A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal
Abstract
:1. Introduction
2. Data and Methodology
- The Global Land Precipitation data from the Climatic Research Unit (CRU)—University of East Anglia: The dataset has a horizontal resolution of 0.5° × 0.5° in longitude/latitude and covers the period 1901–2014 [35].
- The Sea Surface Temperature and sea ice data from the Met Office Hadley Centre (HadISST): These data span from 1870 to the present on a monthly basis and have a horizontal longitude/latitude resolution of 1° × 1° [36].
- The Atlantic Hurricane Database 2 (HURDAT2): The database goes back to 1851, and provides six-hourly information on the location, maximum winds, central pressure, and (post 2004 only) size of all known tropical and subtropical cyclones in the North Atlantic. As a note of caution, this dataset is far from being complete and accurate for the entire century and a half [37].
- The National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) re-analysis [38]: It spans from 1948 to the present and has a horizontal resolution of 2.5° × 2.5°. In the vertical, it extends from the surface up to 3 hPa and it is available every 6-h, and at daily and monthly timescales.
3. Results
3.1. ENSO Influence on the Tropical North Atlantic
3.1.1. ENSO Impact on the West African Monsoon
3.1.2. ENSO Impact on Hurricane Season
3.2. ENSO Influence on the Extratropical North Atlantic
3.2.1. Tropospheric Mechanisms of ENSO Impact on the European Region
3.2.2. Stratospheric Mechanisms of ENSO Impact on the European Region
3.2.3. Impact of ENSO on Anomalous Rainfall
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AMO | Atlantic Multidecadal Oscillation |
CGT | Circumglobal Teleconnection Pattern |
CP | Central Pacific |
CRU | Climate Research Unit |
EN | El Niño |
ENSO | El Niño-Southern Oscillation |
EP | Entire Period |
GCM | General Circulation Model |
HURDAT | Atlantic Hurricane Database |
IPO | Interdecadal Pacific Oscillation |
ISM | Indian Summer Monsoon |
ITCZ | Intertropical Convergence Zone |
LN | La Niña |
MCA | Maximum Covariance Analysis |
MDR | Main Development Region |
MSW | Major Stratospheric Warming |
NAE | North Atlantic European region |
NAO | North Atlantic Oscillation |
NCAR | National Center for Atmospheric Research |
NCEP | National Centers for Environmental Prediction |
NSC | No-Significant Correlation |
pcp | Precipitation |
PNA | Pacific North American pattern |
SC | Significant Correlation |
SLP | Sea Level Pressure |
SST | Sea Surface Temperature |
S4CAST | SST-based Statistical Seasonal Forecast model |
TNA | Tropical North Atlantic |
TNH | Tropical Northern Hemisphere |
WAM | West African Monsoon |
Z | Geopotential Height |
References
- Brönnimann, S. Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 2010, 79, 231–244. [Google Scholar] [CrossRef]
- García-Serrano, J.; Rodríguez-Fonseca, B.; Bladé, I.; Zurita-Gotor, P.; Cámara, A. Rotational atmospheric circulation during North Atlantic-European winter: The influence of ENSO. Clim. Dyn. 2011, 37, 1727–1743. [Google Scholar] [CrossRef]
- Bladé, I.; Liebmann, B.; Fortuny, D.; van Oldenborgh, G.J. Observed and simulated impacts of the summer NAO in Europe: Implications for projected drying in the Mediterranean region. Clim. Dyn. 2012, 39, 709–727. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric harbingers of anomalous weather regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Alheit, J.; Bakun, A. Population synchronies within and between ocean basins: Apparent teleconnections and implications as to physical–biological linkage mechanisms. J. Mar. Syst. 2010, 79, 267–285. [Google Scholar] [CrossRef]
- Franzke, C.; Lee, S.; Feldstein, S.B. Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci. 2004, 61, 145–160. [Google Scholar] [CrossRef]
- Woollings, T.; Hoskins, B.; Blackburn, M.; Berrisford, P. A New Rossby Wave-breaking Interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 2008, 65, 609–626. [Google Scholar] [CrossRef]
- Strong, C.; Magnusdottir, G. Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci. 2008, 65, 2861–2876. [Google Scholar] [CrossRef]
- Trenberth, K.E. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef]
