Dynamic Quantification of PISHA Sandstone Rill Erosion Using the SFM-MVS Method Under Laboratory Rainfall Simulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Test Material
2.3. Test Program
2.4. MVS Matching Observation System Based on SFM-MVS
3. Results
3.1. Performance Test of MVS Matched Observation System Based on SFM-MVS
3.2. Quantitative Analysis of the Continuous State of Fine Channel Developmental Features
4. Discussion
4.1. Comparative Evaluation of SFM-MVS Against LiDAR and UAV Photogrammetry
4.2. Limitations and Future Perspectives
5. Conclusion
- (1)
- Under rainfall intensities of 30–120 mm/h, the rill erosion process progressed through four distinct stages: infiltration and particle rolling, splash and sheet erosion, initial rill incision, and mature rill networks. Erosion was most pronounced in the middle and lower sections of the slope.
- (2)
- The developed SFM-MVS observation system achieved millimeter-level accuracy, with planimetric and vertical errors of 3.1 mm and 3.7 mm, respectively. Compared with LiDAR and UAV photogrammetry, the system reduced elevation errors by approximately 25% and shortened computation time by nearly 50%.
- (3)
- Infiltration capacity was strongly associated with soil saturation. At low flow rates (2 L/min), average infiltration stabilized at approximately 6.2 mm/h, resulting in a gradual sheet-to-rill transition. At high flow rates (≥6 L/min), infiltration rapidly stabilized at less than 4 mm/h, leading to dominant rill incision and sediment transport dominated by coarse particles (>0.1 mm, up to 21.4% of the sediment load).
- (4)
- The combined use of feature matching and depth map fusion significantly improved reconstruction fidelity and enabled dynamic quantification of rill development. However, since tests were limited to laboratory-scale experiments, further field validation is necessary to assess the impacts of natural rainfall variability, vegetation cover, and soil heterogeneity on rill erosion processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the global rate of soil erosion. Nat. Sustain. 2020, 3, 51–55. [Google Scholar] [CrossRef]
- Xiong, M.; Leng, G. Global soil water erosion responses to climate and land use changes. Catena 2024, 241, 108043. [Google Scholar] [CrossRef]
- Yan, J.; Wang, S.; Feng, J.; He, H.; Wang, L.; Sun, Z.; Zheng, C. New 30-m resolution dataset reveals declining soil erosion with regional increases across Chinese mainland (1990–2022). Remote Sens. Environ. 2025, 323, 114681. [Google Scholar] [CrossRef]
- Remitha, K.R. Spatial analysis and assessment of soil erosion in the southern Western Ghats region in India. Environ. Monit. Assess. 2024, 196, 806. [Google Scholar] [CrossRef]
- Arabameri, A.; Chen, W.; Loche, M.; Zhao, X.; Li, Y.; Lombardo, L.; Cerda, A.; Pradhan, B.; Bui, D.T. Comparison of machine learning models for gully erosion susceptibility mapping. Geosci. Front. 2020, 11, 1609–1620. [Google Scholar] [CrossRef]
- Sun, L.; Fang, H.; Qi, D.; Li, J.; Cai, Q. A review on rill erosion process and its influencing factors. Chin. Geogr. Sci. 2013, 23, 389–402. [Google Scholar] [CrossRef]
- Soleimanpour, S.M.; Gholami, H.; Rahmati, O.; Shadfar, S. Fingerprinting Sources of Fine-grained Sediment Deposited in a Riverine System by GLUE. Water Resour. Manag. 2023, 37, 899–913. [Google Scholar] [CrossRef]
- Zhao, C.; Mou, W.; Liu, J.; Li, C.; Lei, L.; Ta, F.; Lai, S.; Feng, Y.; Zhou, Z. Vegetation restoration restrains rill erosion on slag heaps in high-altitude goldfields. Sci. Total Environ. 2024, 912, 169528. [Google Scholar]
