Performance Evaluation of Real-Time Sub-to-Seasonal (S2S) Rainfall Forecasts over West Africa of 2020 and 2021 Monsoon Seasons for Operational Use
Abstract
1. Introduction
2. Data and Methods
2.1. S2S-Rainfall Data
2.2. Satellite-Rainfall Data
2.3. Methods
3. Results
3.1. Rainfall Characteristics
3.2. Rainfall Bias
3.3. Rainfall Anomaly
3.4. Correlation Skill
3.5. Ranked Probability Skill Score
3.6. Relative Operating Characteristics (ROC)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitart, F.; Robertson, A.W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. Npj Clim. Atmos. Sci. 2018, 1, 3. [Google Scholar] [CrossRef]
- White, C.J.; Carlsen, H.; Robertson, A.W.; Klein, R.J.; Lazo, J.K.; Kumar, A.; Vitart, F.; de Perez, E.C.; Ray, A.J.; Murray, V.; et al. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 2017, 24, 315–325. [Google Scholar] [CrossRef]
- Hirons, L.; Thompson, E.; Dione, C.; Indasi, V.S.; Kilavi, M.; Nkiaka, E.; Talib, J.; Visman, E.; Adefisan, E.A.; de Andrade, F.; et al. Using co-production to improve the appropriate use of sub-seasonal forecasts in Africa. Clim. Serv. 2021, 23, 100246. [Google Scholar] [CrossRef]
- White, C.J.; Domeisen, D.I.V.; Acharya, N.; Adefisan, E.A.; Anderson, M.L.; Aura, S.; Balogun, A.A.; Bertram, D.; Bluhm, S.; Brayshaw, D.J.; et al. Advances in the application and utility of subseasonal-to-seasonal predictions. Bull. Am. Meteorol. Soc. 2021, 103, E1448–E1472. [Google Scholar] [CrossRef]
- de Andrade, F.M.; Young, M.P.; MacLeod, D.; Hirons, L.C.; Woolnough, S.J.; Black, E. Subseasonal rainfall prediction for africa: Forecast evaluation and sources of predictability. Weather Forecast. 2021, 36, 265–284. [Google Scholar] [CrossRef]
- Vitart, F.; Balsamo, G.; Buizza, R.; Ferranti, L.; Keeley, S.; Magnusson, L.; Molteni, F.; Weisheimer, A. Sub-seasonal predictions. ECMWF Tech. Memo. 2014, 45, 738. [Google Scholar]
- Vitart, F.; Robertson, A.W.; Anderson, D.T. Sub-seasonal to Seasonal Prediction Project: Bridging the gap between weather and climate. WMO Bull. 2012, 61, 23–28. [Google Scholar]
- Parker, D.J.; Blyth, A.M.; Woolnough, S.J.; Dougill, A.J.; Bain, C.L.; de Coning, E.; Diop-Kane, M.; Foamouhoue, A.K.; Lamptey, B.; Ndiaye, O.; et al. The African SWIFT project: Growing science capability to bring about a revolution in weather prediction. Bull. Am. Meteorol. Soc. 2021, 103, E349–E369. [Google Scholar] [CrossRef]
- Fink, A.H.; Vincent, D.G.; Ermert, V. Rainfall types in the West African Sudanian zone during the summer monsoon 2002. Mon. Weather Rev. 2006, 134, 2143–2164. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Pegion, K.V.; Kinter, J.L.; Cash, B.A.; Adams, J.M. Sub-seasonal Predictability of the Onset and Demise of the Rainy Season over Monsoonal Regions. Front. Earth Sci. 2017, 5, 14. [Google Scholar] [CrossRef]
- Kumi, N.; Abiodun, B.J.; Adefisan, E.A. Performance Evaluation of a Subseasonal to Seasonal Model in Predicting Rainfall Onset Over West Africa. Earth Space Sci. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Leutbecher, M. Ensemble size: How suboptimal is less than infinity? Q. J. R. Meteorol. Soc. 2019, 145, 107–128. [Google Scholar] [CrossRef]
- McCrary, R.R.; Randall, D.A.; Stan, C. Simulations of the West African monsoon with a superparameterized climate model. Part II: African easterly waves. J. Clim. 2014, 27, 8323–8341. [Google Scholar] [CrossRef]
