Community Annoyance Due to Settleable Dust: Influential Factors in Air Pollution Perception
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sets
2.3. Pearson’s Chi-Square Test
2.4. Ordinal Logistic Regression
3. Results
3.1. Comparing Before and After the Interruption in the Industrial Activities
3.2. Determinants of Annoyance Due to Sedimented Dust
3.3. OLR Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Models for 2014
Appendix A.1.1. Complete Model for 2014
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.59344 | 0.07529 | 7.88210 | 0.00000 |
| I(latvar.mat):2 | 0.18266 | 0.07329 | 2.49243 | 0.00634 |
| (Intercept):1 | −9.97600 | 2.30445 | −4.32902 | 0.00001 |
| (Intercept):2 | −3.97666 | 1.29550 | −3.06960 | 0.00107 |
| (Intercept):3 | −0.53397 | 0.63047 | −0.84693 | 0.19852 |
| ImpQAR2 | 1.51994 | 1.61932 | 0.93863 | 0.17396 |
| ImpQAR3 | 1.57713 | 1.55714 | 1.01283 | 0.15557 |
| Qdoar2 | 1.44893 | 0.89355 | 1.62155 | 0.05245 |
| Qdoar3 | 5.00856 | 1.15052 | 4.35332 | 0.00001 |
| Risk2 | 2.04834 | 0.93476 | 2.19130 | 0.01422 |
| Risk3 | 3.71668 | 0.95417 | 3.89521 | 0.00005 |
| PDep2 | 1.68239 | 1.64491 | 1.02279 | 0.15320 |
| Pdep3 | 2.99046 | 1.68046 | 1.77955 | 0.03757 |
| Close2 | 0.09272 | 0.68734 | 0.13489 | 0.44635 |
| Close3 | 2.30728 | 0.76476 | 3.01699 | 0.00128 |
| Pmed2 | 1.24136 | 0.69055 | 1.79763 | 0.03612 |
| Pmed3 | 0.86003 | 0.78665 | 1.09328 | 0.13714 |
| ImpQAR2 | 4.57197 | 2.46450 | 1.32000 |
| ImpQAR3 | 4.84104 | 2.54957 | 1.33386 |
| Qdoar2 | 4.25855 | 2.36280 | 1.30299 |
| Qdoar3 | 149.68893 | 19.53595 | 2.49643 |
| Risk2 | 7.75501 | 3.37217 | 1.45375 |
| Risk3 | 41.12751 | 9.07577 | 1.97168 |
| PDep2 | 5.37837 | 2.71390 | 1.35975 |
| PDep3 | 19.89486 | 5.89819 | 1.72674 |
| Close2 | 1.09715 | 1.05656 | 1.01708 |
| Close3 | 10.04711 | 3.93230 | 1.52417 |
| Pmed2 | 3.46031 | 2.08896 | 1.25451 |
| Pmed3 | 2.36324 | 1.66592 | 1.17010 |
Appendix A.1.2. Model with ImpQAR 2014
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | −0.86313 | 0.75930 | −1.13673 | 0.12783 |
| I(latvar.mat):2 | −0.14407 | 0.45974 | −0.31336 | 0.37700 |
| (Intercept):1 | 0.38588 | 0.52189 | 0.73940 | 0.22983 |
| (Intercept):2 | 0.93450 | 0.47258 | 1.97745 | 0.02400 |
| (Intercept):3 | 0.71018 | 0.23580 | 3.01171 | 0.00130 |
| ImpQAR2 | −0.93932 | 0.62284 | −1.50813 | 0.06576 |
| ImpQAR3 | 0.18126 | 0.52124 | 0.34775 | 0.36401 |
| ImpQAR2 | 0.39089 | 2.24961 | 1.14491 |
| ImpQAR3 | 1.19873 | 0.85517 | 0.97422 |
Appendix A.1.3. Model with Qdoar 2014
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.57986 | 0.09122 | 6.35665 | 0.00000 |
| I(latvar.mat):2 | 0.24906 | 0.11271 | 2.20983 | 0.01356 |
| (Intercept):1 | −3.27594 | 0.78106 | −4.19421 | 0.00001 |
| (Intercept):2 | −0.33878 | 0.37421 | −0.90534 | 0.18264 |
| (Intercept):3 | 0.23052 | 0.31794 | 0.72506 | 0.23421 |
| Qdoar2 | 3.22032 | 0.80011 | 4.02486 | 0.00003 |
| Qdoar3 | 7.43794 | 1.08670 | 6.84453 | 0.00000 |
| Qdoar2 | 25.03618 | 6.47104 | 2.23013 |
| Qdoar3 | 1699.23829 | 74.66156 | 6.37580 |
Appendix A.1.4. Model with Risk 2014
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.93642 | 0.13387 | 6.99497 | 0.00000 |
| I(latvar.mat):2 | 0.34688 | 0.12070 | 2.87397 | 0.00203 |
| (Intercept):1 | −1.94233 | 0.56152 | −3.45903 | 0.00027 |
| (Intercept):2 | −0.84925 | 0.41774 | −2.03297 | 0.02103 |
| (Intercept):3 | 0.24312 | 0.30526 | 0.79643 | 0.21289 |
| Risk2 | 1.77027 | 0.60949 | 2.90449 | 0.00184 |
| Risk3 | 4.12522 | 0.78354 | 5.26485 | 0.00000 |
| Risk2 | 5.87243 | 5.24729 | 1.84795 |
| Risk3 | 61.88119 | 47.60461 | 4.18273 |
Appendix A.1.5. Model with PDep 2014
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.62373 | 0.17365 | 3.59186 | 0.00016 |
| I(latvar.mat):2 | 0.03294 | 0.12130 | 0.27158 | 0.39297 |
| (Intercept):1 | −3.48034 | 1.70366 | −2.04287 | 0.02053 |
