Long-Term Evolution of the Ozone Layer Under CMIP7 Scenarios
Abstract
1. Introduction
2. Methods
2.1. Model and Configuration
2.2. CMIP7 Emission Scenarios
2.3. External Forcing and Prescribed Concentrations
2.4. Experimental Design
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Mechanisms of Stratospheric Ozone Decline and Total Column Enhancement
4.2. Asymmetry Between Forcing and Recovery
4.3. Regional Differentiation and Polar Processes Role
4.4. Model Uncertainties and Comparison with Other Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgenstern, O.; Stone, K.A.; Schofield, R.; Akiyoshi, H.; Yamashita, Y.; Kinnison, D.E.; Garcia, R.R.; Sudo, K.; Plummer, D.A.; Scinocca, J.; et al. Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations. Atmos. Chem. Phys. 2018, 18, 1091–1114. [Google Scholar] [CrossRef]
- Revell, L.E.; Bodeker, G.E.; Huck, P.E.; Williamson, B.E.; Rozanov, E. The Sensitivity of Stratospheric Ozone Changes through the 21st Century to N2O and CH4. Atmos. Chem. Phys. 2012, 12, 11309–11317. [Google Scholar] [CrossRef]
- Butchart, N. The Brewer-Dobson Circulation. Rev. Geophys. 2014, 52, 157–184. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Van Vuuren, D.; O’Neill, B.; Tebaldi, C.; Chini, L.; Friedlingstein, P.; Hasegawa, T.; Riahi, K.; Sanderson, B.; Govindasamy, B.; Bauer, N.; et al. The Scenario Model Intercomparison Project for CMIP7 (ScenarioMIP-CMIP7) 2025. EGUsphere, 2025; preprint. [Google Scholar]
- Jones, C.; Robertson, E.; Arora, V.; Friedlingstein, P.; Shevliakova, E.; Bopp, L.; Brovkin, V.; Hajima, T.; Kato, E.; Kawamiya, M.; et al. Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways. J. Clim. 2013, 26, 4398–4413. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Meinshausen, M.; Arora, V.K.; Jones, C.D.; Anav, A.; Liddicoat, S.K.; Knutti, R. Uncertainties in CMIP5 Climate Projections Due to Carbon Cycle Feedbacks. J. Clim. 2014, 27, 511–526. [Google Scholar] [CrossRef]
- Boucher, O.; Halloran, P.R.; Burke, E.J.; Doutriaux-Boucher, M.; Jones, C.D.; Lowe, J.; Ringer, M.A.; Robertson, E.; Wu, P. Reversibility in an Earth System Model in Response to CO2 Concentration Changes. Environ. Res. Lett. 2012, 7, 024013. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Zickfeld, K. The Effectiveness of Net Negative Carbon Dioxide Emissions in Reversing Anthropogenic Climate Change. Environ. Res. Lett. 2015, 10, 094013. [Google Scholar] [CrossRef]
- Muthers, S.; Anet, J.G.; Stenke, A.; Raible, C.C.; Rozanov, E.; Brönnimann, S.; Peter, T.; Arfeuille, F.X.; Shapiro, A.I.; Beer, J.; et al. The Coupled Atmosphere–Chemistry–Ocean Model SOCOL-MPIOM. Geosci. Model Dev. 2014, 7, 2157–2179. [Google Scholar] [CrossRef]
- Egorova, T.; Rozanov, E.; Zubov, V.; Manzini, E.; Schmutz, W.; Peter, T. Chemistry-Climate Model SOCOL: A Validation of the Present-Day Climatology. Atmos. Chem. Phys. 2005, 5, 1557–1576. [Google Scholar] [CrossRef]
- Marsland, S.J.; Haak, H.; Jungclaus, J.H.; Latif, M.; Röske, F. The Max-Planck-Institute Global Ocean/Sea Ice Model with Orthogonal Curvilinear Coordinates. Ocean Model. 2003, 5, 91–127. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Keenlyside, N.; Botzet, M.; Haak, H.; Luo, J.-J.; Latif, M.; Marotzke, J.; Mikolajewicz, U.; Roeckner, E. Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM. J. Clim. 2006, 19, 3952–3972. [Google Scholar] [CrossRef]
- Valcke, S. The OASIS3 Coupler: A European Climate Modelling Community Software. Geosci. Model Dev. 2013, 6, 373–388. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Smith, C.J.; Forster, P.M.; Allen, M.; Leach, N.; Millar, R.J.; Passerello, G.A.; Regayre, L.A. FAIR v1.3: A Simple Emissions-Based Impulse Response and Carbon Cycle Model. Geosci. Model Dev. 2018, 11, 2273–2297. [Google Scholar] [CrossRef]
- WMO/UNEP. Scientific Assessment of Ozone Depletion: 2018; World Meteorological Organization: Geneva, Switzerland, 2019; ISBN 978-1-7329317-1-8. [Google Scholar]
- Heath, E.A. Amendment to the Montreal Protocol on Substances That Deplete the Ozone Layer (Kigali Amendment). Int. Leg. Mater. 2017, 56, 193–205. [Google Scholar] [CrossRef]
- Matthes, K.; Funke, B.; Andersson, M.E.; Barnard, L.; Beer, J.; Charbonneau, P.; Clilverd, M.A.; Dudok De Wit, T.; Haberreiter, M.; Hendry, A.; et al. Solar Forcing for CMIP6 (v3.2). Geosci. Model Dev. 2017, 10, 2247–2302. [Google Scholar] [CrossRef]
- Input4MIPs Database. Available online: https://esgf-node.llnl.gov/search/input4mips/ (accessed on 10 September 2024).
