The Impact of New-Type Urbanization on Carbon Emissions—A Case Study of China Based on the Moderating Role of Forest Quality
Abstract
1. Introduction
1.1. Impact of Urbanization on Carbon Emissions
1.2. Relationship Between Urbanization and Forestry
2. Data and Methods
2.1. Data Source
2.2. Methods
+ γ5 ln U5 + γ6 ln U6 + γ7 ln U7 + γ8 ln U8 + e
3. Results
3.1. Baseline Regression
3.2. The Impact of Forestry on Urbanization-Related Carbon Emissions
3.3. Analysis of Forestry Transmission Mechanisms
3.4. Evaluation of the Coupling Degree Between Forestry Quality and New-Type Urbanization
4. Discussion and Policy Recommendations
4.1. Discussion
4.2. Policy Recommendations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
| EKC | Environmental Kuznets Curve |
| LMDI | Logarithmic Mean Divisia Index |
| STIRPAT | Stochastic Impacts by Regression on Population, Affluence, and Technology |
| R&D | Research and Development |
| CEADs | China Emission Accounts Datasets |
References
- Atstaja, D. Renewable Energy for Sustainable Development: Opportunities and Current Landscape. Energies 2025, 18, 196. [Google Scholar] [CrossRef]
- Abbas, S.; Saqib, N.; Mohammed, K.S.; Sahore, N.; Shahzad, U. Pathways towards carbon neutrality in low carbon cities: The role of green patents, R&D and energy use for carbon emissions. Technol. Forecast. Soc. Change 2024, 200, 123109. [Google Scholar]
- Gao, Y.; Gao, M. Spatial correlation network of municipal solid waste carbon emissions and its influencing factors in China. Environ. Impact Assess. Rev. 2024, 106, 107490. [Google Scholar] [CrossRef]
- Nuţă, F.M.; Ali, S.; Khan, I.; Irfan, M.; Naz, L. The relationship among urbanization, economic growth, renewable energy consump-tion, and environmental degradation: A comparative view of European and Asian emerging economies. Gondwana Res. 2024, 128, 325–339. [Google Scholar] [CrossRef]
- Gatto, E.; Buccolieri, R.; Perronace, L.; Santiago, J.L. The Challenge in the Management of Historic Trees in Urban Environments during Climate Change: The Case of Corso Trieste (Rome, Italy). Atmosphere 2021, 12, 500. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Mangla, S.K.; Song, M.; Wen, J. Effects of technological changes on China’s carbon emissions. Technol. Forecast. Soc. Change 2020, 153, 119938. [Google Scholar] [CrossRef]
- Nie, J.; Shen, J.; Ren, X. Digital Infrastructure, New Digital Infrastructure, and Urban Carbon Emissions: Evidence from China. Atmosphere 2025, 16, 199. [Google Scholar] [CrossRef]
- Zhang, S.F.; Ma, M.D.; Li, K.; Ma, Z.L.; Feng, W.; Cai, W.G. Historical carbon abatement in the commercial building operation: China versus the US. Energy Econ. 2022, 105, 105712. [Google Scholar] [CrossRef]
- Dong, F.; Li, J.; Li, Z.; Chen, Y.; Zheng, L.; Lu, B.; Liu, Y. Exploring synergistic decoupling of haze pollution and carbon emissions in emerging economies: Fresh evidence from China. Environ. Dev. Sustain. 2024, 26, 17281–17318. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Energy and carbon intensity in China during the urbanization and industrialization process: A panel VAR approach. J. Clean. Prod. 2017, 168, 780–790. [Google Scholar] [CrossRef]
- Franco, S.; Mandla, V.R.; Ram Mohan Rao, K. Urbanization, energy consumption and emissions in the Indian context A review. Renew. Sustain. Energy Rev. 2017, 71, 898–907. [Google Scholar] [CrossRef]