- Zhang, J.; Zhou, L.; Huang, D. Development of rill erosion on bare sloping farmland under natural rainfall conditions. Environ. Earth Sci. 2022, 81, 264. [Google Scholar] [CrossRef]
- Li, D.; Chen, X.; Tan, W.; Tao, T.; Ma, L.; Kong, L.; Zhu, P. Response of erosion rate to hydrodynamic parameters in sheet and rill erosion process on saturated soil slopes. Soil Tillage Res. 2024, 237, 105996. [Google Scholar] [CrossRef]
- Han, Z.; Chen, X.; Li, Y.; Chen, S.; Gu, X.; Wei, C. Quantifying the rill-detachment process along a saturated soil slope. Soil Tillage Res. 2020, 204, 104726. [Google Scholar] [CrossRef]
- Lou, Y.; Gao, Z.; Sun, G.; Wu, T.; Zhou, F.; Ai, J.; Cen, Y.; Xie, J. Runoff scouring experimental study of rill erosion of spoil tips. Catena 2022, 214, 106249. [Google Scholar] [CrossRef]
- Tao, T.; Han, Z.; Li, Y.; Gu, X.; Chen, X. Effect of subsurface water flow depth on the rill erosion process on purple soil slopes. Catena 2022, 214, 106297. [Google Scholar] [CrossRef]
- Tian, P.; Xu, X.; Pan, C.; Hsu, K.; Yang, T. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes. J. Hydrol. 2017, 548, 24–39. [Google Scholar] [CrossRef]
- Wang, N.; Luo, J.; He, S.; Li, T.; Zhao, Y.; Zhang, X.; Wang, Y.; Huang, H.; Yu, H.; Ye, D.; et al. Characterizing the rill erosion process from eroded morphology and sediment connectivity on purple soil slope with upslope earthen dike terraces. Sci. Total Environ. 2023, 860, 160486. [Google Scholar] [PubMed]
- Yan, Y.; Tu, N.; Cen, L.; Gan, F.; Dai, Q.; Mei, L. Characteristics and dynamic mechanism of rill erosion driven by extreme rainfall on karst plateau slopes, SW China. Catena 2024, 238, 107890. [Google Scholar] [CrossRef]
- Yang, D.M.; Fang, N.F.; Shi, Z.H. Correction factor for rill flow velocity measured by the dye tracer method under varying rill morphologies and hydraulic characteristics. J. Hydrol. 2020, 591, 125560. [Google Scholar] [CrossRef]
- Shen, H.; Zheng, F.; Wen, L.; Lu, J.; Jiang, Y. An experimental study of rill erosion and morphology. Geomorphology 2015, 231, 193–201. [Google Scholar] [CrossRef]
- Patriche, C.V. Quantitative assessment of rill and interrill soil erosion in Romania. Soil Use Manag. 2019, 35, 257–272. [Google Scholar]
- Yang, C.J.; Jen, C.H.; Cheng, Y.C.; Lin, J.C. Quantification of mudcracks-driven erosion using terrestrial laser scanning in laboratory runoff experiment. Geomorphology 2021, 375, 107527. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, H.; Wen, Z.; Guo, M.; Zhao, J.; Cao, X.; Shui, J.; Paull, D. A comparative experimental study of rill erosion on loess soil and clay loam soil based on a digital close-range photogrammetry technology. Geomorphology 2022, 419, 108487. [Google Scholar] [CrossRef]
- Malinowski, R.; Heckrath, G.; Rybicki, M.; Eltner, A. Mapping rill soil erosion in agricultural fields with UAV-borne remote sensing data. Earth Surf. Process. Landf. 2023, 48, 596–612. [Google Scholar] [CrossRef]
- Gomez, J.A.; Kamran-Pishhesari, A.; Sattarvand, J. Automated Rill Erosion Detection in Tailing Dams Using UAV Imagery and Machine Learning. Arab. J. Sci. Eng. 2025, 50, 6711–6726. [Google Scholar] [CrossRef]
- Hinsberger, R. Analysis of heavy precipitation-induced rill erosion. Environ. Earth Sci. 2024, 83, 354. [Google Scholar] [CrossRef]
- Fonstad, M.; Dietrich, J.; Courville, B.; Jensen, J.; Carbonneau, P. Topographic Structure from Motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- James, M.; Antoniazza, G.; Robson, S.; Lane, S. Mitigating systematic error in topographic models for geomorphic change detection: Accuracy, precision and considerations beyond off-nadir imagery. Earth Surf. Process. Landf. 2020, 45, 2251–2271. [Google Scholar] [CrossRef]