| (Intercept):2 | −0.98349 | 0.86363 | −1.13879 | 0.12740 |
| (Intercept):3 | 0.65000 | 0.40451 | 1.60687 | 0.05404 |
| PDep2 | 1.48458 | 1.48214 | 1.00165 | 0.15826 |
| PDep3 | 4.56043 | 1.76790 | 2.57957 | 0.00495 |
| PDep2 | 4.41311 | 2.52433 | 1.05012 |
| PDep3 | 95.62495 | 17.19248 | 1.16210 |
Appendix A.1.6. Model with Close 2014
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.22459 | 0.14073 | 1.59594 | 0.05525 |
| I(latvar.mat):2 | 0.09868 | 0.17124 | 0.57627 | 0.28222 |
| (Intercept):1 | −1.48699 | 0.65863 | −2.25770 | 0.01198 |
| (Intercept):2 | 0.94796 | 0.27540 | 3.44206 | 0.00029 |
| (Intercept):3 | 0.63912 | 0.28896 | 2.21180 | 0.01349 |
| Close2 | 0.79318 | 0.84027 | 0.94396 | 0.17259 |
| Close3 | 3.16247 | 0.81276 | 3.89103 | 0.00005 |
| Close2 | 2.21042 | 1.19500 | 1.08142 |
| Close3 | 23.62891 | 2.03454 | 1.36626 |
Appendix A.1.7. Model with Pmed 2014
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.48364 | 0.13626 | 3.54949 | 0.00019 |
| I(latvar.mat):2 | 0.11787 | 0.18592 | 0.63396 | 0.26305 |
| (Intercept):1 | −1.29865 | 0.47126 | −2.75572 | 0.00293 |
| (Intercept):2 | 0.61700 | 0.32074 | 1.92365 | 0.02720 |
| (Intercept):3 | 0.62826 | 0.28674 | 2.19106 | 0.01422 |
| Pmed2 | 1.50988 | 0.63029 | 2.39555 | 0.00830 |
| Pmed3 | 3.36182 | 0.73819 | 4.55415 | 0.00000 |
| Pmed2 | 4.52619 | 2.07558 | 1.19479 |
| Pmed3 | 28.84157 | 5.08306 | 1.48625 |
Appendix A.1.8. Model with Health 2014
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.83877 | 0.20538 | 4.08394 | 0.00002 |
| I(latvar.mat):2 | 0.73823 | 0.18328 | 4.02787 | 0.00003 |
| (Intercept):1 | 0.88595 | 0.46127 | 1.92065 | 0.02739 |
| (Intercept):2 | 1.50007 | 0.40368 | 3.71597 | 0.00010 |
| (Intercept):3 | 1.88774 | 0.42401 | 4.45213 | 0.00000 |
| Health2 | −1.03413 | 0.72165 | −1.43300 | 0.07593 |
| Health3 | −2.45049 | 0.62930 | −3.89402 | 0.00005 |
| Exp_Coef | Exp_Mult_Latvar1 | Exp_Mult_Latvar2 | |
|---|---|---|---|
| Health2 | 0.35554 | 0.42004 | 0.46607 |
| Health3 | 0.08625 | 0.12804 | 0.16381 |
Appendix A.1.9. Model with Clean 2014
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | −0.44902 | 0.55754 | −0.80535 | 0.21031 |
| I(latvar.mat):2 | −1.08569 | 0.80390 | −1.35053 | 0.08842 |
| (Intercept):1 | 0.33473 | 0.53547 | 0.62510 | 0.26595 |
| (Intercept):2 | −0.00555 | 0.36810 | −0.01508 | 0.49398 |
| (Intercept):3 | −0.20068 | 0.39222 | −0.51166 | 0.30445 |
| Clean2 | −1.71490 | 0.96301 | −1.78078 | 0.03747 |
| Clean3 | −0.64230 | 0.52185 | −1.23083 | 0.10919 |
| Exp_Coef | Exp_Mult_Latvar1 | Exp_Mult_Latvar2 | |
|---|---|---|---|
| Clean2 | 0.17998 | 2.15982 | 6.43563 |
| Clean3 | 0.52608 | 1.33430 | 2.00841 |
Appendix A.2. Models for 2017
Appendix A.2.1. Complete Model for 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 1.35825 | 0.26741 | 5.07921 | 0.00000 |
| I(latvar.mat):2 | 0.52702 | 0.12738 | 4.13752 | 0.00002 |
| (Intercept):1 | −5.16655 | 0.72340 | −7.14206 | 0.00000 |
| (Intercept):2 | −5.31868 | 0.65695 | −8.09601 | 0.00000 |
| (Intercept):3 | −2.28360 | 0.31427 | −7.26636 | 0.00000 |
| Qdoar2 | 0.55312 | 0.24769 | 2.23307 | 0.01277 |
| Qdoar3 | 1.37103 | 0.51166 | 2.67957 | 0.00369 |
| Risk2 | 0.49644 | 0.29047 | 1.70908 | 0.04372 |
| Risk3 | 0.54409 | 0.30069 | 1.80945 | 0.03519 |
| PDep2 | 0.62153 | 0.37031 | 1.67840 | 0.04663 |
| PDep3 | 1.10631 | 0.37443 | 2.95465 | 0.00157 |
| Indust2 | 1.17665 | 0.35876 | 3.27980 | 0.00052 |
| Indust3 | 1.90473 | 0.38781 | 4.91151 | 0.00000 |
| Clean2 | 0.34599 | 0.35476 | 0.97529 | 0.16471 |
| Clean3 | 0.34731 | 0.35486 | 0.97873 | 0.16386 |
| Health2 | 0.22583 | 0.27831 | 0.81142 | 0.20856 |
| Health3 | 0.46222 | 0.28551 | 1.61892 | 0.05273 |
| Qdoar2 | 1.73866 | 2.11970 | 1.33844 |
| Qdoar3 | 3.93942 | 6.43797 | 2.05971 |
| Risk2 | 1.64287 | 1.96265 | 1.29906 |