- Li, J.B.; Huang, X.J.; Chuai, X.W.; Yang, H. The impact of land urbanization on carbon dioxide emissions in the Yangtze River Delta, China: A multiscale perspective. Cities 2021, 116, 103275. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.X.; Tang, Z.P.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Driha, O.M.; Halkos, G.; Mishra, S. Influence of growth and urbanization on CO2 emissions: The moderating effect of foreign direct investment on energy use in BRICS. Sustain. Dev. 2022, 30, 227. [Google Scholar] [CrossRef]
- Gnangoin, T.Y.; Kassi, D.F.; Kongrong, O. Urbanization and CO2 Emissions in Belt and Road Initiative Economies: Analyzing the Mitigating Effect of Human Capital in Asian Countries. Environ. Sci. Pollut. Res. 2023, 30, 50376–50391. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, S.H.; Fan, H.; Habib, Y.; Riaz, A. Nonlinear relationship between urbanization paths and CO2 emissions: A case of South, South-East and East Asian economies. Urban Clim. 2021, 37, 100814. [Google Scholar] [CrossRef]
- Tripathi, S. How does urbanization affect the human development index? A cross-country analysis. Asia-Pac. J. Reg. Sci. 2021, 5, 1053. [Google Scholar] [CrossRef]
- Chen, F.Z.; Liu, A.W.; Lu, X.L.; Zhe, R.; Tong, J.C.; Akeam, R. Evaluation of the Effects of Urbanization on Carbon Emissions: The Transformative Role of Government Effectiveness. Front. Energy Res. 2022, 10, 848800. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, S.-D.; Zeng, Y.-E.; Wu, B.-W. Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renew. Sustain. Energy Rev. 2016, 54, 1563–1579. [Google Scholar] [CrossRef]
- Fan, J.; Wang, J.; Qiu, J.; Li, N. Stage effects of energy consumption and carbon emissions in the process of urbanization: Evidence from 30 provinces in China. Energy 2023, 276, 127655. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.; Yang, R. Urbanization impact on carbon emissions in the Pearl River Delta region: Kuznets curve relationships. J. Clean. Prod. 2018, 180, 514–523. [Google Scholar] [CrossRef]
- Gu, H.; Liu, Q.; Cheng, M.; Huan, C.; Wang, B.; Wu, J. Can the Coordinated Development of Land Urbanization and Population Urbanization Promote Carbon Emission Efficiency? A Multi-Scale Heterogeneity Analysis in China. Land 2025, 14, 1317. [Google Scholar] [CrossRef]
- Wu, C.; Deng, H.; Zhao, H.; Xia, Q. Spatiotemporal evolution and convergence patterns of urban carbon emission efficiency in China. Humanit. Soc. Sci. Commun. 2025, 12, 675. [Google Scholar] [CrossRef]
- Shi, X.; Cheng, Y.; Zhang, J.; Zhang, Y.; Wei, L.; Wang, Y. Impacts of the Urban Form Structure on Carbon Emission Efficiency in China’s Three Major Urban Agglomerations: A Study from an Urban Economic Activities Perspective. Sustainability 2025, 17, 3984. [Google Scholar] [CrossRef]
- Jin, G.; Wang, G.; Li, W.; Sheng, H.; Hu, C.; Zhao, Y. The impact of environmental regulation on carbon emissions and its mechanisms in Chinese cities. Sci. Rep. 2025, 15, 41665. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Y.; Zhou, J.; Zhao, W. Spatial–Temporal Evolution and Driving Factors of Carbon Emissions in Shrinking Cities: A Case Study of the Three Northeastern Provinces in China. Atmosphere 2025, 16, 1367. [Google Scholar] [CrossRef]
- Nguyen-Thanh, N.; Chin, K.-H.; Nguyen, V. Does the Pollution Halo Hypothesis Exist in This “Better” World? The Evidence from STIRPAT Model. Environ. Sci. Pollut. Res. 2022, 29, 87082–87096. [Google Scholar] [CrossRef]
- Wang, Q.; He, Z.; Liu, T. Assessment of carbon emission reduction potential in new-type urbanization policy: A perspective on carbon rebound effect. Environ. Plan. B Urban Anal. City Sci. 2025, 52, 1498–1516. [Google Scholar] [CrossRef]