- Olaniyan, E.; Adefisan, E.A.; Balogun, A.A.; Lawal, K.A. The influence of global climate drivers on monsoon onset variability in Nigeria using S2S models. Model. Earth Syst. Environ. 2019, 5, 1405–1428. [Google Scholar] [CrossRef]
- Vellinga, M.; Arribas, A.; Graham, R. Seasonal forecasts for regional onset of the West African monsoon. Clim. Dyn. 2013, 40, 3047–3070. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Lee, S.H.; Butler, A.H.; Domeisen, D.I.V.; Wulff, C.O. Drivers of subseasonal forecast errors of the East African short rains. Geophys. Res. Lett. 2021, 48, e2021GL093292. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; Firpo, M.A.F.; de Andrade, F.M. A verification framework for South American sub-seasonal rainfall predictions. Meteorol. Z. 2018, 27, 503–520. [Google Scholar] [CrossRef]
- Vitart, F. Madden—Julian Oscillation prediction and teleconnections in the S2S database. Q. J. R. Meteorol. Soc. 2017, 143, 2210–2220. [Google Scholar] [CrossRef]
- I Maidment, R.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.P.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Cafaro, C.; Woodhams, B.J.; Stein, T.H.M.; Birch, C.E.; Webster, S.; Bain, C.L.; Hartley, A.; Clarke, S.; Ferrett, S.; Hill, P. Do convection-permitting ensembles lead to more skillful short-range probabilistic rainfall forecasts over tropical east africa? Weather Forecast. 2021, 36, 697–716. [Google Scholar] [CrossRef]
- Stein, T.H.M.; Keat, W.; Maidment, R.I.; Landman, S.; Becker, E.; Boyd, D.F.A.; Bodas-Salcedo, A.; Pankiewicz, G.; Webster, S. An evaluation of clouds and rainfall in convection-permitting forecasts for South Africa. Weather Forecast. 2019, 34, 233–254. [Google Scholar] [CrossRef]
- Woodhams, B.J.; Birch, C.E.; Marsham, J.H.; Bain, C.L.; Roberts, N.M.; Boyd, D.F.A. What is the added value of a convection-permitting model for forecasting extreme rainfall over tropical East Africa? Mon. Weather Rev. 2018, 146, 2757–2780. [Google Scholar] [CrossRef]
- Maranan, M.; Fink, A.H.; Knippertz, P.; Amekudzi, L.K.; Atiah, W.A.; Stengel, M. A process-based validation of gpm imerg and its sources using a mesoscale rain gauge network in the west african forest zone. J. Hydrometeorol. 2020, 21, 729–749. [Google Scholar] [CrossRef]
- Keikhosravi-Kiany, M.S.; Balling, R.C. Evaluation of GPM IMERG Early, Late, and Final Run in representing extreme rainfall indices in Southwestern Iran. Remote Sens. 2024, 16, 2779. [Google Scholar] [CrossRef]
- Watters, D.C.; Gatlin, P.N.; Bolvin, D.T.; Huffman, G.J.; Joyce, R.; Kirstetter, P.; Nelkin, E.J.; Ringerud, S.; Tan, J.; Wang, J.; et al. Oceanic validation of IMERG-GMI Version 6 precipitation using the GPM Validation Network. J. Hydrometeorol. 2024, 25, 125–142. [Google Scholar] [CrossRef]
- Grimes, D.I.F.; Pardo-Igúzquiza, E.; Bonifacio, R. Optimal areal rainfall estimation using raingauges and satellite data. J. Hydrol. 1999, 222, 93–108. [Google Scholar] [CrossRef]
- Tarnavsky, E.; Grimes, D.; Maidment, R.; Black, E.; Allan, R.P.; Stringer, M.; Chadwick, R.; Kayitakire, F. Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present. J. Appl. Meteorol. Climatol. 2014, 53, 2805–2822. [Google Scholar] [CrossRef]
- Boult, V.L.; Asfaw, D.T.; Young, M.; Maidment, R.; Mwangi, E.; Ambani, M.; Waruru, S.; Otieno, G.; Todd, M.C.; Black, E. Evaluation and validation of TAMSAT-ALERT soil moisture and WRSI for use in drought anticipatory action. Meteorol. Appl. 2020, 27, e1959. [Google Scholar] [CrossRef]
- Macharia, D.; Maidment, R.I.; Grimes, D.I.F.; Black, E. Validation and intercomparison of satellite-based rainfall products in Africa. J. Hydrometeorol. 2022, 23, 1087–1104. [Google Scholar]