| Risk3 | 1.72304 | 2.09387 | 1.33209 |
| PDep2 | 1.86178 | 2.32612 | 1.38758 |
| Pdep3 | 3.02319 | 4.49360 | 1.79150 |
| Indust2 | 3.24349 | 4.94407 | 1.85915 |
| Indust3 | 6.71758 | 13.29123 | 2.72872 |
| Clean2 | 1.41339 | 1.59991 | 1.20003 |
| Clean3 | 1.41525 | 1.60277 | 1.20086 |
| Health2 | 1.25336 | 1.35897 | 1.12639 |
| Health3 | 1.58759 | 1.87350 | 1.27583 |
Appendix A.2.2. Model with Qdoar 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 1.06996 | 0.27078 | 3.95147 | 0.00004 |
| I(latvar.mat):2 | 0.75883 | 0.21047 | 3.60536 | 0.00016 |
| (Intercept):1 | −3.13747 | 0.30357 | −10.33532 | 0.00000 |
| (Intercept):2 | −2.01771 | 0.18849 | −10.70481 | 0.00000 |
| (Intercept):3 | −1.52531 | 0.15664 | −9.73760 | 0.00000 |
| Qdoar2 | 1.16571 | 0.31514 | 3.69901 | 0.00011 |
| Qdoar3 | 2.70154 | 0.76086 | 3.55066 | 0.00019 |
| Qdoar2 | 3.20821 | 3.48083 | 2.42197 |
| Qdoar3 | 14.90261 | 18.00316 | 7.76801 |
Appendix A.2.3. Model with Risk 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.65395 | 0.23079 | 2.83353 | 0.00230 |
| I(latvar.mat):2 | 0.02597 | 0.17472 | 0.14864 | 0.44092 |
| (Intercept):1 | −3.27263 | 0.37532 | −8.71956 | 0.00000 |
| (Intercept):2 | −1.75335 | 0.17947 | −9.76958 | 0.00000 |
| (Intercept):3 | −1.11773 | 0.14345 | −7.79189 | 0.00000 |
| Risk2 | 1.05050 | 0.51870 | 2.02524 | 0.02142 |
| Risk3 | 1.81692 | 0.50240 | 3.61644 | 0.00015 |
| Risk2 | 2.85908 | 1.98768 | 1.02766 |
| Risk3 | 6.15288 | 3.28106 | 1.04832 |
Appendix A.2.4. Model with PDep 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 1.47332 | 0.56420 | 2.61133 | 0.00451 |
| I(latvar.mat):2 | 0.42870 | 0.20660 | 2.07504 | 0.01899 |
| (Intercept):1 | −3.82505 | 0.55540 | −6.88707 | 0.00000 |
| (Intercept):2 | −3.41354 | 0.50596 | −6.74663 | 0.00000 |
| (Intercept):3 | −1.59891 | 0.23349 | −6.84780 | 0.00000 |
| PDep2 | 1.12945 | 0.42280 | 2.67136 | 0.00378 |
| PDep3 | 1.93819 | 0.65261 | 2.96988 | 0.00149 |
| PDep2 | 3.09395 | 5.28061 | 1.62286 |
| PDep3 | 6.94613 | 17.38437 | 2.29537 |
Appendix A.2.5. Model with IndustA 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 1.73267 | 0.43683 | 3.96643 | 0.00004 |
| I(latvar.mat):2 | 0.66280 | 0.18906 | 3.50583 | 0.00023 |
| (Intercept):1 | −3.35403 | 0.35715 | −9.39102 | 0.00000 |
| (Intercept):2 | −3.24653 | 0.33167 | −9.78846 | 0.00000 |
| (Intercept):3 | −1.57585 | 0.16269 | −9.68645 | 0.00000 |
| Indust2 | 1.24368 | 0.35775 | 3.47634 | 0.00025 |
| Indust3 | 2.01863 | 0.48867 | 4.13088 | 0.00002 |
| Indust2 | 3.46834 | 8.62682 | 2.28031 |
| Indust3 | 7.52799 | 33.03632 | 3.81122 |
Appendix A.2.6. Model with Clean 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.68117 | 0.28829 | 2.36277 | 0.00907 |
| I(latvar.mat):2 | 0.36509 | 0.18456 | 1.97817 | 0.02395 |
| (Intercept):1 | −4.29112 | 0.75735 | −5.66599 | 0.00000 |
| (Intercept):2 | −2.47402 | 0.35673 | −6.93520 | 0.00000 |
| (Intercept):3 | −1.68108 | 0.27525 | −6.10746 | 0.00000 |
| Clean2 | 1.63309 | 0.66554 | 2.45379 | 0.00707 |
| Clean3 | 2.37052 | 0.84950 | 2.79050 | 0.00263 |
| Clean2 | 5.11969 | 3.04171 | 1.81526 |
| Clean3 | 10.70294 | 5.02655 | 2.37608 |
Appendix A.2.7. Model with Health 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 1.22130 | 0.39759 | 3.07175 | 0.00106 |
| I(latvar.mat):2 | 0.36610 | 0.20426 | 1.79233 | 0.03654 |
| (Intercept):1 | −3.26075 | 0.36567 | −8.91709 | 0.00000 |
| (Intercept):2 | −2.30194 | 0.25782 | −8.92841 | 0.00000 |
| (Intercept):3 | −1.32614 | 0.17680 | −7.50085 | 0.00000 |
| Health2 | 0.67250 | 0.32278 | 2.08344 | 0.01861 |
| Health3 | 1.63436 | 0.50337 | 3.24682 | 0.00058 |
| Health2 | 1.95913 | 2.27351 | 1.27916 |
| Health3 | 5.12618 | 7.35991 | 1.81910 |
Appendix A.2.8. Model with ImpQAR 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.81063 | 0.91862 | 0.88244 | 0.18877 |