- Yang, X.; Jia, Z.; Yang, Z. How new-type urbanization pilots reduce carbon emissions: A technology progress paths perspective. J. Clean. Prod. 2023, 401, 136663. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X. Spatial and nonlinear effects of new-type urbanization and technological innovation on industrial carbon dioxide emission in the Yangtze River Delta. Environ. Sci. Pollut. Res. Int. 2022, 30, 29243–29257. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, H.; Qian, X.; Zhang, L.; An, B. Can new-type urbanization reduce urban building carbon emissions? New evidence from China. Sustain. Cities Soc. 2023, 90, 104410. [Google Scholar] [CrossRef]
- Jia, H.; Li, W.; Tian, R. Spatio-Temporal Influencing Factors of the Coupling Coordination Degree Between China’s New-Type Urbanization and Transportation Carbon Emission Efficiency. Land 2025, 14, 623. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Strömberg, C.A.E.; Wang, H.; Strong, P.J.; Yang, X.; Wu, Y. Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China. Sci. Total Environ. 2018, 615, 1–8. [Google Scholar] [CrossRef]
- Lin, B.Q.; Ge, J.M. Carbon sinks and output of China’s forestry sector: An ecological economic development perspective. Sci. Total Environ. 2019, 655, 1169–1180. [Google Scholar] [CrossRef]
- Shrestha, P.; Sun, C.Y. Carbon emission flow and transfer through international trade of forest products. For. Sci. 2019, 65, 439–451. [Google Scholar] [CrossRef]
- Sun, M.X.; Wang, Y.T.; Shi, L.; Klemeš, J.K. Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2018, 92, 823–833. [Google Scholar] [CrossRef]
- Zhao, Q.J.; Ding, S.; Wen, Z.M.; Toppinen, A. Energy flows and carbon footprint in the forestry-pulp and paper industry. Forests 2019, 10, 725. [Google Scholar] [CrossRef]
- Cai, J.; Li, X.P.; Liu, L.J.; Chen, Y.Z.; Wang, X.W.; Lu, S.H. Coupling and coordinated development of new urbanization and agro-ecological environment in China. Sci. Total Environ. 2021, 776, 145837. [Google Scholar] [CrossRef]
- Sun, W.; Huang, C.C. How does urbanization affect carbon emission efficiency? Evidence from China. J. Clean. Prod. 2020, 272, 122828. [Google Scholar] [CrossRef]
- Wang, W.Z.; Liu, L.C.; Liao, H.; Wei, Y.M. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]
- Wang, S.; Wu, X.; Liu, Y.; Wang, R. Climate Change Through Urbanization: The Coupling Effects of Urbanization, Water Resources and Forests on Carbon Emissions. Atmosphere 2025, 16, 1230. [Google Scholar] [CrossRef]
- Sun, H.P.; Samuel, C.A.; Amissah, J.C.K.; Taghizadeh-Hesary, F.; Mensah, I.A. Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries. Energy 2020, 212, 118637. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.X.; Yang, R. Influence of land urbanization on carbon sequestration of urban vegetation: A temporal cooperativity analysis in guangzhou as an example. Sci. Total Environ. 2018, 635, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ren, Z.; Wang, C.; Zhang, P.; Ma, Z.; Hong, S.; Hong, W.; He, X. Spatiotemporal patterns of urban forest carbon sequestration capacity: Implications for urban CO2 emission mitigation during China’s rapid urbanization. Sci. Total Environ. 2024, 912, 168781. [Google Scholar] [CrossRef]
- Huang, Y.L.; Tian, M.; Jin, F.; Chen, M.Y.; Liu, Z.G.; He, S.Q.; Li, F.X.; Yang, L.Y.; Fang, C.; Mu, J.L. Coupled effects of urbanization level and dam on microplastics in surface waters in a coastal watershed of Southeast China. Mar. Pollut. Bull. 2020, 154, 111089. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, H.F.; Ren, Z.B.; Zhai, C.; Shen, G.Q.; Mao, Z.X.; Wang, P.J.; He, X.Y. Effects of forest type and urbanization on carbon storage of urban forests in Changchun, Northeast China. Chin. Geogr. Sci. 2015, 25, 147–158. [Google Scholar] [CrossRef]