- Van Loon, H.; Madden, R.A. The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon. Weather Rev. 1981, 109, 1150–1162. [Google Scholar] [CrossRef]
- Hamilton, K. A detailed examination of the extratropical response to tropical El Niño/Southern Oscillation events. J. Climatol. 1988, 8, 67–86. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Diaz, H.F. Global climatic anomalies associated with extremes in the Southern Oscillation. J. Clim. 1989, 2, 1069–1090. [Google Scholar] [CrossRef]
- Fraedrich, K.; Müller, K. Climate anomalies in Europe associated with ENSO extremes. Int. J. Climatol. 1992, 12, 25–31. [Google Scholar]
- Fraedrich, K. An ENSO impact on Europe? Tellus A 1994, 46, 541–552. [Google Scholar] [CrossRef]
- Moron, V.; Plaut, G. The impact of El Nino–southern oscillation upon weather regimes over Europe and the North Atlantic during boreal winter. Int. J. Climatol. 2003, 23, 363–379. [Google Scholar] [CrossRef]
- Van Loon, H.; Labitzke, K. The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon. Weather Rev. 1987, 115, 357–369. [Google Scholar] [CrossRef]
- Manzini, E.; Giorgetta, M.A.; Esch, M.; Kornblueh, L.; Roeckner, E. The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Clim. 2006, 19, 3863–3881. [Google Scholar] [CrossRef]
- García-Herrera, R.; Calvo, N.; García, R.R.; Giorgetta, M.A. Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis-data. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- López-Parages, J.; Rodríguez-Fonseca, B. Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- López-Parages, J.; Rodríguez-Fonseca, B.; Terray, L. A mechanism for the multidecadal modulation of ENSO teleconnection with Europe. Clim. Dyn. 2014, 45, 867–880. [Google Scholar] [CrossRef]
- López-Parages, J.; Rodríguez-Fonseca, B.; Dommenget, D.; Frauen, C. ENSO influence on the North Atlantic European climate: A non-linear and non-stationary approach. Clim. Dyn. 2015. [Google Scholar] [CrossRef]
- Luksch, U.; Raible, C.C.; Blender, R.; Fraedrich, K. Decadal cyclone variability in the North Atlantic. Meteorol. Z. 2005, 14, 747–753. [Google Scholar] [CrossRef]
- Raible, C.C.; Lehner, F.; Gonzalez-Rouco, J.F.; Fernandez-Donado, L. Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD. Clim. Past 2014, 10, 537–550. [Google Scholar] [CrossRef] [Green Version]
- Hertig, E.; Beck, C.; Wanner, H.; Jacobeit, J. A review of non-stationarities in climate variability of the last century with focus on the North Atlantic–European sector. Earth-Science Rev. 2015, 147, 1–17. [Google Scholar] [CrossRef]
- Gómara, I.; Rodríguez-Fonseca, B.; Zurita-Gotor, P.; Ulbrich, S.; Pinto, J.G. Abrupt transitions in the NAO control of explosive North Atlantic cyclone development. Clim. Dyn. 2016. [Google Scholar] [CrossRef]
- Mohino, E.; Rodríguez-Fonseca, B.; Losada, T.; Gervois, S.; Janicot, S.; Bader, J.; Ruti, P.; Chauvin, F. Changes in the interannual SST-forced signals on West African rainfall. AGCM intercomparison. Clim. Dyn. 2011, 37, 1707–1725. [Google Scholar] [CrossRef]
- Rodríguez-Fonseca, B.; Janicot, S.; Mohino, E.; Losada, T.; Bader, J.; Caminade, C.; Voldoire, A. Interannual and decadal SST- forced responses of the West African monsoon. Atmos. Sci. Lett. 2011, 12, 67–74. [Google Scholar] [CrossRef]
- Rodríguez-Fonseca, B.; Mohino, E.; Mechoso, C.R.; Caminade, C.; Biasutti, M.; Gaetani, M.; García-Serrano, J.; Vizy, E.K.; Cook, K.; Xue, Y.; et al. Variability and Predictability of West African Droughts. A review on the role of Sea Surface Temperature Anomalies. J. Clim. 2015. [Google Scholar] [CrossRef]
- Philander, S.G. El Niño, la Niña, and the Southern Oscillation; Academic Press: San Diego, CA, USA, 1989. [Google Scholar]
- Cry, G.W. Effects of Tropical Cyclone Rainfall on the Distribution of Precipitation Over the Eastern and Southern United States; Professional Paper 1; United States Department of Commerce, Environmental Sciences Services Administration: Washington, DC, USA, 1967; p. 67. [Google Scholar]
- Emanuel, K.A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, E. Inland Flooding. National Hurricane Center website 2008. Available online: http://www.nhc.noaa.gov/HAW2/english/inland_flood.shtml (accessed on 10 July 2008).