| I(latvar.mat):2 | −0.07673 | 0.43304 | −0.17718 | 0.42968 |
| (Intercept):1 | −3.22954 | 0.65627 | −4.92104 | 0.00000 |
| (Intercept):2 | −1.93569 | 0.46985 | −4.11977 | 0.00002 |
| (Intercept):3 | −1.04503 | 0.28272 | −3.69638 | 0.00011 |
| ImpQAR2 | 0.58869 | 0.58263 | 1.01041 | 0.15615 |
| ImpQAR3 | 0.89850 | 0.81910 | 1.09693 | 0.13634 |
| Exp_Coef | Exp_Mult_Latvar1 | Exp_Mult_Latvar2 | |
|---|---|---|---|
| ImpQAR2 | 1.80163 | 1.61157 | 0.95584 |
| ImpQAR3 | 2.45592 | 2.07167 | 0.93338 |
Appendix A.2.9. Model with Close 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | −1.84590 | 2.13071 | −0.86633 | 0.19315 |
| I(latvar.mat):2 | −1.10902 | 1.40357 | −0.79014 | 0.21472 |
| (Intercept):1 | −2.38908 | 0.27880 | −8.56913 | 0.00000 |
| (Intercept):2 | −1.86623 | 0.22290 | −8.37247 | 0.00000 |
| (Intercept):3 | −1.34928 | 0.19138 | −7.05039 | 0.00000 |
| Close2 | −0.37509 | 0.40842 | −0.91838 | 0.17921 |
| Close3 | −0.42313 | 0.45466 | −0.93065 | 0.17602 |
| Exp_Coef | Exp_Mult_Latvar1 | Exp_Mult_Latvar2 | |
|---|---|---|---|
| Close2 | 0.68723 | 1.99845 | 1.51585 |
| Close3 | 0.65499 | 2.18379 | 1.59881 |
Appendix A.2.10. Model with Pmed 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 0.93618 | 0.38182 | 2.45188 | 0.00711 |
| I(latvar.mat):2 | 0.71068 | 0.32555 | 2.18300 | 0.01452 |
| (Intercept):1 | −3.16826 | 0.35233 | −8.99234 | 0.00000 |
| (Intercept):2 | −1.95376 | 0.19597 | −9.96967 | 0.00000 |
| (Intercept):3 | −1.47373 | 0.16586 | −8.88558 | 0.00000 |
| Pmed2 | 1.20917 | 0.43199 | 2.79908 | 0.00256 |
| Pmed3 | 1.26803 | 0.58421 | 2.17052 | 0.01498 |
| Exp_Coef | Exp_Mult_Latvar1 | Exp_Mult_Latvar2 | |
|---|---|---|---|
| Pmed2 | 3.35069 | 3.10186 | 2.36159 |
| Pmed3 | 3.55386 | 3.27760 | 2.46248 |
Appendix A.2.11. Model with RedDust 2017
| Estimate | Std. Error | z Value | Pr(>|z|) | |
|---|---|---|---|---|
| I(latvar.mat):1 | 1.11978 | 3.88323 | 0.28836 | 0.38653 |
| I(latvar.mat):2 | 5.79984 | 20.39026 | 0.28444 | 0.38804 |
| (Intercept):1 | −2.59876 | 0.22348 | −11.62868 | 0.00000 |
| (Intercept):2 | −1.43584 | 0.13521 | −10.61958 | 0.00000 |
| (Intercept):3 | −1.29384 | 0.22386 | −5.77969 | 0.00000 |
| RedDust2 | 0.20206 | 0.70352 | 0.28721 | 0.38697 |
| RedDustg3 | −0.00519 | 0.06576 | −0.07894 | 0.46854 |
| Exp_Coef | Exp_Mult_Latvar1 | Exp_Mult_Latvar2 | |
|---|---|---|---|
| RedDust2 | 1.22392 | 1.25390 | 3.22816 |
| RedDust3 | 0.99482 | 0.99420 | 0.97034 |
References
- Orru, H.; Idavain, J.; Pindus, M.; Orru, K.; Kesanurm, K.; Lang, A.; Tomasova, J. Residents’ Self-Reported Health Effects and Annoyance in Relation to Air Pollution Exposure in an Industrial Area in Eastern-Estonia. Int. J. Environ. Res. Public Health 2018, 15, 252. [Google Scholar] [CrossRef]
- Orru, K.; Orru, H.; Maasikmets, M.; Hendrikson, R.; Ainsaar, M. Well-being and environmental quality: Does pollution affect life satisfaction? Qual. Life Res. 2016, 25, 699–705. [Google Scholar] [CrossRef]
- Claeson, A.S.; Lidén, E.; Nordin, M.; Nordin, S. The role of perceived pollution and health risk perception in annoyance and health symptoms: A population-based study of odorous air pollution. Int. Arch. Occup. Environ. Health 2013, 86, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Cichowicz, R.; Bochenek, A.D. Assessing the effects of urban heat islands and air pollution on human quality of life. Anthropocene 2024, 46, 100433. [Google Scholar] [CrossRef]
- Tan, J.; Chen, N.; Bai, J.; Yan, P.; Ma, X.; Ren, M.; Maitland, E.; Nicholas, S.; Cheng, W.; Leng, X.; et al. Ambient air pollution and the health-related quality of life of older adults: Evidence from Shandong China. J. Environ. Manag. 2023, 336, 117619. [Google Scholar] [CrossRef]
- World Health Organization. Constitution of the World Health Organization; World Health Organization: Geneva, Switzerland, 2006.