- Wang, F.T.; Wang, H.; Liu, C.; Xiong, L.C.; Qian, Z.Q. The effect of green urbanization on forestry green total factor productivity in China: Analysis from a carbon neutral perspective. Land 2022, 11, 1900. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Wang, S. Climate Change Mitigation through Forest Quality Enhancement and Socio-Ecological Symbiosis: Evidence from China. Atmosphere 2025, 16, 311. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. Assessing and Mapping Forest Landscape Quality in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Caravaggio, N. Economic growth and the forest development path: A theoretical reassessment of the environmental Kuznets curve for deforestation. For. Policy Econ. 2020, 118, 102259. [Google Scholar] [CrossRef]
- Yoichi, K.; Keiichi, Y. Environment, Energy, and Economy: Strategies for Sustainability; United Nations Univ. Press: Tokyo, Japan, 1997. [Google Scholar]
- Hepburn, C.; Stern, N.; Stiglitz, J.E. “Carbon pricing” special issue in the European economic review. Eur. Econ. Rev. 2020, 127, 103440. [Google Scholar] [CrossRef]
- Yakymchuk, A.; Yakymchuk, O.; Popadynets, N.; Bilyk, R.; Yakubiv, V.; Maksymiv, Y.; Hryhoruk, I.; Irtyshcheva, I.; Husakovska, T.; Boiko, Y. Integral Assessment of the Level of Ukraine’s Economic Security: Modeling and Economic Analysis. Accounting 2020, 7, 381–390. [Google Scholar] [CrossRef]
- Eskander, S.M.; Nitschke, J. Energy use and CO2 emissions in the UK universities: An extended Kaya identity analysis. J. Clean. Prod. 2021, 309, 127199. [Google Scholar] [CrossRef]
- Jiang, Y.; Ren, Z.; Lu, C.; Li, H.; Yang, Z. A region-based low-carbon operation analysis method for integrated electricity-hydrogengas systems. Appl. Energy 2024, 355, 122230. [Google Scholar] [CrossRef]
- Yakymchuk, A.; Maxand, S.; Lewandowska, A. Economic Analysis of Global CO2 Emissions and Energy Consumption Based on the World Kaya Identity. Energies 2025, 18, 1661. [Google Scholar] [CrossRef]
- Hwang, Y.; Um, S.J.; Hwang, J.; Schlüter, S. Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO2 Flux. Energies 2020, 13, 6009. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Yu, P.; Yang, L. The Application and Evaluation of the LMDI Method in Building Carbon Emissions Analysis: A Comprehensive Review. Buildings 2024, 14, 2820. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Ang, B.; Su, B. Carbon emission intensity in electricity production: A global analysis. Energy Policy 2016, 94, 56–63. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Wang, F.; Dong, S.C.; Li, Z.H. A Review of Assessment Methods, Influencing Factors and Process on Urban Carbon Emissions. J. Nat. Resour. 2013, 28, 1637–1648. [Google Scholar]
- Qu, S.N. The decomposition analysis of carbon emissions: Theoretical basis, methods and their evaluations. Chin. J. Urban Environ. Stud. 2020, 8, 2050020. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.K.; Wu, K.; Zheng, Y.R.; Wang, Q.Z.; Shi, W.; He, M. A Review of Building Carbon Emission Accounting and Prediction Models. Buildings 2023, 13, 1617. [Google Scholar] [CrossRef]
- Commoner, B. Making Peace with the Planet; New Press: New York, NY, USA, 1992. [Google Scholar]