- Barlow, M. Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Landsea, C.W.; Franklin, J.L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Suárez-Moreno, R.; Rodríguez-Fonseca, B. S4CAST v2.0: Sea surface temperature based statistical seasonal forecast model. Geosci. Model Dev. 2015, 8, 3639–3658. [Google Scholar] [CrossRef] [Green Version]
- Villamayor, J.; Mohino, E. Robust Sahel drought due to the Interdecadal Pacific Oscillation in CMIP5 simulations. Geophys. Res. Lett. 2015, 42, 1214–1222. [Google Scholar] [CrossRef]
- Folland, C.K.; Palmer, T.N.; Parker, D.E. Sahel rainfall and worldwide sea temperatures, 1901-1985. Nature 1986, 320, 602–607. [Google Scholar] [CrossRef]
- Palmer, T.N. Influence of the Atlantic, Pacific and Indian oceans on Sahel rainfall. Nature 1986, 322, 251–253. [Google Scholar] [CrossRef]
- Janicot, S.; Moron, V.; Fontaine, B. Sahel droughts and ENSO dynamics. Geophys. Res. Lett. 1996, 23, 515–518. [Google Scholar] [CrossRef]
- Janicot, S.; Harzallah, A.; Fontaine, B.; Moron, V. West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970-1988). J. Clim. 1998, 11, 1874–1882. [Google Scholar] [CrossRef]
- Janicot, S.; Trzaska, S.; Poccard, I. Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Clim. Dyn. 2001, 18, 303–320. [Google Scholar] [CrossRef]
- Fontaine, B.; Trzaska, S.; Janicot, S. Evolution of the relationship between near global and Atlantic SST modes and the rainy season in West Africa: Statistical analyses and sensitivity experiments. Clim. Dyn. 1998, 14, 353–368. [Google Scholar] [CrossRef]
- Rowell, D.P. Teleconnections between the tropical Pacific and the Sahel. Q. J. R. Meteorol. Soc. 2001, 127, 1683–1706. [Google Scholar] [CrossRef]
- Joly, M.; Voldoire, A. Influence of ENSO on the West African monsoon: Temporal aspects and atmospheric processes. J. Clim. 2009, 22, 3193–3210. [Google Scholar] [CrossRef]
- Mohino, E.; Rodríguez-Fonseca, B.; Mechoso, C.R.; Gervois, S.; Ruti, P.; Chauvin, F. Impacts of the tropical Pacific/Indian Oceans on the seasonal cycle of the West African monsoon. J. Clim. 2011, 24, 3878–3891. [Google Scholar] [CrossRef]
- Losada, T.; Rodriguez-Fonseca, B.; Mohino, E.; Bader, J.; Janicot, S.; Mechoso, C.R. Tropical SST and Sahel rainfall: A non-stationary relationship. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Giannini, A.; Saravannan, R.; Chang, P. Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Clim. Dyn. 2005, 25, 517–535. [Google Scholar] [CrossRef]
- Cook, K.H.; Vizy, E.K. Coupled model simulations of the West African monsoon system: Twentieth and twenty-first century simulations. J. Clim. 2006, 19, 3681–3703. [Google Scholar] [CrossRef]
- Rodríguez-Fonseca, B.; Polo, I.; García-Serrano, J.; Losada, T.; Mohino, E.; Mechoso, C.R.; Kucharski, F. Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Landsea, C.W.; Pielke, R.A., Jr.; Mestas-Nunez, A.M.; Knaff, J.A. Atlantic basin hurricanes: Indices of climatic changes. Clim. Chang. 1999, 42, 89–129. [Google Scholar] [CrossRef]
- Emanuel, K.A. Tropical Cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Blake, E.S.; Rappaport, E.N.; Landsea, C.W. The Deadliest, Costliest, and Most Intense United States Tropical Cyclones from 1851 to 2006 (and Other Frequently Requested Hurricane Facts); NOAA Technical Memorandum NWS TPC-5; National Hurricane Center: Miami, FL, USA, 2007. [Google Scholar]
- Gray, W.M. Global view of the origins of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Landsea, C.W. A climatology of intense (or major) Atlantic hurricanes. Mon. Weather Rev. 1993, 121, 1703–1713. [Google Scholar] [CrossRef]
- Goldenberg, S.B.; Shapiro, L.J. Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Clim. 1996, 9, 1169–1187. [Google Scholar] [CrossRef]