- Butchart, N.; Cionni, I.; Eyring, V.; Shepherd, T.G.; Waugh, D.W.; Akiyoshi, H.; Austin, J.; Brühl, C.; Chipperfield, M.P.; Cordero, E.; et al. Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes. J. Clim. 2010, 23, 5349–5374. [Google Scholar] [CrossRef]
- Hardiman, S.C.; Butchart, N.; Osprey, S.M.; Gray, L.J.; Bushell, A.C.; Hinton, T.J. The Climatology of the Middle Atmosphere in a Vertically Extended Version of the Met Office’s Climate Model. Part I: Mean State. J. Atmos. Sci. 2010, 67, 1509–1525. [Google Scholar] [CrossRef]
- Shepherd, T.G.; McLandress, C. A Robust Mechanism for Strengthening of the Brewer–Dobson Circulation in Response to Climate Change: Critical-Layer Control of Subtropical Wave Breaking. J. Atmos. Sci. 2011, 68, 784–797. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Aquila, V.; Waugh, D.W.; Oman, L.D. Time-Varying Changes in the Simulated Structure of the Brewer–Dobson Circulation. Atmos. Chem. Phys. 2017, 17, 1313–1327. [Google Scholar] [CrossRef]
- Garcia, R.R.; Randel, W.J. Acceleration of the Brewer–Dobson Circulation Due to Increases in Greenhouse Gases. J. Atmos. Sci. 2008, 65, 2731–2739. [Google Scholar] [CrossRef]
- Oberländer-Hayn, S.; Gerber, E.P.; Abalichin, J.; Akiyoshi, H.; Kerschbaumer, A.; Kubin, A.; Kunze, M.; Langematz, U.; Meul, S.; Michou, M.; et al. Is the Brewer-Dobson Circulation Increasing or Moving Upward? Geophys. Res. Lett. 2016, 43, 1772–1779. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Solomon, S. Interpretation of Recent Southern Hemisphere Climate Change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Waugh, D.W.; Oman, L.; Kawa, S.R.; Stolarski, R.S.; Pawson, S.; Douglass, A.R.; Newman, P.A.; Nielsen, J.E. Impacts of Climate Change on Stratospheric Ozone Recovery. Geophys. Res. Lett. 2009, 36, 2008GL036223. [Google Scholar] [CrossRef]
- Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D.T.; Voulgarakis, A.; Skeie, R.B.; Dalsoren, S.B.; Myhre, G.; Berntsen, T.K.; et al. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 3063–3085. [Google Scholar] [CrossRef]
- Minx, J.C.; Lamb, W.F.; Callaghan, M.W.; Fuss, S.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; De Oliveira Garcia, W.; Hartmann, J.; et al. Negative Emissions—Part 1: Research Landscape and Synthesis. Environ. Res. Lett. 2018, 13, 063001. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; De Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative Emissions—Part 2: Costs, Potentials and Side Effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Plumb, R.A. Stratospheric Transport. J. Meteorol. Soc. Jpn. 2002, 80, 793–809. [Google Scholar] [CrossRef]
- Palmeiro, F.M.; Calvo, N.; Garcia, R.R. Future Changes in the Brewer–Dobson Circulation under Different Greenhouse Gas Concentrations in WACCM4. J. Atmos. Sci. 2014, 71, 2962–2975. [Google Scholar] [CrossRef][Green Version]
- Eyring, V.; Arblaster, J.M.; Cionni, I.; Sedláček, J.; Perlwitz, J.; Young, P.J.; Bekki, S.; Bergmann, D.; Cameron-Smith, P.; Collins, W.J.; et al. Long-term Ozone Changes and Associated Climate Impacts in CMIP5 Simulations. J. Geophys. Res. Atmos. 2013, 118, 5029–5060. [Google Scholar] [CrossRef]