- Holgate, S.T.; Samet, J.M.; Koren, H.S.; Maynard, R.L. (Eds.) Air Pollution and Health; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Machado, M.; Santos, J.M.; Reisen, V.A.; e Silva, A.F.P.; Junior, N.C.R.; Bondon, P.; Mavroidis, I.; Prezotti Filho, P.R.; Frere, S.; Lima, A.T. Parameters influencing population annoyance pertaining to air pollution. J. Environ. Manag. 2022, 323, 115955. [Google Scholar] [CrossRef]
- Machado, M.; Reisen, V.A.; Santos, J.M.; Júnior, N.C.R.; Frère, S.; Bondon, P.; Ispany, M.; Cotta, H.H.A. Use of multivariate time series techniques to estimate the impact of particulate matter on the perceived annoyance. Atmos. Environ. 2020, 222, 117080. [Google Scholar] [CrossRef]
- Cavalcante, F.R.; Machado, M.; Reisen, V.A.; Furieri, B.; Goulart, E.V.; Ponce de Leon, A.; Reis, N.C., Jr.; Frère, S.; Santos, J.M. Determinants of Odor-Related Perception: Analysis of Community Response. Atmosphere 2025, 16, 1176. [Google Scholar] [CrossRef]
- Machado, M.; Santos, J.M.; Reisen, V.A.; Reis, N.C., Jr.; Mavroidis, I.; Lima, A.T. A new methodology to derive settleable particulate matter guidelines to assist policy-makers on reducing public nuisance. Atmos. Environ. 2018, 182, 242–251. [Google Scholar] [CrossRef]
- Rotko, T.; Oglesby, L.; Künzli, N.; Carrer, P.; Nieuwenhuijsen, M.J.; Jantunen, M. Determinants of perceived air pollution annoyance and association between annoyance scores and air pollution (PM2.5, NO2) concentrations in the European EXPOLIS study. Atmos. Environ. 2002, 36, 4593–4602. [Google Scholar] [CrossRef]
- Amundsen, A.; Klæboe, R.; Fyhri, A. Annoyance from vehicular air pollution: Exposure–response relationships for Norway. Atmos. Environ. 2008, 42, 7679–7688. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Kleissl, J.; Linden, P.; Lykoudis, S. Pedestrians’ perception of environmental stimuli through field surveys: Focus on particulate pollution. Sci. Total Environ. 2011, 409, 2493–2502. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Zhao, X.; Gu, X.; Ji, R. Separation and identification of microplastics from soil and sewage sludge. Environ. Pollut. 2019, 254, 113076. [Google Scholar] [CrossRef]
- Yang, J.; Qu, S.; Liu, M.; Liu, X.; Gao, Q.; He, W.; Ji, J.S.; Bi, J. Gray cityscape caused by particulate matter pollution hampers human stress recovery. J. Clean. Prod. 2021, 279, 123215. [Google Scholar] [CrossRef]
- Machado, M.; Santos, J.M.; Frere, S.; Chagnon, P.; Reisen, V.A.; Bondon, P.; Ispány, M.; Mavroidis, I.; Reis, N.C., Jr. Deconstruction of annoyance due to air pollution by multiple correspondence analyses. Environ. Sci. Pollut. Res. 2021, 28, 47904–47920. [Google Scholar] [CrossRef]
- Stenlund, T.; Lidén, E.; Andersson, K.; Garvill, J.; Nordin, S. Annoyance and health symptoms and their influencing factors: A population-based air pollution intervention study. Public Health 2009, 123, 339–345. [Google Scholar] [CrossRef]
- Machado, M.; Santos, J.M.; Borges, W. Estudo dos fatores determinantes do incômodo causado pela poluição do ar através de survey. In Proceedings of the XXXIV Encontro Nacional de Engenharia de Produção (ENEGEP), ABEPRO, Curitiba, PR, Brazil, 7–10 October 2014. [Google Scholar]
- Freire, L.M.d.B.; Prescholdt, S.G.d.A. Desenvolvimento às avessas e depredação socioambiental por uma mineradora. Serv. Soc. Soc. 2015, 476–500. [Google Scholar] [CrossRef]
- Lacaz, F.A.d.C.; Porto, M.F.d.S.; Pinheiro, T.M.M. Tragédias brasileiras contemporâneas: O caso do rompimento da barragem de rejeitos de Fundão/Samarco. Rev. Bras. Saúde Ocup. 2017, 42, e9. [Google Scholar] [CrossRef]
- Meira, R.M.; Peixoto, A.L.; Coelho, M.A.; Ponzo, A.P.; Esteves, V.G.; Silva, M.C.; Câmara, P.E.; Meira-Neto, J.A. Brazil’s mining code under attack: Giant mining companies impose unprecedented risk to biodiversity. Biodivers. Conserv. 2016, 25, 407–409. [Google Scholar] [CrossRef]
- Ziegel, E.R. Sample Survey: Principles and Methods. Technometrics 2004, 46, 120–121. [Google Scholar] [CrossRef]
- Agresti, A. An Introduction to Categorical Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Wroniszewska, A.; Zwoździak, J. Odor annoyance assessment by using logistic regression on an example of the municipal sector. Sustainability 2020, 12, 6102. [Google Scholar] [CrossRef]
- Abraham, B.; Ledolter, J. Student Solutions Manual for Introduction to Regression Modeling; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2006. [Google Scholar]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Anderson, J.A. Regression and ordered categorical variables. J. R. Stat. Soc. Ser. B (Methodol.) 1984, 46, 1–22. [Google Scholar] [CrossRef]