- Lawal, K.A.; Akintomide, O.M.; Olaniyan, E.; Bowery, A.; Sparrow, S.N.; Wehner, M.F.; Stone, D.A. Performance Evaluation of Weather@home2 Simulations over West African Region. Atmosphere 2025, 16, 392. [Google Scholar] [CrossRef]
- Misra, J. Phase synchronization. Inf. Process. Lett. 1991, 38, 101–105. [Google Scholar] [CrossRef]
- Gouda, K.C.; Rajeevan, M.; Rajeevan, K.; Raju, P.V.S.; Aditi, A. Performance of a variable resolution global model in simulating Indian summer monsoon rainfall at multiple scales. Pure Appl. Geophys. 2020, 177, 5903–5919. [Google Scholar]
- Joshi, J.; Tripathi, S.; Dey, S.; Pandey, A.C. Seasonal prediction of Indian summer monsoon rainfall over Uttarakhand using an atmospheric general circulation model. Theor. Appl. Climatol. 2020, 139, 1037–1047. [Google Scholar] [CrossRef]
- Weigel, A.P.; Liniger, M.A.; Appenzeller, C. The discrete Brier and ranked probability skill scores. Mon. Weather Rev. 2007, 135, 118–124. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Liu, S.; Jin, Y.; Xu, H. Assessment of Satellite Products in Estimating Tropical Cyclone Remote Precipitation over the Yangtze River Delta Region. Atmosphere 2024, 15, 667. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Academic Press: Cambridge, MA, USA, 2019; ISBN 978-0-12-815823-4. [Google Scholar]
- Ageet, S.; Fink, A.H.; Maranan, M.; Diem, J.E.; Hartter, J.; Ssali, A.L.; Ayabagabo, P. Validation of Satellite Rainfall Estimates over Equatorial East Africa. J. Hydrometeor. 2022, 23, 129–151. [Google Scholar] [CrossRef]
- Hagos, S.M.; Cook, K.H. Dynamics of the West African monsoon jump. J. Clim. 2007, 20, 5264–5284. [Google Scholar] [CrossRef]
- Yu, L.; Leng, G.; Python, A. A comprehensive validation for GPM IMERG precipitation products to detect extremes and drought over mainland China. Weather Clim. Extrem. 2022, 36, 100458. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, C.; Zhao, X.; Zhang, Q.; Su, J. Evaluation of the GPM IMERG product at the hourly timescale over China. Atmos. Res. 2023, 285, 106656. [Google Scholar] [CrossRef]
- Mekonnen, K.; Velpuri, N.M.; Leh, M.; Akpoti, K.; Owusu, A.; Tinonetsana, P.; Hamouda, T.; Ghansah, B.; Paranamana, T.P.; Munzimi, Y. Accuracy of satellite and reanalysis rainfall estimates over Africa: A multi-scale assessment of eight products for continental applications. J. Hydrol. Reg. Stud. 2023, 49, 101514. [Google Scholar] [CrossRef]
- Beljaars, A.C.M. The parametrization of moist convection in the ECMWF model: Recent developments and future challenges. ECMWF Newsl. 2006, 24–29. [Google Scholar]
- Koné, B.; Diedhiou, A.; Diawara, A.; Anquetin, S.; Touré, N.E.; Bamba, A.; Kobea, A.T. Influence of initial soil moisture in a regional climate model study over West Africa—Part 2: Impact on the climate extremes. Hydrol. Earth Syst. Sci. 2022, 26, 731–754. [Google Scholar] [CrossRef]
- Sanogo, S.; Peyrillé, P.; Roehrig, R.; Guichard, F.; Ouedraogo, O. Extreme Precipitating Events in Satellite and Rain Gauge Products over the Sahel. J. Clim. 2022, 35, 1915–1938. [Google Scholar] [CrossRef]
- Vigaud, N.; Robertson, A.W.; Tippett, M.K.; Acharya, N. Sub-seasonal Predictability of Boreal Summer Monsoon Rainfall from Ensemble Forecasts. Front. Environ. Sci. 2017, 5, 67. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, T.; Gao, S.; Hong, Y.; Zhang, Q.; Wen, X.; Cheng, C. Improving Subseasonal-to-Seasonal forecasts in predicting the occurrence of extreme precipitation events over the contiguous U.S. using machine learning models. Atmos. Res. 2022, 281, 106502. [Google Scholar] [CrossRef]