- Saunders, M.A.; Harris, A.R. Statistical evidence links exceptional 1995 Atlantic hurricane season to record sea warming. Geophys. Res. Lett. 1997, 24, 1255–1258. [Google Scholar] [CrossRef]
- Gray, W.M. Atlantic seasonal hurricane frequency, Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Weather Rev. 1984, 115, 1649–1668. [Google Scholar] [CrossRef]
- Aiyyer, A.; Thorncroft, C. Climatology of vertical shear over the tropical Atlantic. J. Clim. 2006, 19, 2969–2983. [Google Scholar] [CrossRef]
- Bove, M.C.; Elsner, J.B.; Landsea, C.W.; Niu, X.; O’Brien, J.J. Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Am. Meteorol. Soc. 1998, 79, 2477–2482. [Google Scholar] [CrossRef]
- Elsner, J.B.; Bossak, B.H.; Nui, X.F. Secular changes to the ENSO-U.S. hurricane relationship. Geophys. Res. Lett. 2001, 28, 4123–4126. [Google Scholar] [CrossRef]
- Smith, S.R.; Brolley, J.; Tartaglione, C.A. ENSO’s impact on regional U.S. hurricane activity. J. Clim. 2007, 20, 1404–1414. [Google Scholar] [CrossRef]
- Shapiro, L.J. Hurricane climatic fluctuations. Part II: Relation to large-scale circulation. Mon. Weather Rev. 1982, 110, 1014–1023. [Google Scholar] [CrossRef]
- Gray, W.M. Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Weather Rev. 1984, 112, 1669–1683. [Google Scholar] [CrossRef]
- Tartaglione, C.A.; Smith, S.R.; O’Brien, J.J. ENSO Impact on Hurricane Landfall Probabilities for the Caribbean. J. Clim. 2003, 16, 2925–2931. [Google Scholar] [CrossRef]
- Gray, W.M.; Sheaffer, J.D.; Landsea, C.W. Climate Trends Associated with Multidecadal Variability of Atlantic Hurricane Activity. Hurricanes, Climate and Socioeconomic Impacts; Diaz, H.F., Pulwarty, R.S., Eds.; Springer: Berlin, Germany, 1997; pp. 15–53. [Google Scholar]
- Goldenberg, S.B.; Landsea, C.W.; Mestas-Nunez, A.M.; Gray, W.M. The recent increase in Atlantic hurricane activity: Causes and implications. Science 2001, 293, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.D.; Chelliah, M. Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Clim. 2006, 19, 590–612. [Google Scholar] [CrossRef]
- Nogueira, R.C.; Keim, B.D.; Brown, D.P.; Robbins, K.D. Variability of rainfall from tropical cyclones in the eastern USA and its association to the AMO and ENSO. Theor. Appl. Climatol. 2013, 112, 273–283. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J. Global warming and the weakening of the tropical circulation. J. Clim. 2007, 20, 4316–4340. [Google Scholar] [CrossRef]
- Emanuel, K.A.; Sundararajan, R.; Williams, J. Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Am. Meteorol. Soc. 2008, 89, 347–367. [Google Scholar] [CrossRef]
- Bender, M.A.; Knutson, T.R.; Tuleya, R.E.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.T.; Held, I.M. Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes. Science 2010, 327, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.R.; Allan, R.J.; Folland, C.K.; Vellinga, M.; Mann, M.E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Randel, W.J.; Wu, F. Biases in stratospheric and tropospheric temperature trends derived from historical radiosonde data. J. Clim. 2006, 19, 2094–2104. [Google Scholar] [CrossRef]
- Landsea, C.W. Hurricanes and global warming: Arising from Emanuel 2005a. Nature 2005, 438, E11–E13. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.L. Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science 2006, 311. [Google Scholar] [CrossRef] [PubMed]
- Giannini, A.; Cane, M.; Kushnir, Y. Interdecadal Changes in the ENSO Teleconnection to the Caribbean Region and the North Atlantic Oscillation. J. Clim. 2001, 14, 2867–2879. [Google Scholar] [CrossRef]