- Agresti, A. Analysis of Ordinal Categorical Data; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 656. [Google Scholar]
- Hayes, J.; Stevenson, R.; Stuetz, R. Survey of the effect of odour impact on communities. J. Environ. Manag. 2017, 204, 349–354. [Google Scholar] [CrossRef]
- Baxter, L.A.; Finch, S.J.; Lipfert, F.W.; Yu, Q. Comparing estimates of the effects of air pollution on human mortality obtained using different regression methodologies. Risk Anal. 1997, 17, 273–278. [Google Scholar] [CrossRef]
- Hu, Q.; Feng, Y.; Xu, M. Are there heterogeneous impacts of air pollution on mental health? Front. Public Health 2021, 9, 780022. [Google Scholar]
- Benson, S.G.; Dundis, S.P. Understanding and motivating health care employees: Integrating Maslow’s hierarchy of needs, training and technology. J. Nurs. Manag. 2003, 11, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Galvao, E.S.; Junior, N.C.R.; Goulart, E.V.; Kumar, P.; Santos, J.M. Refining Children’s exposure assessment to NO2, SO2, and O3: Incorporating indoor-to-outdoor concentration ratios and individual daily routine. Chemosphere 2024, 364, 143155. [Google Scholar] [CrossRef]
- Faria, T.; Martins, V.; Canha, N.; Diapouli, E.; Manousakas, M.; Fetfatzis, P.; Gini, M.; Almeida, S. Assessment of children’s exposure to carbonaceous matter and to PM major and trace elements. Sci. Total Environ. 2022, 807, 151021. [Google Scholar] [CrossRef]




| Sub-Region | Habitants | Survey 2014 | Survey 2017 |
|---|---|---|---|
| Meaípe (E5) | 2.750 | 43 | 93 |
| Anchieta sede (E1) | 6.762 | 107 | 229 |
| Guanabara (E3) | 1.805 | 28 | 61 |
| Maembá (E4) | 2.045 | 32 | 69 |
| Ubu (E6) | 1.904 | 30 | 64 |
| Belo Horizonte (E2) | 1.906 | 17 | 37 |
| Total | 16.362 | 258 | 553 |
| 2014 | 2017 | p-Value | |
|---|---|---|---|
| Gender | 0.37 | ||
| Male | 124 (48.06%) | 285 (51.54%) | |
| Female | 134 (51.94%) | 268 (48.46%) | |
| Age (years) | 0.00 | ||
| 16–24 | 34 (13.18%) | 77 (13.92%) | |
| 25–34 | 66 (25.58%) | 95 (17.18%) | |
| 35–54 | 103 (39.92%) | 210 (37.97%) | |
| 55+ | 47 (18.22%) | 169 (30.56%) | |
| NA/NK | 8 (3.10%) | 2 (0.36%) | |
| Levels of education | 0.36 | ||
| Primary school | 113 (43.8%) | 234 (42.31%) | |
| High school | 108 (41.9%) | 220 (39.78%) | |
| University | 36 (14.0%) | 90 (16.27%) | |
| NA/NK | 1 (0.4%) | 9 (1.63%) | |
| Occupation | 0.00 | ||
| Employed | 155 (60.08%) | 124 (22.42%) | |
| Unemployed | 35 (13.57%) | 140 (25.32%) | |
| Retired | 20 (7.75%) | 94 (17.00%) | |
| Student | 12 (4.65%) | 40 (7.23%) | |
| Freelancer | 29 (11.24%) | 146 (26.40%) | |
| NA/NK | 7 (2.71%) | 9 (1.63%) |
| 2014 | 2017 | p-Value | |
|---|---|---|---|
| How annoyed do you feel by air | |||
| pollution? | <0.05 | ||
| Not annoyed | 6 (2.33%) | 209 (37.79%) | |
| A little | 28 (10.85%) | 123 (22.24%) | |
| Moderate | 68 (26.36%) | 109 (19.71%) | |
| Very | 111 (43.02%) | 87 (15.73%) | |
| Extremely | 45 (17.44%) | 25 (4.52%) | |
| At home, how annoyed do you feel | |||
| by dust from outside? | <0.05 | ||
| Not annoyed | 6 (2.33%) | 229 (41.41%) | |
| A little | 75 (29.07%) | 70 (12.66%) | |
| Moderate | 49 (18.99%) | 93 (16.82%) | |
| Very | 58 (22.48%) | 139 (25.14%) | |
| Extremely | 69 (26.74%) | 20 (3.62%) | |
| NK/NA | 1 (0.39%) | 2 (0.36%) | |
| In your opinion, where does this | |||
| dust come from? | <0.05 | ||
| Vehicles (cars) | 34 (13.18%) | 102 (18.44%) | |
| Industrial sources | 205 (79.46%) | 249 (45.03%) | |
| Unpaved streets | 9 (3.49%) | 92 (16.64%) | |
| Construction work | 17 (6.00%) | 94 (18.00%) | |
| Sea breeze | 2 (0.78%) | 21 (3.80%) | |
| Quarry exploration | 0 (0.00%) | 15 (2.71%) | |
| NK/NA | 4 (1.55%) | 59 (10.67%) |
| 2014 | 2017 | p-Value | |
|---|---|---|---|
| How do you assess air quality in your | |||
| neighborhood? | <0.05 | ||
| (perception of air quality) | |||
| Terrible | 33 (12.79%) | 15 (2.71%) | |
| Bad | 25 (9.69%) | 21 (3.80%) | |
| Regular | 150 (58.14%) | 200 (36.17%) | |
| Good | 47 (18.22%) | 255 (46.11%) | |
| Excellent | 3 (1.16%) | 58 (10.49%) | |
| NK/NA | 0 (0.00%) | 4 (0.72%) | |
| How do you feel about industrial risk? | <0.05 | ||
| (perception of industrial risk) | |||
| Nothing exposed | 16 (6.20%) | 193 (34.90%) | |
| A little | 36 (13.95%) | 127 (22.97%) | |
| Moderate | 69 (26.74%) | 111 (20.07%) | |