- Kim, H.; Son, S.-W.; Kim, H.; Seo, K.H.; Kang, M.J. MJO influence on subseasonal-to-seasonal prediction in the Northern Hemisphere extratropics. J. Clim. 2023, 36, 7943–7956. [Google Scholar] [CrossRef]
- Vashisht, A.; Zaitchik, B. Modulation of East African boreal fall rainfall: Combined effects of the Madden–Julian Oscillation (MJO) and El Niño–Southern Oscillation (ENSO). J. Clim. 2022, 35, 2019–2034. [Google Scholar] [CrossRef]
Data | Variable | Source | Months | Periods | Resolution | Ensemble Size | Time-Step |
---|---|---|---|---|---|---|---|
ECMWF Realtime | Rainfall | ECMWF | March–October | 2020–2021 | 150 km | 51 | Daily |
ECMWF Hindcast | Rainfall | ECMWF | March–October | 2001–2019 | 150 km | 11 | Daily |
Observed | Rainfall | GPM_IMERG | March–November | 2001–2021 | 10 km | NA | Daily |
Observed | Rainfall | TAMSAT | March–November | 2001–2021 | 5 km | NA | Daily |
Fct. Days | Start-Date (SD; 2020) | Valid Until | Start-Date (SD; 2021) | Valid Until | Period | Lead Time (LT) |
---|---|---|---|---|---|---|
1 | 30 March | 8 May | 29 March | 7 May | 40 days | 10 days |
2 | 13 April | 22 May | 12 April | 21 May | 40 days | 10 days |
3 | 27 April | 5 June | 26 April | 4 June | 40 days | 10 days |
4 | 11 May | 19 June | 12 May | 18 June | 40 days | 10 days |
5 | 25 May | 3 July | 24 May | 2 July | 40 days | 10 days |
6 | 8 June | 17 July | 7 June | 16 July | 40 days | 10 days |
7 | 22 June | 31 July | 21 June | 30 July | 40 days | 10 days |
8 | 6 July | 14 August | 5 July | 13 August | 40 days | 10 days |
9 | 20 July | 28 August | 19 July | 27 August | 40 days | 10 days |
10 | 3 August | 11 September | 2 August | 10 September | 40 days | 10 days |
11 | 17 August | 25 September | 16 August | 24 September | 40 days | 10 days |
12 | 31 August | 09 October | 30 August | 8 October | 40 days | 10 days |
13 | 14 September | 23 October | 13 September | 22 October | 40 days | 10 days |
14 | 28 September | 7 November | 27 September | 6 November | 40 days | 10 days |
15 | 12 October | 21 November | 13 October | 20 November | 40 days | 10 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaniyan, E.A.; Woolnough, S.J.; Andrade, F.M.D.; Hirons, L.C.; Thompson, E.; Lawal, K.A. Performance Evaluation of Real-Time Sub-to-Seasonal (S2S) Rainfall Forecasts over West Africa of 2020 and 2021 Monsoon Seasons for Operational Use. Atmosphere 2025, 16, 1072. https://doi.org/10.3390/atmos16091072
Olaniyan EA, Woolnough SJ, Andrade FMD, Hirons LC, Thompson E, Lawal KA. Performance Evaluation of Real-Time Sub-to-Seasonal (S2S) Rainfall Forecasts over West Africa of 2020 and 2021 Monsoon Seasons for Operational Use. Atmosphere. 2025; 16(9):1072. https://doi.org/10.3390/atmos16091072
Chicago/Turabian StyleOlaniyan, Eniola A., Steven J. Woolnough, Felipe M. De Andrade, Linda C. Hirons, Elisabeth Thompson, and Kamoru A. Lawal. 2025. "Performance Evaluation of Real-Time Sub-to-Seasonal (S2S) Rainfall Forecasts over West Africa of 2020 and 2021 Monsoon Seasons for Operational Use" Atmosphere 16, no. 9: 1072. https://doi.org/10.3390/atmos16091072
APA StyleOlaniyan, E. A., Woolnough, S. J., Andrade, F. M. D., Hirons, L. C., Thompson, E., & Lawal, K. A. (2025). Performance Evaluation of Real-Time Sub-to-Seasonal (S2S) Rainfall Forecasts over West Africa of 2020 and 2021 Monsoon Seasons for Operational Use. Atmosphere, 16(9), 1072. https://doi.org/10.3390/atmos16091072