- Waggoner, P.E. Agricultural technology and its societal implications. Technol. Soc. 2004, 26, 123–136. [Google Scholar] [CrossRef]
- Saiful, I.; Habibur, S.R. The asymmetric effect of ICT on CO2 emissions in the context of an EKC framework in GCC countries: The role of energy consumption, energy intensity, trade, and financial development. Environ. Sci. Pollut. Res. Int. 2023, 30, 77729–77741. [Google Scholar] [CrossRef]
- Ioannis, K.; Stavros, A.; Konstadinos, A.; Eleni, T. The investigation of EKC within CO2 emissions framework: Empirical evidence from selected cross-correlated countries. Sustain. Anal. Model. 2023, 3, 100015. [Google Scholar] [CrossRef]
- Lopes, O.; Jamil, N. Global patterns in carbon dioxide (CO2) emissions: Understanding the economic growth and income inequality connection. Environ. Res. Commun. 2025, 7, 115029. [Google Scholar] [CrossRef]
- Peiqian, L.; Zia, R.U.; Bartosz, J.; Mesut, D. Determining the environmental effect of Chinese FDI on the Belt and Road countries CO2 emissions: An EKC-based assessment in the context of pollution haven and halo hypotheses. Environ. Sci. Eur. 2024, 36, 48. [Google Scholar] [CrossRef]
- Zuyi, W.; Keun, M.K. Decoupling of CO2 emissions and income in the U.S.: A new look from EKC. Clim. Change 2024, 177, 52. [Google Scholar] [CrossRef]
- Kumar, U.D. Validity of EKC for CO2 in India during 1960 to 2020: An ARDL-cointegration approach. SN Bus. Econ. 2023, 3, 204. [Google Scholar] [CrossRef]
- Tokpah, T.J.; Saliminezhad, A.; Ozdeser, H. CO2 emissions-economic growth nexus: Validity of EKC in oil-exporting and oil-importing countries. OPEC Energy Rev. 2024, 48, 151–166. [Google Scholar] [CrossRef]
- Petar, M.; Milena, K.; Jelena, M.; Slavica, S.; Magdalena, R. An EKC-based modelling of CO2 emissions, economic growth, electricity consumption and trade openness in Serbia. Environ. Sci. Pollut. Res. Int. 2023, 31, 5807–5825. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, W.M.; Wang, R.; Zhao, T. Study on the coordinated development of urbanization and water resources utilization efficiency in China. Water Supply 2022, 22, 749–765. [Google Scholar] [CrossRef]
- Lotfi, F.H.; Fallahnejad, R. Imprecise Shannon’s entropy and multi attribute decision making. Entropy 2010, 12, 53–62. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Dai, J.; Lin, Y. Regional coupling coordination of water resources, economy, and ecology in the Yangtze River Delta: Insights for sustainable development. Desalination Water Treat. 2025, 322, 101114. [Google Scholar] [CrossRef]
- Gu, L.; Gong, Z.; Bu, Y. Forest Quality Dynamic Change and Its Driving Factors Accompanied by Forest Transition in China. Forests 2021, 12, 733. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, Y.; Deng, J. Assessing and Mapping Forest Landscape Quality in China. Forests 2019, 10, 684. [Google Scholar] [CrossRef]
- Li, F.; Du, J.; Li, H.; Du, X.; Xu, X. Analysis of coupling coordination and spatio-temporal of water resource carrying capacity and regional economic development–taking Henan Province as an example. Environ. Dev. Sustain. 2024, 11, 1–33. [Google Scholar] [CrossRef]
- Deng, Z.B.; Zong, S.W.; Su, C.W.; Cheng, Z. Research on coupling coordination development between ecological civilization construction and new urbanization and its driving forces in the Yangtze River Economic Zone. Econ. Geogr. 2019, 39, 78–86. [Google Scholar]
- Boamah, K.B.; Du, J.G.; Boamah, A.J.; Appiah, K. A study on the causal effect of urban population growth and international trade on environmental pollution: Evidence from China. Environ. Sci. Pollut. Res. 2018, 25, 5862–5874. [Google Scholar] [CrossRef] [PubMed]