- Ruiz-Barradas, A.; Carton, J.A.; Nigam, S. Role of the Atmosphere in Climate Variability of the Tropical Atlantic. J. Clim. 2003, 16, 2052–2065. [Google Scholar] [CrossRef]
- Wang, C.; Picaut, J. Understanding ENSO physics—A review. Earth Clim. 2004. [Google Scholar] [CrossRef]
- Mathieu, P.-P.; Sutton, R.T.; Dong, B.; Collins, M. Predictability of Winter Climate over the North Atlantic European Region during ENSO Events. J. Clim. 2004, 17, 1953–1974. [Google Scholar] [CrossRef]
- Pozo-Vázquez, D.; Esteban-Parra, M.J.; Rodrigo, F.S.; Castro-Díez, Y. A study of NAO variability and its possible non-linear influences on European surface temperature. Clim. Dyn. 2001, 17, 701–715. [Google Scholar] [CrossRef]
- Gouirand, I.; Moron, V. Variability of the impact of El Niño-Southern Oscillation on sea-level pressure anomalies over the North Atlantic in January to March(1874–1996). Int. J. Climatol. 2003, 23, 1549–1566. [Google Scholar] [CrossRef]
- Sutton, R.T.; Hodson, D.L.R. Influence of the Ocean on North Atlantic Climate Variability 1871–1999. J. Clim. 2003, 16, 3296–3313. [Google Scholar] [CrossRef]
- Sung, M.-K.; Kim, B.-M.; An, S.-I. Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference. Clim. Dyn. 2014, 42, 159–170. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Sung, M.-K.; An, S.-I.; Schubert, S.D.; Kug, J.-S. Role of tropical atlantic SST variability as a modulator of El Niño teleconnections. Asia Pac. J. Atmos. Sci. 2014, 50, 247–261. [Google Scholar] [CrossRef]
- Honda, M.; Nakamura, H.; Ukita, J.; Kousaka, I.; Takeuchi, K. Interannual Seesaw between the Aleutian and Icelandic Lows. Part I: Seasonal Dependence and Life Cycle. J. Clim. 2001, 14, 1029–1042. [Google Scholar] [CrossRef]
- Seager, R.; Naik, N.; Ting, M.; Cane, M.A.; Harnik, N.; Kushnir, Y. Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Q. J. R. Meteorol. Soc. 2010, 136, 277–296. [Google Scholar] [CrossRef]
- Li, Y.; Lau, N.C. Impact of ENSO on the atmospheric variability over the North Atlantic in late winter-Role of transient eddies. J. Clim. 2012, 25, 320–342. [Google Scholar] [CrossRef]
- Li, Y.; Lau, N.C. Contributions of downstream eddy development to the teleconnection between ENSO and the atmospheric circulation over the North Atlantic. J. Clim. 2012, 25, 4993–5010. [Google Scholar] [CrossRef]
- Drouard, M.; Rivière, G.; Arbogast, P. The North Atlantic Oscillation response to large-scale atmospheric anomalies in the northeastern Pacific. J. Atmos. Sci. 2013, 70, 2854–2874. [Google Scholar] [CrossRef]
- Drouard, M.; Rivière, G.; Arbogast, P. The Link between the North Pacific Climate Variability and the North Atlantic Oscillation via Downstream Propagation of Synoptic Waves. J. Clim. 2015, 28, 3957–3976. [Google Scholar] [CrossRef]
- Mo, K.C.; Livezey, R.E. Tropical-Extratropical Geopotential Height Teleconnections during the Northern Hemisphere Winter. Mon. Weather Rev. 1986, 114, 2488–2515. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Livezey, R.E.; Mo, K.C. Tropical-extratropical teleconnections during the Northern Hemisphere winter. Part II: Relationships between monthly mean Northern Hemisphere circulation patterns and proxies for tropical convection. Mon. Weather Rev. 1987, 115, 3115–3132. [Google Scholar] [CrossRef]
- Yu, B.; Zhang, X.; Lin, H.; Yu, J.Y. Comparison of Wintertime North American Climate Impacts Associated with Multiple ENSO Indices. Atmos. Ocean. 2015, 53, 426–445. [Google Scholar] [CrossRef]
- Bladé, I.; Newman, M.; Alexander, M.A.; Scott, J.D. The late fall extratropical response to ENSO: Sensitivity to coupling and convection in the tropical West Pacific. J. Clim. 2008, 21, 6101–6118. [Google Scholar] [CrossRef]
