O.; Mlawer, E.J. Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26 μm. J. Geophys. Res. Atmos. 1999, 104, 2081–2092. [Google Scholar] [CrossRef]
- Johnson, R.H.; Rickenbach, T.M.; Rutledge, S.A.; Ciesielski, P.E.; Schubert, W.H. Trimodal characteristics of tropical convection. J. Clim. 1999, 12, 2397–2418. [Google Scholar] [CrossRef]
- Haynes, J.M.; Stephens, G.L. Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Su, H.; Jiang, J.H.; Vane, D.G.; Stephens, G.L. Observed vertical structure of tropical oceanic clouds sorted in large-scale regimes. Geophys. Res. Lett. 2008, 35, L24704. [Google Scholar] [CrossRef]
- Fu, Q. Bottom up in the tropics. Nat. Clim. Chang. 2013, 3, 957–958. [Google Scholar] [CrossRef]
- Tseng, H.H.; Fu, Q. Temperature control of the variability of tropical tropopause layer cirrus clouds. J. Geophys. Res. Atmos. 2017, 122, 11062–11075. [Google Scholar] [CrossRef]
- Morcrette, J.J. Impact of changes to the radiation transfer parameterizations plus cloud optical. properties in the ECMWF model. Mon. Weather Rev. 1990, 118, 847–873. [Google Scholar] [CrossRef]
- Zhong, W.; Haigh, J.D. Improved broadband emissivity parameterization for water vapor cooling rate calculations. J. Atmos. Sci. 1995, 52, 124–138. [Google Scholar] [CrossRef]
- Zhong, W.; Toumi, R.; Haigh, J.D. Climate forcing by stratospheric ozone depletion calculated from observed temperature trends. Geophys. Res. Lett. 1996, 23, 3183–3186. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Iacono, M.J.; Mlawer, E.J.; Clough, S.A.; Morcrette, J.J. Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res. Atmos. 2000, 105, 14873–14890. [Google Scholar] [CrossRef]
- Yang, Q.; Fu, Q.; Austin, J.; Gettelman, A.; Li, F.; Vömel, H. Observationally derived and general circulation model simulated tropical stratospheric upward mass fluxes. J. Geophys. Res. 2008, 113, D00B07. [Google Scholar] [CrossRef]
- Thompson, A.M.; Witte, J.C.; Smit, H.G.J.; Oltmans, S.J.; Johnson, B.J.; Kirchhoff, V.W.J.H.; Schmidlin, F.J. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 tropical ozone climatology: 3. Instrumentation, station-to-station variability, and evaluation with simulated flight profiles. J. Geophys. Res. 2007, 112, D03304. [Google Scholar] [CrossRef]
- Russell, J.M.; Gordley, L.L.; Park, J.H.; Drayson, S.R.; Hesketh, W.D.; Cicerone, R.J.; Tuck, A.F.; Frederick, J.E.; Harries, J.E.; Crutzen, P.J. The halogen occultation experiment. J. Geophys. Res. 1993, 98, 10777. [Google Scholar] [CrossRef]
- McClatchey, R.A.; Fenn, R.W.; Selby, J.E.A.; Volz, F.E.; Garing, J.S. Optical Properties of the Atmosphere; Air Force Rep. AFCRL-71-0279; Air Force Geophysics Laboratory: Bedford, MA, USA, 1971. [Google Scholar]
- Dinh, T.; Fueglistaler, S. Cirrus, transport, and mixing in the tropical upper troposphere. J. Atmos. Sci. 2014, 71, 1339–1352. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Smith, M.; Yang, Q. The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere 2018, 9, 377. https://doi.org/10.3390/atmos9100377
Fu Q, Smith M, Yang Q. The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere. 2018; 9(10):377. https://doi.org/10.3390/atmos9100377
Chicago/Turabian StyleFu, Qiang, Maxwell Smith, and Qiong Yang. 2018. "The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures" Atmosphere 9, no. 10: 377. https://doi.org/10.3390/atmos9100377
APA StyleFu, Q., Smith, M., & Yang, Q. (2018). The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere, 9(10), 377. https://doi.org/10.3390/atmos9100377