| Very | 92 (35.66%) | 76 (13.74%) | |
| Extremely exposed | 41 (15.89%) | 26 (4.70%) | |
| NK/NA | 4 (1.55%) | 20 (3.62%) | |
| How important is the quality | |||
| of the air to you? | <0.05 | ||
| (air quality importance) | |||
| Extremely | 144 (55.81%) | 186 (33.60%) | |
| Very important | 99 (38.37%) | 296 (53.50%) | |
| Moderate importance | 9 (3.49%) | 56 (10.10%) | |
| Slightly important | 3 (1.16%) | 4 (0.70%) | |
| Not important at all | 0 (0.00%) | 7 (1.30%) | |
| NK/NA | 3 (1.16%) | 4 (0.70%) | |
| Do you think that air quality is monitored | |||
| in your neighborhood/region? | <0.05 | ||
| (perception of air quality monitoring) | |||
| Never | 152 (58.91%) | 176 (31.83%) | |
| Rarely | 18 (6.98%) | 81 (14.65%) | |
| Sometimes | 23 (8.91%) | 70 (12.66%) | |
| Frequently | 3 (1.16%) | 42 (7.59%) | |
| Always | 5 (1.94%) | 41 (7.41%) | |
| NK/NA | 57 (22.09%) | 143 (25.86%) |
| 2014 | 2017 | p-Value | |
|---|---|---|---|
| Do you perceived air pollution through | |||
| dust, particles, flakes, etc.? | <0.05 | ||
| (perceived dust) | |||
| Never | 1 (0.39%) | 47 (8.50%) | |
| Rarely | 15 (5.81%) | 97 (17.54%) | |
| Sometimes | 57 (22.09%) | 142 (25.68%) | |
| Frequently | 105 (40.70%) | 149 (26.94%) | |
| Always | 80 (31.01%) | 112 (20.25%) | |
| NK/NA | 0 (0.00%) | 6 (10.8%) | |
| Do you perceive air pollution through | |||
| odour/bad smell? | 0.13 | ||
| (perceived odour) | |||
| Never | 102 (39.53%) | 211 (38.16%) | |
| Rarely | 76 (29.46%) | 114 (20.61%) | |
| Sometimes | 50 (19.38%) | 139 (25.14%) | |
| Frequently | 12 (4.65%) | 54 (9.76%) | |
| Always | 12 (4.65%) | 32 (5.79%) | |
| NK/NA | 6 (2.33%) | 3 (0.54%) | |
| Do you perceive air pollution due to | |||
| air opacity/smoke? | <0.05 | ||
| (perceived opacity) | |||
| Never | 37 (14.34%) | 273 (49.37%) | |
| Rarely | 93 (36.05%) | 98 (17.72%) | |
| Sometimes | 75 (29.07%) | 120 (21.70%) | |
| Frequently | 31 (12.02%) | 40 (7.23%) | |
| Always | 21 (8.14%) | 19 (3.44%) | |
| NK/NA | 1 (0.39%) | 3 (0.54%) |
| 2014 | 2017 | p-Value | |
|---|---|---|---|
| How often do you clean your house to | |||
| remove the dust caused by air pollution? | <0.05 | ||
| (cleaning the house) | |||
| Never | 0 (0.00%) | 17 (3.07%) | |
| Rarely | 2 (0.78%) | 46 (8.32%) | |
| Sometimes | 25 (9.69%) | 65 (11.75%) | |
| Frequently | 90 (34.88%) | 183 (33.09%) | |
| Always | 140 (54.26%) | 239 (43.22%) | |
| NK/NA | 1 (0.39%) | 3 (0.54%) | |
| Do you close the windows to | |||
| prevent dust from outside? | <0.05 | ||
| (closing the windows) | |||
| Never | 16 (6.20%) | 172 (31.10%) | |
| Rarely | 64 (24.81%) | 70 (12.66%) | |
| Sometimes | 82 (31.78%) | 113 (20.43%) | |
| Frequently | 37 (14.34%) | 93 (16.82%) | |
| Always | 58 (22.48%) | 100 (18.08%) | |
| NK/NA | 1 (0.39%) | 5 (0.90%) | |
| Do you see doctor or go to health | |||
| center because of the dust? | <0.05 | ||
| (visiting a doctor) | |||
| Never | 55 (21.32%) | 195 (35.26%) | |
| Rarely | 35 (13.57%) | 118 (21.34%) | |
| Sometimes | 95 (36.82%) | 151 (27.31%) | |
| Frequently | 32 (12.40%) | 48 (8.68%) | |
| Always | 39 (15.12%) | 36 (6.51%) | |
| NK/NA | 2 (0.78%) | 5 (0.90%) | |
| What are the main health symptoms you | |||
| experience due to dust, in your opinion? | 0.64 | ||
| (perceived health symptoms) | |||
| Rhinitis, sinusitis, allergy | 155 (60.08%) | 333 (60.22%) | |
| Cough, throat and ear irritation | 33 (12.79%) | 62 (11.21%) | |
| Shortness of breath, difficulty breathing | 11 (4.26%) | 36 (6.51%) | |
| Skin peeling, dry skin | 2 (0.39%) | 10 (1.81%) | |
| Others | 1 (0.39%) | 2 (0.36%) | |
| NK/NA | 56 (21.71%) | 110 (19.89%) |
| Variable Name | Code | Categories |
|---|---|---|
| Annoyance due to air pollution (response var.) | (Annoy) | extremely (1), very (2), moderate (3), little/nothing (4) |
| Air quality importance | (ImpQAR) | no importance/little/moderate (1), very (2), extremely (3) |
| Perception of air quality | (Qdoar) | excellent/good (1), fair (2), bad/terrible (3) |
| Industrial risk exposure | (Risk) | nothing/little (1), moderate (2), very/extremely (3) |
| Perceived dust | (PDep) | never/rarely (1), sometimes (2), often/always (3) |
| Annoyance due to dust inside the house | (IndustA) | nothing/little (1), moderate (2), very/extremely (3) |
| Cleaning the house | (Clean) | never/rarely/sometimes (1), often (2), always (3) |
| Closing the windows | (Close) | never/rarely (1), sometimes (2), often/always (3) |
| Visiting a doctor | (Pmed) | never/rarely (1), sometimes (2), often/always (3) |