- Karoly, D.J.; Plumb, R.A.; Ting, M. Examples of the Horizontal Propagation of Quasi-stationary Waves. J. Atmos. Sci. 1989, 46, 2802–2811. [Google Scholar] [CrossRef]
- Greatbatch, R.J.; Lu, J.; Peterson, K.A. Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Kang, I.-S.; No, H.-H.; Kucharski, F. ENSO Amplitude Modulation Associated with the Mean SST Changes in the Tropical Central Pacific Induced by Atlantic Multidecadal Oscillation. J. Clim. 2014, 27, 7911–7920. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Philander, S.G. Is El Niño changing? Science 2000, 288, 1997–2002. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; An, S.I. A mechanism for decadal changes of ENSO behavior: roles of background wind changes. Clim. Dyn. 2002, 18, 475–486. [Google Scholar]
- Larkin, N.K.; Harrison, D.E. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- An, S.-I.; Ye, Z.; Hsieh, W.W. Changes in the leading ENSO modes associated with the late 1970s climate shift: Role of surface zonal current. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnections. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; An, S.I.; Kug, J.S.; Yeh, S.W. The role of mean state on changes in El Niño’s flavor. Clim. Dyn. 2011, 37, 1205–1215. [Google Scholar] [CrossRef]
- Graf, H.-F.; Zanchettin, D. Central Pacific El Niño, the “subtropical bridge”, and Eurasian climate. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Sanders, F.; Gyakum, J.R. Synoptic-dynamic climatology of the “bomb”. Mon. Weather Rev. 1980, 108, 1589–1606. [Google Scholar] [CrossRef]
- Folland, C.K.; Knight, J.; Linderholm, H.W.; Fereday, D.; Ineson, S.; Hurrel, J.W. The summer North Atlantic Oscillation: Past, present and future. J. Clim. 2009, 22, 1082–1103. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, H. Interdecadal variability of the ENSO-North Atlantic Oscillation connection in boreal summer. Q. J. R. Meteorol. Soc. 2012, 138, 1668–1675. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Huang, F.; Ding, Q.; Lee, J.Y. Interdecadal change of the boreal summer circumglobal teleconnection (1858–2010). Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Saeed, S.; van Lipzig, N.; Müller, W.A.; Saeed, F.; Zanchettin, D. Influence of the circumglobal wave-train on European summer precipitation. Clim. Dyn. 2014, 43, 503–515. [Google Scholar] [CrossRef]
- Capa-Morocho, M.; Rodríguez-Fonseca, B.; Ruiz-Ramos, M. Crop yield as a bioclimatic index of El Niño impact in Europe: Crop forecast implications. Agric. For. Meteorol. 2014, 198, 42–52. [Google Scholar] [CrossRef]
- Rozas, V.; Camarero, J.J.; Sangüesa-Barreda, G.; Souto, M.; García-Gonzalez, I. Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agric. For. Meteorol. 2015, 201, 153–164. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hartmann, D.L. Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hartmann, D.L.; Sassi, F. Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Clim. 2010, 23, 3282–3299. [Google Scholar] [CrossRef]
- Taguchi, M.; Hartmann, D.L. Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Clim. 2006, 19, 324–332. [Google Scholar] [CrossRef]
- Labitzke, K.; van Loon, H. The Stratosphere: Phenomena, History, and Relevance; Springer: Berlin, Germany, 1999; p. 179. [Google Scholar]
- Butler, A.H.; Polvani, L.M. El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Butler, A.H.; Waugh, D.W.; Hurwitz, M.M.; Polvani, L.M. Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Brönimann, S.; Luterbacher, J.; Staehelin, J.; Svendby, T.M.; Hansen, G.; Svenoe, T. Extreme climate of the global troposphere and stratosphere in 1940–1942 related to El Niño. Nature 2004, 431, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.J.; Gray, L.J.; Charlton-Perez, A.J.; Joshi, M.M. Stratospheric communication of El Niño teleconnections to European winter. J. Clim. 2009, 22, 4083–4096. [Google Scholar] [CrossRef]