- Dhomse, S.S.; Kinnison, D.; Chipperfield, M.P.; Salawitch, R.J.; Cionni, I.; Hegglin, M.I.; Abraham, N.L.; Akiyoshi, H.; Archibald, A.T.; Bednarz, E.M.; et al. Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations. Atmos. Chem. Phys. 2018, 18, 8409–8438. [Google Scholar] [CrossRef]
- Keeble, J.; Hassler, B.; Banerjee, A.; Checa-Garcia, R.; Chiodo, G.; Davis, S.; Eyring, V.; Griffiths, P.T.; Morgenstern, O.; Nowack, P.; et al. Evaluating Stratospheric Ozone and Water Vapour Changes in CMIP6 Models from 1850 to 2100. Atmos. Chem. Phys. 2021, 21, 5015–5061. [Google Scholar] [CrossRef]
- Ayarzagüena, B.; Polvani, L.M.; Langematz, U.; Akiyoshi, H.; Bekki, S.; Butchart, N.; Dameris, M.; Deushi, M.; Hardiman, S.C.; Jöckel, P.; et al. No Robust Evidence of Future Changes in Major Stratospheric Sudden Warmings: A Multi-Model Assessment from CCMI. Atmos. Chem. Phys. 2018, 18, 11277–11287. [Google Scholar] [CrossRef]
- Garcia, R.R.; Smith, A.K.; Kinnison, D.E.; Cámara, Á.D.L.; Murphy, D.J. Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results. J. Atmos. Sci. 2017, 74, 275–291. [Google Scholar] [CrossRef]
- Neu, J.L.; Prather, M.J.; Penner, J.E. Global Atmospheric Chemistry: Integrating over Fractional Cloud Cover. J. Geophys. Res. Atmos. 2007, 112, 2006JD008007. [Google Scholar] [CrossRef]




| Scenario | Scenario ID | CO2 Trajectory | Peak/2200 CO2 (ppm) | Key Features | Target Warming |
|---|---|---|---|---|---|
| HE (High-Extension) | esm-scen7-h-ext | Monotonic increase from 410 (2020) to 1420 (2200) | 1420 | Constant emissions at 2100 levels until 2175, then linear reduction to net-zero by 2275. Tests high-end climate impacts and TCRE linearity. | 4–10 °C (central ~6 °C) post-2300 |
| HO (High-Overshoot) | esm-scen7-h-ext-os | Peak at 830 (2100), decline to 350 (2200) | 830/350 | Extreme overshoot with net-zero by 2160 and large negative emissions (−36 GtCO2/yr by 2200, ~10–20 GtC/yr). Tests climate reversibility and hysteresis. | Return to likely 1.5 °C by 2400 |
| ME (Medium-Extension) | esm-scen7-m-ext | Gradual increase, stabilization at 580 (2150) | 580 | Strong linear reduction from 2100, net-zero by 2200. Middle pathway without large-scale CDR. | 2–6 °C (central ~4 °C) post-2200 |
| SSP3-7.0 (validation) | SSP3-7.0 | CMIP6 reference (2020–2100 only) | ~860 (2100) | Provides ~7.0 W/m2 forcing by 2100. Bridge between CMIP6 and CMIP7 frameworks. | Not specified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tkachenko, M.A.; Rozanov, E.E. Long-Term Evolution of the Ozone Layer Under CMIP7 Scenarios. Atmosphere 2026, 17, 92. https://doi.org/10.3390/atmos17010092
Tkachenko MA, Rozanov EE. Long-Term Evolution of the Ozone Layer Under CMIP7 Scenarios. Atmosphere. 2026; 17(1):92. https://doi.org/10.3390/atmos17010092
Chicago/Turabian StyleTkachenko, Margarita A., and Eugene E. Rozanov. 2026. "Long-Term Evolution of the Ozone Layer Under CMIP7 Scenarios" Atmosphere 17, no. 1: 92. https://doi.org/10.3390/atmos17010092
APA StyleTkachenko, M. A., & Rozanov, E. E. (2026). Long-Term Evolution of the Ozone Layer Under CMIP7 Scenarios. Atmosphere, 17(1), 92. https://doi.org/10.3390/atmos17010092