- Li, T.N.; Li, D.Z.; Liang, D.L.; Huang, S.M. Coupling coordination degree of ecological-economic and its influencing factors in the counties of Yangtze River Economic Belt. Sustainability 2022, 14, 15467. [Google Scholar] [CrossRef]
| Energy Type | Coal | Coke | Crude Oil | Gasoline | Kerosene | Diesel | Fuel Oil | Natural Gas |
|---|---|---|---|---|---|---|---|---|
| Std. Coal Conv. Coefficient | 0.7143 | 0.9714 | 1.4286 | 1.4714 | 1.4714 | 1.4571 | 1.4286 | 1.3300 |
| Unit | kg/kg | kg/kg | kg/kg | kg/kg | kg/kg | kg/kg | kg/kg | kg/m3 |
| Carbon Emission Coefficient | 0.7559 | 0.8550 | 0.5857 | 0.5538 | 0.5714 | 0.5921 | 0.6185 | 0.4483 |
| Unit | t/t | t/t | t/t | t/t | t/t | t/t | t/t | t/t |
| Evaluation System | Primary Indicator | Secondary Indicator |
|---|---|---|
| Urbanization | Demographic | Urban population proportion |
| Economic | GDP per capita | |
| Share of secondary and tertiary industries in GDP | ||
| Social development | Health technicians per 1000 people | |
| Expenditure on education | ||
| Science and technology | Number of patents granted | |
| Urban construction | Investment in real estate enterprises | |
| Pollution control | Investment in industrial pollution control | |
| Forestry quality | Economic | Forestry Output Value |
| Forestry Investment | ||
| Area | Forest Land Area | |
| Forest Area | ||
| Ecological | Forest Pest Control Rate | |
| Total standing tree count | Forest Growing Stock |
| Evaluation System | Primary Indicator | Weight |
|---|---|---|
| Urbanization | Demographic | 0.153 |
| Economic | 0.140 | |
| 0.157 | ||
| Social development | 0.152 | |
| 0.118 | ||
| Science and technology | 0.070 | |
| Urban construction | 0.106 | |
| Pollution control | 0.103 | |
| Forestry quality | Economic | 0.163 |
| 0.169 | ||
| Area | 0.175 | |
| 0.173 | ||
| Ecological | 0.174 | |
| Total standing tree count | 0.146 |
| Statistics | lnC | U | F |
|---|---|---|---|
| Mean | 5.631 | 0.330 | 0.691 |
| Standard Error | 0.044 | 0.007 | 0.009 |
| Median | 5.632 | 0.305 | 0.726 |
| Standard Deviation | 0.724 | 0.116 | 0.153 |
| Sample Variance | 0.525 | 0.013 | 0.023 |
| Kurtosis | 0.425 | −0.059 | 1.275 |
| Skewness | −0.641 | 0.820 | −1.327 |
| Range | 3.214 | 0.512 | 0.660 |
| Minimum | 3.676 | 0.143 | 0.243 |
| Maximum | 6.890 | 0.655 | 0.903 |
| Sum | 1520.410 | 89.027 | 186.468 |
| Count | 450 | 450 | 450 |
| Variable | VIF | 1/VIF |
|---|---|---|
| lnC | 2.55 | 0.39 |
| U | 4.66 | 0.21 |
| F | 2.12 | 0.47 |
| Mean VIF | 3.27 |
| Sample Time Span | α0 | α1 | α2 | Shape of the Curve |
|---|---|---|---|---|
| 2015–2023 | 2.833 *** | 15.256 *** | −18.281 *** | inverted U-shape |
| 2019–2023 | 2.289 *** | 17.239 *** | −19.618 *** | inverted U-shape |
| 2018–2022 | 2.455 *** | 16.940 *** | −20.027 *** | inverted U-shape |
| 2017–2021 | 2.573 *** | 16.819 *** | −20.618 *** | inverted U-shape |
| 2016–2020 | 2.330 *** | 19.144 *** | −24.869 *** | inverted U-shape |
| 2015–2019 | 2.410 *** | 18.974 *** | −24.896 *** | inverted U-shape |
| Region | α0 | α1 | α2 | Shape of the Curve |
|---|---|---|---|---|
| North China | 10.405 *** | −15.561 *** | 9.299 ** | U-shape |
| Northeast China | 7.431 *** | −16.903 *** | 37.589 *** | U-shape |
| East China | 3.467 *** | 11.630 *** | −12.713 ** | inverted U-shape |
| South-Central China | 1.357 *** | 21.485 *** | −22.249 *** | inverted U-shape |
| Southwest China | 4.602 *** | 7.154 * | −14.305 * | inverted U-shape |