- Cagnazzo, C.; Manzini, E. Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Clim. 2009, 22, 1223–1238. [Google Scholar] [CrossRef]
- Butler, A.H.; Polvani, L.M.; Deser, C. Separating the stratospheric and the tropospheric pathways of El Niño-Southern Oscillation teleconnections. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Zubiaurre, I.; Calvo, N. The El Niño-Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Hurwitz, M.M.; Calvo, N.; Garfinkel, C.I.; Butler, A.H.; Ineson, S.; Cagnazzo, C.; Manzini, E.; Peña-Ortiz, C. Extra-tropical atmospheric response to ENSO in the CMIP5 models. Clim. Dyn. 2014. [Google Scholar] [CrossRef]
- Iza, M.; Calvo, N. Role of stratospheric sudden warmings on the response to Central Pacific El Niño. Geophys. Res. Lett. 2015, 42, 2482–2489. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An Overview of the North Atlantic Oscillation, Climatic Significance and Environmental Impact; Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M., Eds.; American Geophysical Union: Washington, DC, USA, 2003. [Google Scholar]
- Ineson, S.; Scaife, A.A. The role of the stratosphere in the European climate response to El Niño. Nat. Geosci. 2009, 2, 32–36. [Google Scholar] [CrossRef]
- Mariotti, A.; Zeng, N.; Lau, K.M. Euro-Mediterranean rainfall and ENSO—A seasonally varying relationship. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Knippertz, P.; Ulbrich, U.; Marques, F.; Corte-Real, J. Decadal changes in the link between El Niño and springtime North Atlantic Oscillation and European–North African rainfall. Int. J. Climatol. 2003, 23, 1293–1311. [Google Scholar] [CrossRef]
- Zanchettin, D.; Franks, S.W.; Traverso, P.; Tomasino, M. On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multi-decadal variability described through the PDO index. Int. J. Climatol. 2008, 28, 995–1006. [Google Scholar] [CrossRef]
- Ting, M.; Hoerling, M.P.; Xu, T.; Kumar, A. Northern Hemisphere teleconnection patterns during extreme phases of the zonal-mean circulation. J. Clim. 1996, 9, 2614–2633. [Google Scholar] [CrossRef]
- Martín-Rey, M.; Rodríguez-Fonseca, B.; Polo, I. Atlantic opportunities for ENSO prediction. Geophys. Res. Lett. 2015, 42, 6802–6810. [Google Scholar] [CrossRef]
- Losada, T.; Rodriguez-Fonseca, B.; Kucharski, F. Tropical influence on the summer Mediterranean climate. Atmos. Sci. Lett. 2012, 13, 36–42. [Google Scholar] [CrossRef] [Green Version]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Fonseca, B.; Suárez-Moreno, R.; Ayarzagüena, B.; López-Parages, J.; Gómara, I.; Villamayor, J.; Mohino, E.; Losada, T.; Castaño-Tierno, A. A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal. Atmosphere 2016, 7, 87. https://doi.org/10.3390/atmos7070087
Rodríguez-Fonseca B, Suárez-Moreno R, Ayarzagüena B, López-Parages J, Gómara I, Villamayor J, Mohino E, Losada T, Castaño-Tierno A. A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal. Atmosphere. 2016; 7(7):87. https://doi.org/10.3390/atmos7070087
Chicago/Turabian StyleRodríguez-Fonseca, Belén, Roberto Suárez-Moreno, Blanca Ayarzagüena, Jorge López-Parages, Iñigo Gómara, Julián Villamayor, Elsa Mohino, Teresa Losada, and Antonio Castaño-Tierno. 2016. "A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal" Atmosphere 7, no. 7: 87. https://doi.org/10.3390/atmos7070087
APA StyleRodríguez-Fonseca, B., Suárez-Moreno, R., Ayarzagüena, B., López-Parages, J., Gómara, I., Villamayor, J., Mohino, E., Losada, T., & Castaño-Tierno, A. (2016). A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal. Atmosphere, 7(7), 87. https://doi.org/10.3390/atmos7070087