- Zuo, Z.; Wang, H.; Ding, S.; Wu, Y. Effect of Rill Development on Slope Erosion and Sediment Yield Based on Stereophotogrammetry Technology. Water 2022, 14, 2951. [Google Scholar] [CrossRef]
- Eltner, A.; Baumgart, P.; Maas, H.-G.; Faust, D. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surf. Process. Landf. 2015, 40, 741–755. [Google Scholar] [CrossRef]
- Smith, M.; Vericat, D. From experimental plots to experimental landscapes: Topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry: Multi-Scale Validation of Structure from Motion in a Badland Setting. Earth Surf. Process. Landf. 2015, 40, 1656–1671. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellan, A. Image-based surface reconstruction in geomorphometry—Merits, limits and developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef]
- Wheaton, J.; Brasington, J.; Darby, S.; Sear, D. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2009, 35, 136–156. [Google Scholar] [CrossRef]
- Mijakovska, S. Overview of Structure from Motion. Adv. Comput. Int. J. 2024, 15, 5–32. [Google Scholar] [CrossRef]
- Luppichini, M.; Paterni, M.; Berton, A.; Casarosa, N.; Bini, M. Influences of the Ground Control Point (GCP) configuration on the UAV-derived Structure from Motion (SfM) in the coastal environment. Earth Sci. Inform. 2025, 18, 144. [Google Scholar] [CrossRef]
- Yamane, T.; Chun, P.J.; Honda, R. Detecting and localising damage based on image recognition and structure from motion, and reflecting it in a 3D bridge model. Struct. Infrastruct. Eng. 2024, 20, 594–606. [Google Scholar] [CrossRef]
- He, T.; Yang, Y.; Shi, Y.; Liang, X.; Fu, S.; Xie, G.; Liu, B.; Liu, Y. Quantifying spatial distribution of interrill and rill erosion in a loess at different slopes using structure from motion (SfM) photogrammetry. Int. Soil Water Conserv. Res. 2022, 10, 393–406. [Google Scholar] [CrossRef]
- Kanno, A.; Matsuoka, Y.; Sekine, M.; Imai, T.; Yamamoto, K.; Higuchi, T. Robustness of Structure from Motion Accuracy/Precision Against the Non-Optimality in Analysis Settings: Case Study in Constant-Pitch Flight Design: Special Issue on Advanced Three-Dimensional Digital Geometry Processing. Int. J. Autom. Technol. 2024, 18, 621–631. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Huang, H.; Yan, X.; Zheng, Y.; He, J.; Xu, L.; Qin, D. Multi-view stereo algorithms based on deep learning: A survey. Multimed. Tools Appl. 2025, 84, 2877–2908. [Google Scholar] [CrossRef]
- Wang, L.; Sun, L.; Duan, F. CT-MVSNet: Curvature-guided multi-view stereo with transformers. Multimed. Tools Appl. 2024, 83, 90465–90486. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.; He, J.; Lu, Y.; Cui, Z.; Li, W.; Zhang, Y. Feature distribution normalization network for multi-view stereo. Vis. Comput. 2025, 41, 409–421. [Google Scholar] [CrossRef]
- Kong, W.; Xu, Q.; Su, W.; Xu, S.; Tao, W. LGP-MVS: Combined local and global planar priors guidance for indoor multi-view stereo. Vis. Comput. 2023, 39, 6421–6433. [Google Scholar] [CrossRef]
- Eltner, A.; Sofia, G. Chapter 1—Structure from motion photogrammetric technique. Dev. Earth Surf. Process. 2020, 23, 1–24. [Google Scholar]
- Stumpf, A.; Malet, J.P.; Kerle, N.; Niethammer, U.; Rothmund, S. Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 2013, 186, 12–27. [Google Scholar] [CrossRef]
- GBT 50123; China Geotechnical Test Standards. Ministry of Housing and Urben-Rural Development of the People’s Republic of China: Beijing, China, 2019.