| Northwest China | 7.817 *** | −23.267 * | 48.501 * | U-shape |
| High-level urbanization | 5.960 *** | 1.709 *** | −4.163 ** | inverted U-shape |
| Low-level urbanization | 2.309 *** | 20.538 *** | −31.399 *** | inverted U-shape |
| Sample Time Span | α0 | α1 | α2 | α3 | Shape of the Curve |
|---|---|---|---|---|---|
| 2015–2023 | 1.249 *** | 13.663 *** | −14.747 *** | 2.430 *** | inverted U-shape |
| 2019–2023 | 0.455 * | 16.725 *** | −17.577 *** | 2.469 *** | inverted U-shape |
| 2018–2022 | 0.714 * | 15.666 *** | −16.847 *** | 2.521 *** | inverted U-shape |
| 2017–2021 | 0.970 * | 14.936 *** | −16.508 *** | 2.489 *** | inverted U-shape |
| 2016–2020 | 0.909 * | 16.130 *** | −18.824 *** | 2.473 *** | inverted U-shape |
| 2015–2019 | 1.048 ** | 15.839 *** | −18.624 *** | 2.434 *** | inverted U-shape |
| Region | α0 | α1 | α2 | α3 | Shape of the Curve |
|---|---|---|---|---|---|
| North China | 7.203 *** | −5.653 * | −0.462 * | 1.490 *** | linearly decreasing |
| Northeast China | 8.467 *** | −19.968 *** | 41.875 *** | −0.690 * | U-shape |
| East China | 2.722 *** | 7.730 * | −6.043 * | 1.687 *** | inverted U-shape |
| South-Central China | −0.046 | 13.242 *** | −13.188 *** | 4.124 *** | inverted U-shape |
| Southwest China | 3.644 *** | 3.319 * | −5.951 * | 1.694 *** | inverted U-shape |
| Northwest China | 3.980 * | −4.827 * | 14.151 | 2.361 *** | U-shape |
| High-level urbanization | 7.377 *** | 5.180 ** | −5.918 * | −3.075 *** | inverted U-shape |
| Low-level urbanization | 3.989 * | 2.903 *** | −3.697 *** | 1.516 *** | inverted U-shape |
| Dependent Variable | β0 | β1 | β2 | Model Specification |
|---|---|---|---|---|
| Ln forestry output value (ln F1) | 5.878 *** | −5.878 * | 5.986 * | U-shape |
| Ln forestry investment (ln F2) | 5.447 *** | −4.218 * | 4.117 * | U-shape |
| Ln forest-land area (ln F3) | 6.894 *** | −1.888 * | 1.014 * | U-shape |
| Ln forest area (ln F4) | 6.894 *** | −3.523 ** | 2.900 * | U-shape |
| Ln pest control coverage in forestry (ln F5) | 3.847 *** | 1.980 * | −1.685 * | inverted U-shape |
| Ln forest growing stock (ln F6) | 10.905 *** | −4.389 * | 3.948 * | U-shape |
| Explanatory Variables | Dependent Variable | ||||||
|---|---|---|---|---|---|---|---|
| Coefficient | Indicator | Ln Forestry Output Value (ln F1) | Ln Forestry Investment (ln F2) | Ln Forest-Land Area (ln F3) | Ln Forest Area (ln F4) | Ln Pest Control Coverage (ln F5) | Ln Forest Growing Stock (ln F6) |
| γ0 | Intercept | 24.609 *** | 12.787 ** | 14.428 * | 17.132 ** | 5.583 *** | 27.374 *** |
| γ1 | Urban population share | −2.663 *** | −0.935 * | −0.642 * | −1.465 * | 0.811 *** | −2.502 * |
| γ2 | GDP per capita | −0.033 * | −0.096 * | −0.288 * | −0.158 * | −0.256 * | −0.006 * |
| γ3 | Share of non-agricultural output | −2.427 * | −0.847 * | −0.662 * | −0.877 * | −0.606 * | −1.636 * |
| γ4 | Number of health technicians | 0.686 | 0.331 | 1.221 ** | 1.221 ** | 0.047 | 1.714 *** |
| γ5 | Public education expenditure | −0.053 | −0.030 | −0.104 | −0.131 | −0.040 | −0.281 |
| γ6 | Patent grants | 0.150 | −0.018 | −0.063 | −0.027 | 0.081 ** | 0.041 |
| γ7 | Real estate investment | 0.299 ** | 0.130 | 0.069 | 0.132 | −0.007 | 0.199 |
| γ8 | Industrial pollution abatement expenditure | −0.170 ** | −0.040 | 0.020 | −0.023 | 0.059 ** | −0.032 |
| Provinces | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | Mean |
|---|---|---|---|---|---|---|---|---|---|---|
| Beijing | 0.999 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 0.999 | 0.998 | 0.999 |
| Tianjin | 0.966 | 0.969 | 0.990 | 0.995 | 0.985 | 0.989 | 0.977 | 0.982 | 0.945 | 0.978 |