| Perceived health symptoms | (Health) | never/rarely (1), sometimes (2), often/always (3) |
| Dust reduction perception | (RedDust) | nothing/little (1), moderate (2), very/extremely (3) |
| 2014 | 2017 | |||||||
|---|---|---|---|---|---|---|---|---|
| Variable Name | df | n | p-Value | df | n | p-Value | ||
| Air Quality Importance | 46.26 | 12 | 255 | 0.00 | 15.4 | 16 | 549 | 0.49 |
| Air Quality Assessment | 181.4 | 16 | 258 | 0.00 | 125.61 | 16 | 549 | 0.00 |
| Industrial Risk Exposure | 134.18 | 16 | 254 | 0.00 | 66.22 | 16 | 533 | 0.00 |
| Dust Deposition Perception | 116.90 | 16 | 258 | 0.00 | 112.13 | 16 | 547 | 0.00 |
| Odor Perception | 28.85 | 16 | 252 | 0.02 | 72.12 | 16 | 550 | 0.00 |
| Opacity Perception | 55.23 | 16 | 257 | 0.00 | 63.16 | 16 | 550 | 0.00 |
| Indoor Dust Annoyance | 127.62 | 16 | 257 | 0.00 | 209.42 | 16 | 551 | 0.00 |
| Dust Source | 42.39 | 20 | 256 | 0.00 | 23.62 | 50 | 482 | 0.26 |
| House Cleaning Frequency | 68.14 | 12 | 257 | 0.00 | 50.86 | 16 | 550 | 0.00 |
| Closing Windows | 78.84 | 16 | 257 | 0.00 | 24.94 | 16 | 548 | 0.07 |
| Doctor Visits Frequency | 81.34 | 16 | 256 | 0.00 | 65.01 | 16 | 548 | 0.00 |
| Health Problems Frequency | 53.59 | 16 | 246 | 0.00 | 96.48 | 16 | 547 | 0.00 |
| Air Pollution Source | 36.92 | 16 | 254 | 0.00 | 25.46 | 20 | 494 | 0.18 |
| Dust Reduction Perception | - | - | - | - | 38.02 | 16 | 539 | 0.00 |
| Occupation | 21.08 | 20 | 251 | 0.17 | 25.9 | 16 | 544 | 0.05 |
| Smoking | 10.87 | 8 | 256 | 0.21 | 2.67 | 8 | 548 | 0.95 |
| Gender | 9.60 | 4 | 258 | 0.05 | 15.00 | 4 | 553 | 0.02 |
| Age Group | 12.04 | 12 | 250 | 0.44 | 24.43 | 12 | 551 | 0.02 |
| Education | 29.56 | 24 | 257 | 0.20 | 18.27 | 24 | 544 | 0.78 |
| 2014 | 2017 | |||||
|---|---|---|---|---|---|---|
| (OR) | (OR) | (OR) | (OR) | (OR) | (OR) | |
| ImpQAR2 | 1.52 (4.57) | 0.90 (2.46) | 0.28 (1.32) | – | – | – |
| ImpQAR3 | 1.58 (4.84) | 0.94 (2.55) | 0.29 (1.33) | – | – | – |
| Qdoar2 | 1.45 (14.26) | 0.86 (2.36) | 0.26 (1.30) | 0.55 (1.74) | 0.75 (2.12) | 0.29 (1.34) |
| Qdoar3 | 5.01 (149.7) | 2.97 (19.53) | 0.91 (2.50) | 1.37 (3.94) | 1.86 (6.44) | 0.72 (2.06) |
| Risk2 | 2.05 (7.75) | 1.22 (3.37) | 0.37 (1.45) | 0.50 (1.64) | 0.67 (1.96) | 0.26 (1.30) |
| Risk3 | 3.72 (41.13) | 2.21 (9.07) | 0.68 (1.97) | 0.54 (1.72) | 0.74 (2.09) | 0.29 (1.33) |
| PDep2 | 1.68 (5.38) | 1.00 (2.71) | 0.31 (1.36) | 0.62 (1.86) | 0.84 (2.33) | 0.33 (1.39) |
| PDep3 | 2.99 (19.89) | 1.77 (5.90) | 0.55 (1.73) | 1.11 (3.02) | 1.50 (4.49) | 0.58 (1.79) |
| Close2 | 0.09 (1.10) | 0.06 (1.06) | 0.02 (1.02) | – | – | – |
| Close3 | 2.31 (10.05) | 1.37 (3.93) | 0.42 (1.52) | – | – | – |
| Pmed2 | 1.24 (3.46) | 0.74 (2.09) | 0.23 (1.25) | – | – | – |
| Pmed3 | 0.86 (2.36) | 0.51 (1.66) | 0.16 (1.17) | – | – | – |
| Indust2 | – | – | – | 1.18 (3.24) | 1.60 (4.94) | 0.62 (1.86) |
| Indust3 | – | – | – | 1.90 (6.72) | 2.59 (13.29) | 1.00 (2.73) |
| Clean2 | – | – | – | 0.35 (1.41) | 0.47 (1.60) | 0.18 (1.20) |
| Clean3 | – | – | – | 0.35 (1.42) | 0.47 (1.60) | 0.18 (1.20) |
| Health2 | – | – | – | 0.23 (1.25) | 0.31 (1.36) | 0.12 (1.13) |
| Health3 | – | – | – | 0.46 (1.59) | 0.63 (1.87) | 0.24 (1.28) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Machado, M.; Cavalcante, F.R.; Benaquio, W.C.; Filho, P.R.P.; Frère, S.; Ispány, M.; Bondon, P.; Reisen, V.A.; Santos, J.M. Community Annoyance Due to Settleable Dust: Influential Factors in Air Pollution Perception. Atmosphere 2026, 17, 15. https://doi.org/10.3390/atmos17010015
Machado M, Cavalcante FR, Benaquio WC, Filho PRP, Frère S, Ispány M, Bondon P, Reisen VA, Santos JM. Community Annoyance Due to Settleable Dust: Influential Factors in Air Pollution Perception. Atmosphere. 2026; 17(1):15. https://doi.org/10.3390/atmos17010015
Chicago/Turabian StyleMachado, Milena, Franciele Ribeiro Cavalcante, Wilson Carminatti Benaquio, Paulo Roberto Prezotti Filho, Severine Frère, Márton Ispány, Pascal Bondon, Valdério Anselmo Reisen, and Jane Meri Santos. 2026. "Community Annoyance Due to Settleable Dust: Influential Factors in Air Pollution Perception" Atmosphere 17, no. 1: 15. https://doi.org/10.3390/atmos17010015
APA StyleMachado, M., Cavalcante, F. R., Benaquio, W. C., Filho, P. R. P., Frère, S., Ispány, M., Bondon, P., Reisen, V. A., & Santos, J. M. (2026). Community Annoyance Due to Settleable Dust: Influential Factors in Air Pollution Perception. Atmosphere, 17(1), 15. https://doi.org/10.3390/atmos17010015