- Yang, F.; Xu, X.; Lin, G. An experimental study on the erosion mitigation impact of biological soil crusts in Pisha sandstone area. Catena 2025, 254, 108987. [Google Scholar] [CrossRef]
- Ocheli, A.; Ogbe, O.B.; Aigbadon, G.O. Geology and geotechnical investigations of part of the Anambra Basin, Southeastern Nigeria: Implication for gully erosion hazards. Environ. Syst. Res. 2021, 10, 23. [Google Scholar] [CrossRef]
- Thwaites, R.N.; Brooks, A.P.; Pietsch, T.J.; Spencer, J.R. What type of gully is that? The need for a classification of gullies. Earth Surf. Process. Landf. 2022, 47, 109–128. [Google Scholar] [CrossRef]
- Wen, Y.; Kasielke, T.; Li, H.; Zepp, H.; Zhang, B. A case-study on history and rates of gully erosion in Northeast China. Land Degrad. Dev. 2021, 32, 4254–4266. [Google Scholar] [CrossRef]
- Gong, C.; Lei, S.; Bian, Z.; Tian, Y.; Zhang, Z.; Guo, H.; Zhang, H.; Cheng, W. Using time series InSAR to assess the deformation activity of open-pit mine dump site in severe cold area. J. Soils Sediments 2021, 21, 3717–3732. [Google Scholar] [CrossRef]
- Betz-Nutz, S.; Heckmann, T.; Haas, F.; Becht, M. Development of the morphodynamics on Little Ice Age lateral moraines in 10 glacier forefields of the Eastern Alps since the 1950s. Earth Surf. Dyn. 2023, 11, 203–226. [Google Scholar] [CrossRef]
- Zare, M.; Soufi, M.; Nejabat, M.; Pourghasemi, H.R. The topographic threshold of gully erosion and contributing factors. Nat. Hazards 2022, 112, 2013–2035. [Google Scholar] [CrossRef]
- Egbueri, J.C.; Igwe, O.; Unigwe, C.O. Gully slope distribution characteristics and stability analysis for soil erosion risk ranking in parts of southeastern Nigeria: A case study. Environ. Earth Sci. 2021, 80, 292. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Zhang, W.; Shi, Z.T.; Jin, J.Y.; Zhang, W.H. Characterization of the Hydrodynamics of Fine Channel Erosion on Slopes. Eng. Headw. 2024, 10, 83–88. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, D.; Li, H.; Pei, L.; Yao, Q. Experimental Study on Gully Erosion Characteristics of Mountain Torrent Debris Flow in a Strong Earthquake Area. Water 2023, 15, 283. [Google Scholar] [CrossRef]
- Remondino, F.; Fraser, C. Digital camera calibration methods: Considerations and comparisons. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 36, 266–272. [Google Scholar]
- Eltner, A.; Schneider, D. Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel-Axes UAV Images. Photogramm. Rec. 2015, 30, 279–299. [Google Scholar] [CrossRef]
- James, M.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. 2012, 117, F03017. [Google Scholar] [CrossRef]
Serial Number | Components | Quantity Contained | Particle Size Range (μm) | Note |
---|---|---|---|---|
1 | Grit | 57.51% | 75–2000 | Main ingredient, providing water permeability |
2 | Granule | 37.78% | 5–75 | Medium grain size, affects soil structure |
3 | Viscosity | 4.71% | <5 | Increase soil cohesion |
4 | Organic matter | 2.5% | / | / |
5 | pH | 6.8 | / | Weak acid |
6 | Capacity | 1.24 g/cm3 | / | Control value |
7 | Porosity | 45% | / | Affects water penetration |
8 | Organic carbon content | 1.5% | / | Reflects organic matter content |
9 | Total nitrogen content | 0.12% | / | / |
10 | Total phosphorus content | 0.05% | / | / |
11 | Total potassium content | 1.8% | / | / |
12 | Cation exchange capacity | 12 cmol/kg | / | / |
Group | Flow Rate | Simulated Rainfall Intensity | Runoff Coefficient | Repetition |
---|---|---|---|---|
1 | 2 | 30 | 0.8 | 3 |
2 | 4 | 60 | ||
3 | 6 | 90 | ||
4 | 8 | 120 | ||
5 | Non-erosive treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, S.; Wang, J.; Gao, R.; Liu, J.; Liu, S.; Hu, X.; Liu, J.; Bai, R. Dynamic Quantification of PISHA Sandstone Rill Erosion Using the SFM-MVS Method Under Laboratory Rainfall Simulation. Atmosphere 2025, 16, 1045. https://doi.org/10.3390/atmos16091045
Liu Y, Zhang S, Wang J, Gao R, Liu J, Liu S, Hu X, Liu J, Bai R. Dynamic Quantification of PISHA Sandstone Rill Erosion Using the SFM-MVS Method Under Laboratory Rainfall Simulation. Atmosphere. 2025; 16(9):1045. https://doi.org/10.3390/atmos16091045
Chicago/Turabian StyleLiu, Yuhang, Sui Zhang, Jiwei Wang, Rongyan Gao, Jiaxuan Liu, Siqi Liu, Xuebing Hu, Jianrong Liu, and Ruiqiang Bai. 2025. "Dynamic Quantification of PISHA Sandstone Rill Erosion Using the SFM-MVS Method Under Laboratory Rainfall Simulation" Atmosphere 16, no. 9: 1045. https://doi.org/10.3390/atmos16091045
APA StyleLiu, Y., Zhang, S., Wang, J., Gao, R., Liu, J., Liu, S., Hu, X., Liu, J., & Bai, R. (2025). Dynamic Quantification of PISHA Sandstone Rill Erosion Using the SFM-MVS Method Under Laboratory Rainfall Simulation. Atmosphere, 16(9), 1045. https://doi.org/10.3390/atmos16091045