| Hebei | 0.922 | 0.908 | 0.919 | 0.916 | 0.909 | 0.880 | 0.888 | 0.904 | 0.897 | 0.905 |
| Shanxi | 0.939 | 0.938 | 0.935 | 0.940 | 0.933 | 0.915 | 0.911 | 0.916 | 0.945 | 0.930 |
| Inner Mongolia | 0.919 | 0.898 | 0.894 | 0.892 | 0.895 | 0.898 | 0.900 | 0.910 | 0.927 | 0.904 |
| Liaoning | 0.943 | 0.938 | 0.936 | 0.936 | 0.927 | 0.917 | 0.932 | 0.935 | 0.959 | 0.936 |
| Jilin | 0.904 | 0.891 | 0.876 | 0.896 | 0.887 | 0.871 | 0.863 | 0.865 | 0.890 | 0.883 |
| Heilongjiang | 0.800 | 0.773 | 0.739 | 0.799 | 0.789 | 0.797 | 0.797 | 0.792 | 0.837 | 0.792 |
| Shanghai | 0.924 | 0.943 | 0.956 | 0.960 | 0.957 | 0.947 | 0.959 | 0.957 | 0.902 | 0.945 |
| Jiangsu | 1.000 | 0.999 | 0.999 | 0.997 | 0.994 | 0.989 | 0.985 | 0.979 | 0.987 | 0.992 |
| Zhejiang | 0.992 | 0.990 | 0.989 | 0.986 | 0.979 | 0.975 | 0.971 | 0.967 | 0.978 | 0.981 |
| Anhui | 0.943 | 0.931 | 0.931 | 0.915 | 0.902 | 0.884 | 0.864 | 0.849 | 0.876 | 0.900 |
| Fujian | 0.953 | 0.950 | 0.949 | 0.934 | 0.922 | 0.908 | 0.910 | 0.901 | 0.920 | 0.927 |
| Jiangxi | 0.903 | 0.891 | 0.887 | 0.869 | 0.856 | 0.833 | 0.831 | 0.829 | 0.835 | 0.859 |
| Shandong | 0.983 | 0.973 | 0.981 | 0.984 | 0.976 | 0.969 | 0.956 | 0.963 | 0.957 | 0.971 |
| Henan | 0.943 | 0.935 | 0.952 | 0.939 | 0.938 | 0.917 | 0.886 | 0.883 | 0.873 | 0.918 |
| Hubei | 0.948 | 0.926 | 0.931 | 0.917 | 0.913 | 0.901 | 0.887 | 0.881 | 0.901 | 0.912 |
| Hunan | 0.927 | 0.903 | 0.905 | 0.905 | 0.879 | 0.854 | 0.844 | 0.826 | 0.836 | 0.875 |
| Guangdong | 0.992 | 0.990 | 0.990 | 0.993 | 0.981 | 0.968 | 0.965 | 0.960 | 0.977 | 0.980 |
| Guangxi | 0.856 | 0.841 | 0.846 | 0.826 | 0.829 | 0.827 | 0.817 | 0.792 | 0.784 | 0.824 |
| Hainan | 0.946 | 0.916 | 0.922 | 0.869 | 0.897 | 0.855 | 0.854 | 0.845 | 0.868 | 0.886 |
| Chongqing | 0.955 | 0.949 | 0.950 | 0.943 | 0.937 | 0.928 | 0.945 | 0.920 | 0.945 | 0.941 |
| Sichuan | 0.903 | 0.893 | 0.893 | 0.879 | 0.861 | 0.830 | 0.820 | 0.815 | 0.817 | 0.857 |
| Guizhou | 0.866 | 0.858 | 0.851 | 0.824 | 0.805 | 0.781 | 0.789 | 0.786 | 0.792 | 0.817 |
| Yunnan | 0.849 | 0.840 | 0.841 | 0.806 | 0.786 | 0.761 | 0.751 | 0.734 | 0.746 | 0.790 |
| Shaanxi | 0.944 | 0.938 | 0.939 | 0.931 | 0.919 | 0.904 | 0.902 | 0.898 | 0.909 | 0.920 |
| Gansu | 0.878 | 0.862 | 0.854 | 0.849 | 0.835 | 0.807 | 0.796 | 0.811 | 0.815 | 0.834 |
| Qinghai | 0.935 | 0.930 | 0.925 | 0.917 | 0.914 | 0.915 | 0.911 | 0.924 | 0.938 | 0.923 |
| Ningxia | 0.993 | 0.992 | 0.992 | 0.990 | 0.989 | 0.990 | 0.986 | 0.973 | 0.986 | 0.988 |
| Xinjiang | 0.883 | 0.866 | 0.876 | 0.858 | 0.847 | 0.823 | 0.829 | 0.832 | 0.850 | 0.851 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yu, X.; Wang, S. The Impact of New-Type Urbanization on Carbon Emissions—A Case Study of China Based on the Moderating Role of Forest Quality. Atmosphere 2026, 17, 33. https://doi.org/10.3390/atmos17010033
Yu X, Wang S. The Impact of New-Type Urbanization on Carbon Emissions—A Case Study of China Based on the Moderating Role of Forest Quality. Atmosphere. 2026; 17(1):33. https://doi.org/10.3390/atmos17010033
Chicago/Turabian StyleYu, Xin, and Shengyuan Wang. 2026. "The Impact of New-Type Urbanization on Carbon Emissions—A Case Study of China Based on the Moderating Role of Forest Quality" Atmosphere 17, no. 1: 33. https://doi.org/10.3390/atmos17010033
APA StyleYu, X., & Wang, S. (2026). The Impact of New-Type Urbanization on Carbon Emissions—A Case Study of China Based on the Moderating Role of Forest Quality. Atmosphere, 17(1), 33. https://doi.org/10.3390/atmos17010033

